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Abstract
Background Direct optical trocar insertion is a common procedure in laparoscopic minimally invasive surgery. However, 
misinterpretations of the abdominal wall anatomy can lead to severe complications. Artificial intelligence has shown promise 
in surgical endoscopy, particularly in the employment of deep learning models for anatomical landmark identification. This 
study aimed to integrate a deep learning model with an alarm system algorithm for the precise detection of abdominal wall 
layers during trocar placement.
Method Annotated bounding boxes and assigned classes were based on the six layers of the abdominal wall: subcutaneous, 
anterior rectus sheath, rectus muscle, posterior rectus sheath, peritoneum, and abdominal cavity. The cutting-edge YOLOv8 
model was combined with a deep learning detector to train the dataset. The model was trained on still images and inferenced 
on laparoscopic videos to ensure real-time detection in the operating room. The alarm system was activated upon recognizing 
the peritoneum and abdominal cavity layers. We assessed the model’s performance using mean average precision (mAP), 
precision, and recall metrics.
Results A total of 3600 images were captured from 89 laparoscopic video cases. The proposed model was trained on 3000 
images, validated with a set of 200 images, and tested on a separate set of 400 images. The results from the test set were 
95.8% mAP, 89.8% precision, and 91.7% recall. The alarm system was validated and accepted by experienced surgeons at 
our institute.
Conclusion We demonstrated that deep learning has the potential to assist surgeons during direct optical trocar insertion. 
During trocar insertion, the proposed model promptly detects precise landmark references in real-time. The integration of 
this model with the alarm system enables timely reminders for surgeons to tilt the scope accordingly. Consequently, the 
implementation of the framework provides the potential to mitigate complications associated with direct optical trocar place-
ment, thereby enhancing surgical safety and outcomes.
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Trocar insertion is a critical step in laparoscopic surgery 
with various methods available for introducing a trocar 
into the abdominal cavity. Direct optical trocars are widely 
used to establish pneumoperitoneum in most patients who 

undergo bariatric surgery. Therefore, direct optical trocars 
are particularly suitable for patients with a high body mass 
index (BMI) who require minimally invasive procedures. 
Compared to the open (Hasson) technique, the direct opti-
cal trocar method reduces the time needed, blood loss, and 
incidence of abdominal organ injury in obese patients [1, 2]. 
However, this procedure carries the risk of severe compli-
cations such as hollow viscus organ rupture or catastrophic 
aortic rupture [3–5].

In recent years, deep learning artificial intelligence (AI) 
has demonstrated significant potential for various medical 
applications including the enhancement of surgical procedures 
[6, 7]. Several studies have explored the use of deep learning 
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techniques, which is a subset of AI, for different aspects of 
laparoscopic surgery. Surgical phase recognition is one of 
the essential aspects of laparoscopic surgery because it helps 
surgeons monitor the steps of surgery and enables efficient 
surgical workflow management [8]. Deep learning models 
have shown success in automatic surgical phase recognition 
in laparoscopic procedures. In 2019, Padoy et al. [9] used a 
convolutional neural network (CNN)-based approach to rec-
ognize surgical phases from video data that demonstrated the 
ability of the model to learn complex spatiotemporal patterns. 
More recently, Yu et al. proposed a deep learning framework 
for surgical phase recognition using a combination of CNNs 
and recurrent neural networks (RNNs) [10] and achieved high 
accuracy in predicting different surgical phases. Furthermore, 
surgical instrument recognition is another important task for 
laparoscopic surgery as it can track the surgical tools in real-
time. Various deep learning techniques have been employed 
to detect and classify surgical instruments in laparoscopic 
images. For instance, García-Peraza-Herrera et al. [11] used a 
CNN-based approach for real-time surgical instrument detec-
tion while Jha et al. [12] proposed a deep learning model for 
instrument segmentation in laparoscopic videos to achieve 
high accuracy and real-time performance. In the field of ana-
tomical landmark detection, deep learning-based approaches 
have been employed for safe and accurate surgical navigation. 
Many studies proposed real-time identification of important 
anatomical landmarks to guide surgeons during laparoscopy. 
Twinanda et al. [13] employed a CNN to detect and segment 
anatomical landmarks in laparoscopic images. They demon-
strated improved performance compared to traditional image 
processing techniques. Similarly, Wang et al. [14] proposed a 
deep learning model for the automatic detection of anatomi-
cal landmarks in endoscopic images to achieve high accuracy 
and precision.

In this study, we aimed to integrate a deep learning 
approach with a laparoscopic suite equipped with an alarm 
system that would enable surgeons to identify safety land-
marks in real-time that would potentially increase opera-
tion safety. Furthermore, the details of the development and 
evaluation of the deep learning framework are described for 
automatic abdominal wall detection during trocar insertion. 
We outline the methodology employed to train the YOLOv8 
model, demonstrate its performance in detecting the six 
layers of the abdominal wall, compare it with other YOLO 
models, and discuss evaluation of the alarm system.

Materials and methods

Surgical technique

The traditional direct optical trocar insertion technique 
allows surgeons to clearly visualize the abdominal wall 

anatomy as outlined in the following steps. The patient is in 
the supine position.

Step 1: Incisions are made above the rectus muscle area.
Step 2: A 12 mm 0° laparoscopic camera is attached to 
the trocar.
Step 3: The surgeon performs the procedure by applying 
perpendicular pressure while inserting the instruments 
through the layers of the abdominal wall that include the 
subcutaneous, anterior rectus sheath, rectus muscle, pos-
terior rectus sheath, and peritoneum.
Step 4: Upon observing peritoneal tear patterns, the sur-
geon tilts the camera to position it parallel to the patient's 
abdominal wall before continuing with insertion of the 
remaining portion of the scope into the abdominal cavity.
Step 5: Pneumoperitoneum is established through  CO2 
insufflation.

Data collection and annotation

We retrospectively collected 89 laparoscopic trocar place-
ment videos at Songklanagarind Hospital, which is a teach-
ing hospital on the campus of Prince of Songkla Univer-
sity. These videos were collected from different patient 
demographics, various camera models, and camera angles. 
To ensure ethical research conduct, all identifiable patient 
information was deidentified and anonymized. A team of 
three surgeons extracted 3600 still images of the trocar inser-
tion procedure in the videos. Annotations were then made 
to establish landmark bounding boxes and classify object 
classes according to the six layers of the abdominal wall 
(Fig. 1). These layers included the subcutaneous, anterior 
rectus sheath, rectus muscle, posterior rectus sheath, peri-
toneum, and abdominal cavity. We utilized the Roboflow 
[15] web application, which is an open-source tool, for the 
annotation process. The collection of retrospective medical 
data and the subsequent analysis were conducted in accord-
ance with the ethical standards set forth by the institutional 
and national research committee as well as the 2013 ver-
sion of the Declaration of Helsinki (REC Approval Number 
65-161-10-3).

Data splitting

The complete dataset consisted of 3600 images separated 
into three subsets: a training set of 3000 images, a validation 
set of 200 images, and a test set of 400 images.

Data pre‑processing

To train the detection model, we resized all images in the 
dataset from 3840 × 2160 pixels to 800 × 800 pixels using 
the resize function of the YOLOv8 model. Subsequently, 
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the training set was augmented by the Mosaic augmentation 
approach [7], which provided additional images at various 
scales, orientations, contrasts, and brightness levels. Mosaic 
augmentation worked by randomly selecting four images 
and combined them into a single image. Given the chosen 
batch size of 16, the resultant four images were resized and 
arranged in a 4 × 4 grid to create a mosaic pattern. This con-
figuration allowed the model to simultaneously train on 64 
images during each iteration. Mosaic augmentation enabled 
the model to learn each layer of the abdominal wall in vari-
ous appearances and contexts, which therefore enhanced the 
prediction accuracy in real-world laparoscopic scenarios and 
prevented overfitting during the training process [16]. Fig-
ure 2 presents the 4 × 4 grid of 16 batch size that resulted 
from Mosaic augmentation.

YOLOv8 model

YOLOv8 (You Only Look Once version 8) is a state-
of-the-art, real-time object detection model developed 
by Ultralytics [17]. YOLOv8 was constructed as a sin-
gle-stage detector using a deep CNN to simultaneously 
predict bounding boxes and class probabilities for mul-
tiple objects. The architecture of YOLOv8 consists of a 
backbone network designed to extract features from input 
images and a head network that predicts bounding boxes 
and the object classes (Fig. 3). Within the backbone and 
head network, YOLOv8 incorporates multiple layers of 
convolution, pooling, and combining along with batch nor-
malization and activation functions. The overall architec-
ture of YOLOv8 was developed based on previous versions 

of the YOLO family that resulted in several improvements. 
The performance of YOLOv8 was enhanced by incorporat-
ing various techniques, such as Mosaic augmentation, that 
generate additional training images by randomly combin-
ing four images into one. Additionally, YOLOv8 employs 
focal loss to address class imbalance to optimize the detec-
tion of difficult objects.

Model training and fine‑tuning

We employed the YOLOv8 model for dataset training. The 
training model consisted of 225 layers with 11,137,922 
parameters. The training process was carried out in two 
stages. In the first stage, the model was trained for 200 
epochs using the pre-trained weights provided by the 
default package of the model. This initial stage aimed to 
adapt the model to the specific dataset and achieve a rea-
sonable level of performance. Upon evaluating the predic-
tion performance after the initial stage, we proceeded to 
refine the hyperparameters, re-annotate the dataset, and 
address class imbalance. The second stage of fine-tuning 
was performed for an additional 100 epochs using the 
weights obtained from the first stage. This step aimed to 
refine the model further, which allowed it to achieve higher 
accuracy and better generalization for the task of abdomi-
nal wall detection. All training processes were conducted 
on the Google Colab platform utilizing the NVIDIA A100 
graphics processing unit. Various hyperparameters were 
optimized to achieve the optimum performance of the 
model (Table 1).

Fig. 1  Example annotations of the abdominal wall layer
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Alarm sound algorithm

An alarm system was developed to provide notifications 
during trocar placement through the peritoneum into the 
abdominal cavity. We integrated this algorithm with the 
YOLOv8 detection process to sound the first alarm when 
the predicted bounding box for the peritoneum appeared. 
The second alarm was activated when the predicted bound-
ing box for the abdominal cavity became visible.

Model testing and evaluation

The performance of the detection model was assessed using 
unseen images in the test set. Precision, recall, and aver-
age precision (AP) were utilized as individual class evalu-
ations. Furthermore, the overall performance of the model 
was quantified using mean average precision (mAP), which 
denoted the mean value of all APs across classes. To achieve 
the mAP value, the first step was to calculate the intersection 

Fig. 2  Mosaic augmentation results of 16 batch size
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over union (IoU) as depicted in Fig. 4 (Eq. 1), where BBox-
pred represents the predicted bounding box and BBoxgt repre-
sents the ground truth bounding box. The IoU metric denotes 
the proportion of the intersecting region to the combined 
area of the predicted bounding box and the ground truth 
bounding box (Fig. 4). Subsequently true positive, false pos-
itive, and false negative were calculated by comparing the 

IoU values with the predefined thresholds. For each abdomi-
nal wall layer, precision and recall values as well as their 
associated confidence levels were determined using Fig. 4 
(Eqs. 2 and 3). Next, the AP for a specific class was calcu-
lated using Fig. 4 (Eq. 4) where n represents the number of 
threshold points, i represents the index of each threshold, 
Pi refers to the precision values, and Ri corresponds to the 
recall values. Lastly, the mAP was calculated by taking the 
mean of the AP values for each class as presented in Fig. 4 
(Eq. 5) where APk refers to the AP of class k, and n refers to 
the number of classes.

Results

Detection performance of the six layers 
of the abdominal wall

We trained the YOLOv8 model for 200 epochs on the data-
set and subsequently fine-tuned it for an additional 100 
epochs using the re-annotated dataset. The performance 
of the model for each abdominal wall layer was assessed 
using precision, recall, and AP while the mAP measured the 
overall model performance. Figure 4 Eqs. 1 through 5 were 
employed for the evaluation calculations. The fine-tuned 

Fig. 3  Architecture of proposed framework based on the YOLOv8 model

Table 1  Hyperparameter details for the training process

HSV hue saturation value

Hyperparameter First stage Second stage (fine-tuning)

Epoch 200 100
Batch size 16 16
Image size (pixels) 800 × 800 640 × 640
Pre-trained weight Yes Transferred from first stage
Optimizer Stochastic gra-

dient descent
Stochastic gradient descent

Initial learning rate 0.001 0.01
Final learning rate 0.01 0.01
Momentum 0.937 0.937
Albumentations Blur, Median-

Blur, ToGray, 
CLAHE

HSV, Flip, Scale, Blur, 
MedianBlur, ToGray, 
CLAHE
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model achieved an overall detection performance of 89.8% 
precision, 91.7% recall, and 95.8% mAP on the testing set. 
Table 2 presents the precision, recall, and AP results for each 
abdominal wall layer of the testing sets. Figure 5 illustrates 
the abdominal wall detection results on the testing set.

Alarm system performance

We inferenced the well-trained detection model during the 
detection process to 15 laparoscope videos to evaluate the 
performance of the alarm sound algorithm. Nine minimally 
invasive surgeons verified the accuracy of the alert sound 
timing and duration. Table 3 lists the number of acceptances 
of the alarm sound algorithm. The results in Table 3 indicate 
that the alert sound was activated correctly during the trocar 

insertion process. The first sound was produced properly 
when the result of the predicted bounding box was the peri-
toneum layer and the second sound was subsequently heard 
when the abdominal cavity was detected.

Fig. 4  Intersection over union 
metric

Table 2  Evaluation of the abdominal wall detection model for all 
classes of the testing set with an intersection over union threshold of 
0.5

AP average precision, mAP mean average precision

Class Precision (%) Recall (%) AP (%)

Subcutaneous 83.9 94.9 96.8
Anterior rectus sheath 82.8 92.7 97.4
Rectus muscle 90.9 95.5 98.0
Posterior rectus sheath 93.8 87.8 94.5
Peritoneum 96.3 95.4 96.9
Abdominal cavity 91.1 84.1 91.0
Average 89.8 91.7 95.8 (mAP)
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Comparisons with scaled‑YOLOv4, YOLOv5, 
and YOLOv7

While scaled-YOLOv4, YOLOv5, and YOLOv7 have been 
employed as robust object detection models, the redesigned 
architecture of YOLOv8 has proven to be more effec-
tive in terms of both speed and accuracy. The detection 

performance of the YOLOv8 model was compared against 
the scaled-YOLOv4, YOLOv5, and YOLOv7 models on the 
testing set. The mAP of each model was calculated with an 
IoU threshold of 0.5. Table 4 presents the comparison results 
for precision, recall, and mAP. Based on all values, the find-
ings given in Table 4 demonstrated that the YOLOv8 model 
outperformed the scaled-YOLOv4, YOLOv5, and YOLOv7 
models.

Real‑time inference in the operating room

The following steps were undertaken in the operating room 
to evaluate the framework for real-time abdominal wall 
detection during trocar insertion.

Fig. 5  Proposed model prediction compared to ground truth annotation

Table 3  Surgeons’ acceptance of the alarm sound algorithm on the 
testing set

Surgeon No Number of acceptances and rejections

Inference alarm algorithm sound on 
15 laparoscopic videos

Accepted Rejected

1 15 0
2 15 0
3 15 0
4 14 1
5 14 1
6 15 0
7 15 0
8 15 0
9 14 1
Average (%) 97% 3%

Table 4  Comparison of performance on the testing set

mAP mean average precision, IoU intersection over union

Model Precision (%) Recall (%) mAP 
(IoU = 0.5) 
(%)

Scaled-YOLOv4 62.5 74.7 70.7
YOLOv5 64.3 66.7 62.3
YOLOv7 70.2 79.1 76.0
YOLOv8 89.8 91.7 95.8
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Step 1: The necessary hardware and software were made 
available: (1) a compatible endoscopic camera system 
with 4 K resolution or the highest available resolution 
from the camera control unit, (2) a computer with Intel 
Core i7 processor, 16 GB of RAM, and NVIDIA GeForce 
RTX 3080 graphics card for real-time inference, and (3) 
the well-trained YOLOv8 model including the configura-
tion file, weight file, and object class file.
Step 2: The operating room set-up was performed by: (1) 
connecting the endoscopic camera system to the camera 
control unit (CCU) and (2) transmitting the live video 
from the CCU to the computer for real-time processing 
where the HDMI capture card was used to convert the 
endoscopic video signal to digital data that was fed into 
the framework.
Step 3: The framework was loaded for real-time infer-
ence by: (1) configuring the framework to process the live 

video from the endoscopic camera system, (2) initiating 
real-time inference using the well-trained YOLOv8 model 
that enabled it to detect the abdominal wall layers as the 
trocar was inserted, and (3) calling the alarm function to 
notify the surgeon when the trocar was inserted into the 
peritoneum layer and abdominal cavity layer.
Step 4: The results were monitored. As the surgeon per-
formed the trocar insertion, the real-time output was 
monitored, the prediction and activation of the alarm 
function were recorded, and precision was evaluated by 
the surgeon team.

By following these steps, the well-trained model detected 
each layer of the abdominal wall and accurately performed 
the alarm system. Figure 6 presents the workstation in the 
operating room.

Fig. 6  Workstation in the oper-
ating room
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Discussion

Several methods are available for entering the abdominal 
cavity in minimally invasive surgery. Direct optical trocar 
insertion is the prevalent surgical technique, particularly for 
obese or high BMI patients. However, this technique can 
raise concerns for surgeons, as improper use may lead to 
severe complications. This study employed AI to identify 
abdominal wall entry patterns and develop an alarm sys-
tem to help surgeons prevent intra-abdominal organ dam-
age. This system is also suitable for training inexperienced 
surgeons in using this method. The test results demonstrated 
that the AI system developed at our institution can accurately 
recognize abdominal wall anatomy and provide alerts when 
optimal peritoneal tearing is achieved.

AI is progressively being employed across various facets 
of surgery to enhance patient outcomes, optimize workflows, 
and improve surgical training [18]. In the domain of intraop-
erative guidance and navigation, AI can be integrated with 
surgical robots or computer-assisted systems to provide real-
time guidance and feedback during surgery. This integra-
tion was shown to bolster accuracy and efficiency in surgical 
procedures such as laparoscopic cholecystectomy where it 
assists in identifying critical safety views and in colorectal 
surgery [8] where it aids in pinpointing vital structures.

Trocar insertion during the laparoscopic procedure is rec-
ognized at our institution as a crucial factor in patient safety. 
In this study, we successfully implemented a YOLOv8-based 
deep learning model for real-time abdominal wall detection 
during direct optical trocar insertion. The findings demon-
strated the potential of this approach to substantially improve 
the safety and accuracy of trocar placement.

The deep learning framework allowed for precise identi-
fication and localization of the six layers of the abdominal 
wall. This real-time guidance enables surgeons to be con-
stantly aware of the anatomical structures encountered dur-
ing the procedure, which subsequently reduces the risk of 
trocar injuries and associated complications. Furthermore, 
the integration of an alarm system within the model ensures 
timely alerts for the surgeon to enhance surgical decision-
making and facilitate adjustments as needed.

This study had some limitations. It was a single-center 
study. The surgical videos used for training were sourced 
exclusively from our hospital's laparoscopic equipment. 
Some equipment brands were not included in the develop-
ment of this model, which may require additional sampling 
and training to enhance its adaptability. Furthermore, future 
randomized controlled trials should be conducted to investi-
gate the benefits of implementing AI in surgical procedures.

In conclusion, deep learning technology for real-time 
abdominal wall detection during trocar insertion in laparo-
scopic surgery offers a promising method to improve patient 

safety and preventing trocar-related injuries. The YOLOv8-
based model presented in this study represents a significant 
advancement in the field of AI in surgical endoscopy with 
the potential to transform clinical practice and ultimately 
enhance surgical outcomes.
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