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Abstract
Background Intraoperative adverse events lead to patient injury and death, and are increasing. Early warning systems (EWSs) 
have been used to detect patient deterioration and save lives. However, few studies have used EWSs to monitor surgical 
performance and caution about imminent technical errors. Previous (non-surgical) research has investigated neural activity 
to predict future motor errors using electroencephalography (EEG). The present proof-of-concept cohort study investigates 
whether EEG could predict technical errors in surgery.
Methods In a large academic hospital, three surgical fellows performed 12 elective laparoscopic general surgeries. Audio-
visual data of the operating room and the surgeon’s neural activity were recorded. Technical errors and epochs of good 
surgical performance were coded into events. Neural activity was observed 40 s prior and 10 s after errors and good events 
to determine how far in advance errors were detected. A hierarchical regression model was used to account for possible 
clustering within surgeons. This prospective, proof-of-concept, cohort study was conducted from July to November 2021, 
with a pilot period from February to March 2020 used to optimize the technique of data capture and included participants 
who were blinded from study hypotheses.
Results Forty-five technical errors, mainly due to too little force or distance (n = 39), and 27 good surgical events were coded 
during grasping and dissection. Neural activity representing error monitoring (p = .008) and motor uncertainty (p = .034) 
was detected 17 s prior to errors, but not prior to good surgical performance.
Conclusions These results show that distinct neural signatures are predictive of technical error in laparoscopic surgery. If 
replicated with low false-alarm rates, an EEG-based EWS of technical errors could be used to improve individualized surgi-
cal training by flagging imminent unsafe actions—before errors occur and cause patient harm.

Keywords Surgical error · Error prediction · Early warning system · Neurotechnology · Surgical training · Error prevention

Surgical adverse events remain the leading cause of avoid-
able injury and death in healthcare [1–3]. Critically, there 

has been an increase in intraoperative adverse events (iAEs) 
[4, 5], which can only partially be attributed to improved 
tracking [3], with about half considered preventable [6–10]. 
Much of learning about technical errors and how to avoid 
them in surgery is based on retrospective analyses of per-
formance, such as self-assessment through video analysis 
or receiving in-the-moment feedback from a mentor about 
errors. Although these methods can help improve surgical 
performance [11, 12], retrospective analyses require learning 
from errors that have already potentially harmed the patient 
and can be vulnerable to recall bias. If preventative mecha-
nisms are not developed for learning to avoid technical errors 
in surgery, iAEs may continue to rise.

Early warning systems (EWSs) are used to predict patient 
deterioration and have been shown to save lives [13, 14], 
such as the use of abnormal electrocardiography alerts for 
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reducing cardiac arrests [15]. However, few studies have 
used EWSs to monitor surgical performance and flag pos-
sible upcoming technical errors [16]. In non-surgical set-
tings, electroencephalography (EEG) has been used to pre-
dict imminent motor errors 20 s before they occur [17]. At 
present, it is unknown whether neural signatures could pre-
dict technical errors in surgery. If they could, neural activity 
could be used to provide advanced warning for surgeons to 
modify their upcoming actions. Our objective was to deter-
mine whether EEG could be used to predict technical errors 
in surgery.

Cognitive processes that precede motor 
responses

Error monitoring

EEG has provided important evidence about the neurocogni-
tive systems associated with performance monitoring (i.e. 
the ability to self-evaluate behavioural outcomes). “Action 
slips”—typically fast and impulsive technical errors, based 
on insufficient processing of relevant information [18]—
elicit an EEG pattern of oscillatory brain activity known as 
frontocentral theta [19]. An increase in frontocentral theta 
power represents a cognitive control function of performance 
[20] and error monitoring [21] (i.e. a heightened awareness 
of potential performance error), aspects which are critical in 
surgery for information selection [22] and the prioritization 
of subsequent operative motor actions [23]. For instance, 
using simulated technical surgical tasks in dentistry, Balk-
hoyor et al. [24] recently showed that expert surgeons who 
made fewer technical errors than novices elicited a larger 
frontocentral theta power than their novice counterparts, 
suggesting that experts monitor their performance to avoid 
errors to a greater degree than novices.

Motor movement uncertainty

While operating, it is critical to prepare an accurate motor 
response even before knowing precisely what the required 
action will be. For instance, skilled tennis players pre-
pare their response before their opponents hit the ball by 
anticipating the most likely shot [25]. However, the level 
of advanced motor preparation depends on several factors, 
including contextual information about what responses 
are likely required [26]. In reaching tasks, the duration of 
a motor response decreases as the degree of uncertainty 
about the direction of an upcoming target decreases [27–30] 
(i.e. the amount of motor preparation changes with target 
uncertainty). Although expert surgeons performing lapa-
roscopic surgery experience uncertainty at times (e.g. dur-
ing complicated procedures), surgical trainees operating 

laparoscopically may experience a higher degree of motor 
uncertainty during difficult operative steps, such as during 
grasping and dissection [31, 32], as they contemplate the 
next manoeuvre.

Brain oscillatory activity changes with motor preparation 
[33]. Motor movement processing is reflected by a decrease 
in power (“desynchronization”) of beta oscillations in the 
brain (12–30 Hz) [34–37]. Tzagarakis et al. [26, 38] showed 
that beta oscillations during movement preparation in the 
sensorimotor region (contralateral to the responding hand) 
were modulated by the amount of uncertainty about the 
direction of a target to be reached—the greater the direc-
tional uncertainty, the less the beta-band power decreased 
during motor preparation. To date, no research has investi-
gated how motor uncertainty relates to surgical error.

Predicting motor errors

There is a growing literature investigating the cognitive pro-
cesses that underlies surgical performance, with reports on 
how neural activity modulates as a function of skill acquisi-
tion [39–44], time pressure [45], stress [46–48], fatigue [49], 
cognitive load [50, 51], attention level [52, 53], and visual-
spatial ability [54]. However, no research has investigated 
whether surgical errors can be predicted by neural signatures 
well before they occur. Previous (non-surgical) research 
examining the neural activity that precedes motor error has 
helped to reveal the source of error. For instance, O’Connell 
et al. [17] showed that specific neural signatures representing 
lapses in attention were observed up to 20 s before a motor 
error occurred in a continuous monitoring expectancy task. 
Tracing the EEG activity that precedes error should reveal 
the cognitive mechanisms (e.g. error monitoring and motor 
uncertainty) that underlie intraoperative technical error and 
may help to determine the interventions that could be used 
to avoid predictable iAEs.

The current study

The objective of the present study was to prospectively 
examine the error monitoring and motor planning cogni-
tive processes that preceded technical errors in laparoscopic 
surgery, using EEG. Specifically, we investigated EEG data 
during the 40 s before and 10 s after surgical events, so that 
activity related to technical errors could be compared with 
activity related to “good performance” (i.e. performance 
in line with the surgeon’s intended goal). Compared with 
the EEG signals preceding good performance, our a priori 
hypotheses were that the EEG signals preceding technical 
errors would exhibit (1) greater frontocentral theta-band 
power at Cz and Fz electrode sites, reflecting greater error 
monitoring prior to errors committed; and (2) less beta-
band power desynchronization over the sensorimotor region 
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(contralateral to the dominant hand) at CP1 and CP5 elec-
trode sites, reflecting greater uncertainty in motor planning 
prior to errors committed. No differences were expected for 
centroparietal electrodes lateral to the dominant hand (i.e. 
CP2 and CP6) across errors and good events.

Materials and methods

Design

This prospective, proof-of-concept, cohort study was con-
ducted from July to November 2021, with a pilot period from 
February to March 2020 used to optimize the technique of 
data capture at a large academic medical centre in Toronto, 
Canada. Data included audiovisual recording of laparoscopic 
general surgery procedures, and EEG recording of the pri-
mary surgeons’ neural activity. All experimental procedures 
were approved by the Institutional Research Ethics Board. 
Both the surgeon and the patient provided free and informed 
consent to participate.

Participants

Five fellows and 2 staff surgeons in general surgery were 
recruited to participate. Due to unplanned shutdowns of 
recording operations, 4 surgeon participants were excluded 
from analysis. Findings were thus reported from 3 surgical 
fellows in general surgery (all male, right-handed, average 
age: 35.3 [range: 33–39] years).

Data collection

The recordings encompassed bariatric surgeries, including 
Roux-en-y gastric bypass (n = 6) and sleeve gastrectomy 
(n = 2); gastric surgeries including Toupet fundoplication 
(n = 1); Nissen fundoplication (n = 1); laparoscopic chol-
ecystectomy (n = 1); ileocolic resection (n = 1). The mean 
(M) procedure duration was 94.8 min, with a standard devia-
tion (SD) of 55.14 min. Thus, 3 surgical fellows (who were 
blinded from our hypotheses) collectively performed 12 
elective general surgeries (Table 1), with a total of 45 error 
events and 27 good events during grasping and dissection 
(Table 2). 

Data capture

Behavioural data

Questionnaires Surgeons completed a demographic ques-
tionnaire inquiring about their age, gender, years of expe-
rience, and handedness. Upon procedure completion, 

participants completed the NASA Task Load Index (NASA-
TLX)—a questionnaire measuring operative workload [55].

OR recording The Operating Room Black Box® (ORBB; 
Surgical Safety Technologies Inc., Toronto, Canada) 
recorded audio data from microphones and video data 
from laparoscopic and panoramic wall-mounted cameras in 
the OR. All recordings were anonymized of all identifiers 
(e.g. hospital information, surgical team, and patient data). 
The ORBB audiovisual recordings were time-stamped, 
encrypted, stored on a secure server, and then permanently 
deleted after 30  days. Time-stamps for both Coordinated 
Universal Time (UTC) and Eastern Standard Time (EST) 
were provided to allow for synchronization with the EEG 
data.

Technical error coding A board-certified surgeon with over 
3 years of experience in analysing intraoperative data using 
the ORBB trained an observer with a surgical background 
to use the Generic Error Rating Tool (GERT)—a validated 
framework for categorizing technical errors in laparoscopic 
surgery [31]. Errors represented any deviations from the 
intended operative course (e.g. inadequate use of instrument 
force or distance) and were time-stamped and converted to 
UTC and EST at the start and end time of error occurrence. 
The certified surgeon and observer reviewed the same vid-
eos and used the GERT to identify technical errors indepen-
dently. Across all videos the certified surgeon and observer 
produced an inter-rater reliability score of 79%. Events of 
good technical performance were evaluated from the ORBB 
video recordings and were defined as performance that 
aligned with the intended operative course. Errors and good 
events were recorded over all steps of the surgical proce-

Table 1  Error events and good events for each surgeon and procedure 
during grasping and dissection

Procedure number Surgeon 
participant

Error events Good events

Procedure 1 A 1 2
Procedure 2 A 6 3
Procedure 3 B 10 4
Procedure 4 C 3 1
Procedure 5 C 2 0
Procedure 6 C 2 1
Procedure 7 C 6 1
Procedure 8 C 8 0
Procedure 9 C 2 4
Procedure 10 C 1 5
Procedure 11 C 0 3
Procedure 12 C 4 3
Total Event Frequency A,B,C 45 27
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dures, but subsequent analysis focused only on the events 
during grasping and dissection, as previous research has 
shown that these are error-prone procedural steps [31, 32]. 
Both event types were kept on an encrypted, password-pro-
tected computer.

EEG Data

EEG signals were continuously recorded using a wireless, 
31-channel BrainVision MOVE EEG recording system. 
For each electrode, we computed absolute band powers for 
the theta and beta bands. All EEG data were kept on an 
encrypted, password-protected computer, separate from the 
behavioural data.

Data analysis

To test hypotheses (1) and (2), EEG data were analysed in 
the a priori chosen frequency bands of theta and beta, in 
frontocentral electrodes (averaged Fz and Cz; for theta) and 
sensorimotor electrodes contralateral to the dominant hand 
(averaged CP1 and CP5; for beta) and lateral to the dominant 
hand (averaged CP2 and CP6; for beta), separately for errors 
and good events. Correlations between EEG frequency and 
questionnaire scores were computed with Spearman’s p. 
Consistent with previous literature [17], analysis was con-
ducted from 20 s before an event occurred to 10 s after 
an event. The average EEG frequency band power across 
surgeon participants for errors and good events during the 
selected time interval was computed for the electrodes of 
interest. These data were entered into a hierarchical regres-
sion model that assessed the effect of event type indepen-
dently of surgeon identity to avoid confounds related to 
individual differences among surgeons. Dynamic analysis 
was tested using multivariate pattern classification analysis 
(MVPA) [56].

Dynamic MVPA

A cross-validated SVM classifier was used for this analysis 
with error events and good events as inputs, performed for 
each time bin on the interval from 40 s before the event 
until 10 s after the event, using a sliding window of 4-s 
duration. To control for disparate sample sizes, both classes 
were resampled 500 times with 27 samples drawn each time. 
The significance was determined through a non-parametric 
test based on 1000 draws of 500 samples with the permuted 
labels and the alpha set at p = 0.05.

See supplemental material describing the procedure.

Results

Behavioural data

NASA‑TLX

Average procedure difficulty reported by surgeons for the 
NASA-TLX was 40 (SD = 15.88) out of a possible 126 
points, with effort, perceived performance success and 
mental demand contributing the most to the overall aver-
age score (Table 3). One-tailed Pearson correlations were 
run to examine whether the NASA-TLX overall scores 
positively associated with error frequency across all surgi-
cal phases. A significant positive correlation was observed 
between the NASA-TLX and error frequency (r = 0.50, 
p = 0.05), such that as reported task load increased, error fre-
quency also increased. More specifically, mental (r = 0.50, 

Table 2  Error events and good events for each procedural step

Event Type Frequency

Error
 Phase
  Abdominal access 2
  Abdominal exploration 0
  Use of retractors 0
  Use of energy devices 4
  Grasping/dissection 45
  Cutting, transection, and stapling 0
  Clipping 0
  Suturing 5
  Suction 0
  Closing 0
  Other 0

 Source of Error
  Too much force/distance 6
  Too little force/distance 43
  Wrong orientation 2
  Inadequate visualization 5

 Adverse Event
  Thermal injury 3
  Mechanical injury 2

Good
 Phase
  Abdominal access 5
  Abdominal exploration 0
  Use of retractors 2
  Use of energy devices 12
  Grasping/dissection 27
  Cutting, transection, and stapling 2
  Clipping 0
  Suturing 4
  Suction 0
  Closing 0
  Other 0
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p = 0.05), physical (r = 0.49, p = 0.05) and temporal demand 
of the procedure (r = 0.54, p = 0.03), perceived performance 
success (r = 0.54, p = 0.03), and performance effort (r = 0.50, 
p = 0.05) were items that significantly correlated with error 
frequency. Frustration did not correlate with error frequency 
(p = 0.37).

EEG and behavioural data

Hierarchical regression analysis

Theta‑band power Frontocentral electrodes (i.e. aver-
aged Cz and Fz) showed a significant difference in theta 
power between error and good events, (β = 0.31; p = 0.01), 
with a greater desynchronization observed for good events 

(M = − 116.97, SD = 4.95) than for errors (M = − 112.87, 
SD = 6.89; see Fig. 1).

Beta‑band power Sensorimotor electrodes contralateral to 
the dominant hand (i.e. averaged CP1 and CP5) showed a 
significant difference in beta power between good and error 
events, (β = 0.24, p = 0.03), with a greater desynchroniza-
tion observed for good events (M = − 120.88, SD = 5.83) 
than for errors (M = − 117.07, SD = 6.80; see Fig. 1). Sen-
sorimotor electrodes lateral to the dominant hand (i.e. aver-
aged CP2 and CP6) showed no difference between good 
events (M = − 120.46, SD = 5.81) and errors (M = − 118.95, 
SD = 6.68), (β = 0.15, p = 0.23).

Table 3  Surgeon ratings of 
workload using the NASA task 
load index per procedure

Each item on the NASA Task Load Index was rated on a scale from 1 to 21, with 1 representing “very low” 
and 21 representing “very high” (however, 1 represented “perfect” and 21 represented “failure” for the per-
formance item). Total = sum of item scores

Procedure 
number

Mental demand Physical 
demand

Temporal 
demand

Performance Effort Frustration Overall Score
(Max. 126)

Procedure 1 5 8 5 9 6 4 37
Procedure 2 12 10 9 11 13 5 60
Procedure 3 16 11 7 10 14 4 62
Procedure 4 10.5 8.5 5.5 6.5 12.5 8.5 52
Procedure 5 4.5 11.5 4.5 10 10 5.5 46
Procedure 6 13 6 5 10 14 14 62
Procedure 7 4 4 4 9 4 3 28
Procedure 8 5 4 4 9 9 6 37
Procedure 9 4 4 4 5 5 6 28
Procedure 10 5 4 4 5 5 4 27
Procedure 11 3 3 3 5 4 3 21
Procedure 12 3 3 3 5 3 3 20
Total 85 77 58 94.5 99.5 66 –

Fig. 1  Theta- and beta-band 
power for error events and good 
events. Theta-band power repre-
sents the average of Fz and Cz 
electrodes and beta-band power 
represents the average of CP1 
and CP5 electrodes. Black bars 
represent technical error events 
and grey bars represent good 
surgical performance events
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Multivariate Analysis

Dynamic MVPA Dynamic sliding window analysis and a 
permutation test were used to determine the temporal differ-
ences in the theta- and beta-band power for error events and 
good events from 40 s before event onset to 10 s post-event 
onset. Significant differences between errors and good per-
formance were observed approximately 40 s and 28 s prior 
to event onset, each lasting a few seconds in duration. More 
importantly, a long period of significance was observed 17 s 
before event onset which held until several seconds after 
event onset, with no significant differences thereafter (see 
Fig. 2).

Discussion

This is the first investigation into the neural signatures that 
predict technical error during elective laparoscopic surgery. 
As expected, most technical errors occurred during grasping 
and dissection [31, 32] and an association between surgi-
cal performance and NASA-TLX scores was observed [57], 
such that as perceived workload increased, error frequency 
increased. Further, oscillatory neural signatures reflecting 
error monitoring and motor uncertainty preceded the com-
mission of technical errors, but not good surgical perfor-
mance, by 17 s. Thus, if suitably sensitive detection methods 
can be developed with low false-alarm rates, neural signa-
tures could provide advance warning so that surgeons can 
modify their actions before harming the patient.

Most studies that have examined the cognitive processes 
that underlie surgical performance have been conducted in 
simulated settings (see Modi et al. [58] for review). Only 
two studies using neuroimaging technology were conducted 
while the surgeon was operating, with one investigating the 
surgeon’s stress across risky versus less risky surgical phases 
using EEG during 2 laparoscopic simple nephrectomy pro-
cedures [46] and the other examining attention and motor 

processing using EEG during prostatectomy and cystectomy 
via robotic-assisted surgery, which was conducted by one 
surgeon over 51 procedures [52]. As previously described, 
only one study to date has examined the neural underpin-
nings of surgical error [24]. Using a simulated drilling task 
in which difficulty was manipulated, results showed that 
expert surgeons monitor their performance to avoid error to 
a greater degree than novices, reflected by a larger frontal 
theta power with expertise. Here, we took a novel approach 
and investigated neural activity that preceded errors to elu-
cidate the cognitive source of technical error and to deter-
mine how far in advance errors can be predicted. Specifi-
cally, results showed evidence of error monitoring and motor 
uncertainty 17 s before technical errors occurred—providing 
the first evidence that accurate intuitions of performance 
“not going right” may occur well before actual surgical 
errors are committed. Although speculative, this interpreta-
tion was supported by our behavioural results showing an 
increase in perceived workload and procedure difficulty, as 
determined by the NASA-TLX, associating with an increase 
in technical errors.

Our findings may have direct implications for organi-
zations committed to developing more rigorous surgical 
training. If certain avoidable technical errors can be pre-
dicted well ahead of their occurrence (e.g. ~ 20 s before-
hand), it suggests that they can be prevented by early warn-
ing. Given reports of high variability in surgical skill [39] 
and its impact on patient morbidity and mortality [59], 
greater focus is being placed on individualized learn-
ing in the effort to help a larger proportion of trainees 
succeed [60]. To support more rigorous benchmarking 
of surgical skill during training, EEG could be used to 
estimate cognitive levels of error monitoring and motor 
uncertainty during at-risk periods of surgery, in addition 
to objective measurements of technical skill (e.g. Objec-
tive Structured Assessment of Technical Skills; OSATS) 
[61]—with greater confidence, certainty, and performance 
monitoring [24] of the next operative move observed as 

Fig. 2  Dynamic multivari-
ate pattern analysis (MVPA) 
discriminating error vs. good 
events across theta and beta 
bands. The black horizontal 
line represents the permuta-
tion test threshold and the grey 
horizontal line represents the 
magnitude of discrimination 
between errors and good events 
for beta and theta bands over 
time. Areas shaded in grey show 
time durations where significant 
performance differences are 
found. The thick black vertical 
line indicates event onset
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surgical skill is refined. This would provide trainees with 
a unique opportunity to understand their own tendencies 
and track their operating proficiency both externally (e.g. 
OSATS) and internally (e.g. through cognitive indicators 
of uncertainty, effort, or distraction). Compared with retro-
spective methods of self-evaluation (e.g. a video recording 
of performance), an EWS that provides cautionary alerts 
of imminent unsafe actions with neurofeedback gener-
ated back to the trainee in real time (e.g. through audi-
tory warnings) might provide a more effective strategy in 
the teaching context, as the trainee could react to possible 
unsafe actions in advance.

Limitations

Some limitations of the present work merit discussion. 
Although our sample size was comparatively larger to 
previous research that has used EEG in the OR [46, 52], 
the number of surgeons and procedures recorded was low. 
Future research should collect larger sample sizes that 
have sufficient power to detect brain–behaviour relation-
ships robustly in surgery, across varying specialties, pro-
cedures, levels of expertise, and genders. Surgeon partici-
pants were not told to refrain from consuming alcohol or 
caffeine 24 h before EEG recording, which has shown to 
effect brain activity [62]. However, examples of good and 
error events were drawn from each participant, reducing 
the possibility of systemic confounds.

Conclusion

Our findings showed that distinct neural signatures repre-
senting error monitoring and motor uncertainty predicted 
technical errors in laparoscopic surgery among surgical 
fellows at least 17 s before they occurred. Researchers are 
encouraged to utilize neuroimaging methods and enhance 
their sensitivity and specificity, to dive deeper into the inves-
tigation of how to predict surgical errors. Reliable hints of 
future technical error will direct the development of novel 
EWSs that could improve the efficiency of surgical educa-
tion and reverse the trend of iAEs increasing in the OR.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00464- 022- 09799-2.
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