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Abstract
Background  The complexity of laparoscopy requires special training and assessment. Analyzing the streaming videos during 
the surgery can potentially improve surgical education. The tedium and cost of such an analysis can be dramatically reduced 
using an automated tool detection system, among other things. We propose a new multilabel classifier, called LapTool-Net 
to detect the presence of surgical tools in each frame of a laparoscopic video.
Methods  The novelty of LapTool-Net is the exploitation of the correlations among the usage of different tools and, the tools 
and tasks—i.e., the context of the tools’ usage. Towards this goal, the pattern in the co-occurrence of the tools is utilized 
for designing a decision policy for the multilabel classifier based on a Recurrent Convolutional Neural Network (RCNN), 
which is trained in an end-to-end manner. In the post-processing step, the predictions are corrected by modeling the long-
term tasks’ order with an RNN.
Results  LapTool-Net was trained using publicly available datasets of laparoscopic cholecystectomy, viz., M2CAI16 and 
Cholec80. For M2CAI16, our exact match accuracies (when all the tools in one frame are predicted correctly) in online and 
offline modes were 80.95% and 81.84% with per-class F1-score of 88.29% and 90.53%. For Cholec80, the accuracies were 
85.77% and 91.92% with F1-scores if 93.10% and 96.11% for online and offline, respectively.
Conclusions  The results show LapTool-Net outperformed state-of-the-art methods significantly, even while using fewer 
training samples and a shallower architecture. Our context-aware model does not require expert’s domain-specific knowledge, 
and the simple architecture can potentially improve all existing methods.

Keywords  Convolutional neural networks · Recurrent neural networks · Tool detection · Laparoscopic surgery · Label 
power-set

Numerous advantages of minimally invasive surgery such as 
shorter recovery time, less pain and blood loss, and better 
cosmetic results, make it the preferred choice over conven-
tional open surgeries [1]. In laparoscopy, the surgical instru-
ments are inserted through small incisions in the abdominal 
wall and the procedure is monitored using a laparoscope. 
The special way of manipulating the surgical instruments 

and the indirect observation of the surgical scene introduce 
more challenges in performing laparoscopic procedures [2]. 
The complexity of laparoscopy requires special training and 
assessment for the surgery residents to gain the required bi-
manual dexterity. Analyzing the streaming videos during 
the surgery and the recorded videos from previously accom-
plished procedures can potentially improve the outcomes. 
The tedium and cost of such an analysis can be dramatically 
reduced using an automated tool detection system, among 
other things and is, therefore, the focus of this paper.

Tracking surgical tools is essential in understanding the 
workflow of a procedure and in the assessment and rating 
of the videos. For example, it has been shown that experts 
have a better economy of motion compared to novice or less 
experienced surgeons [3, 4]. Also, by detecting the tools, we 
can check for wrong tool usage, monitor activation time of 
electro-surgical tools, and the use of proper technique (how 

and Other Interventional Techniques 

Presented as poster at SAGES 2017.

 *	 Ganesh Sankaranarayanan 
	 ganesh.sankaranarayanan@bswhealth.org

1	 Baylor Scott & White Research Institute, Dallas, TX, USA
2	 Department of Surgery, Baylor University Medical Center, 

3500 Gaston Ave, Dallas, TX 75246, USA
3	 Electrical Engineering Department, University of Texas 

at Arlington, Arlington, TX, USA

http://orcid.org/0000-0003-1556-2797
http://crossmark.crossref.org/dialog/?doi=10.1007/s00464-021-08336-x&domain=pdf


680	 Surgical Endoscopy (2022) 36:679–688

1 3

a needle is positioned and moved with a needle driver dur-
ing suturing), etc.

Manual annotation of long videos from surgeries is a 
time-consuming and expensive task. A vision-based algo-
rithm for automated detection of the presence, location, or 
movement of surgical tools is indispensable in designing 
a fast and objective surgical evaluation system. A well-
annotated database of surgical videos can also be used in 
information retrieval and is a reliable source for education 
and training of the future surgeons.

During surgery, monitoring the usage of surgical tools 
can provide real-time feedback to the surgeons and operat-
ing room staff. Furthermore, in computer-aided intervention, 
the surgical tools are controlled by a surgeon with the aid 
of a specially designed robot [5], which requires a real-time 
understanding of the current task. Therefore, detecting the 
presence, location, or pose of the surgical instruments is 
useful in robotic surgeries as well [6–8]. Finally, an auto-
mated tool usage detector can help to generate an operative 
summary.

To track surgical instruments, several approaches have 
been introduced, which use the collected signals during the 
procedure. For instance, in vision-based methods, the instru-
ments can be localized using the videos captured during the 
operation. These methods are generally reliable and inex-
pensive. Traditional vision-based methods rely on extracted 
features such as shape, color, the histogram of oriented gra-
dients, etc., along with a classification or regression method 
to estimate the presence, location, or pose of the instrument 
in the captured images or videos. However, these methods 
are dependent on pre-defined and painstakingly extracted 
hand-crafted features. Just logically defining and extracting 
such features alone is a major part of the detection process. 
Thus, these hand-crafted features and designs are not suit-
able for real-time applications.

Compared with the other surgical video tasks, detect-
ing the presence and usage of surgical instruments in 
laparoscopic videos has certain challenges that need to be 
considered.

Firstly, since multiple instruments might be present at the 
same time, detecting the presence of these tools in a video 
frame is a multilabel (ML) classification problem. In gen-
eral, ML classification is more challenging compared to the 
well-studied multiclass (MC) problem, where every instance 
is related to only one output. These challenges include but 
are not limited to using correlation and co-existence of dif-
ferent objects/concepts with each other and the background/
context and the variations in the occurrence of different 
objects.

Second, as opposed to other surgical videos, such as cata-
ract surgery, robot-assisted surgery, or videos from a simula-
tion, where the camera is stationary or moving smoothly, in 
laparoscopic videos, the camera is constantly shaking. Due 

to the rapid movement and changes in the field of view of 
the camera, most of the images suffer from motion blur, and 
the objects can be seen in various sizes and locations. Also, 
the camera view might be blocked by the smoke caused by 
burning tissue during cutting or cauterizing to arrest bleed-
ing. Therefore, using still images is not sufficient for detect-
ing the instruments.

Third, surgical operations follow a specific order of tasks. 
Although the usage of the tools does not strictly adhere to 
that order, it is nevertheless highly correlated with the task 
being performed. The performance of the tool detection can 
be improved with the information about the task and the 
relative position of the frame with regard to the entire video.

At last, since the performance of a deep classifier in a 
supervised learning method is highly dependent on the size 
and the quality of the labeled dataset, collecting and annotat-
ing a large dataset is a crucial task.

Recent years have witnessed great advances in deep-
learning techniques in various computer vision areas such 
as image classification, object detection, and segmentation 
etc., and in medical imaging [9]. Therefore, there is a trend 
towards using these methods in analyzing the videos taken 
from laparoscopic operations.

Endonet [10] was the first deep-learning model designed 
for detecting the presence of surgical instruments in laparo-
scopic videos, wherein Alexnet [11] was used as a Convo-
lutional Neural network (CNN), for feature extraction and 
was trained for the simultaneous detection of surgical phases 
and instruments. Inspired by this work, other researchers 
used different CNN architectures [12, 13] to classify the 
frames based on the visual features. For example, in [14], 
three CNN architectures were used and [15] proposed an 
ensemble of two deep CNNs.

Sahu et al. [16] were the first to address the imbalance 
in the classes in a MultiLabel (ML) classification of video 
frames. They balanced the training set according to the com-
binations of the instruments. The data were re-sampled to 
have a uniform distribution in label-set space and, class re-
weighting was used to balance the data. Despite the improve-
ment gained by considering the co-occurrence in balancing 
the training set, the correlation of the tools’ usage was not 
considered directly in the classifier and the decision was 
made solely based on the presence of single tools. Alshirbaji 
et al. [17] used class weights and re-sampling together to 
deal with the imbalance issue.

In order to consider the temporal features of the videos, 
Twinanda et al. employed a hidden Markov model (HMM) 
in [10] and Recurrent Neural Network (RNN) in [18]. Sahu 
et.al utilized a Gaussian distribution fitting method in [12] 
and a temporal smoothing method based on a moving aver-
age in [16] to improve the classification results, after the 
CNN was trained. Mishra et al. [19] were the first to apply a 
Long Short-Term Memory model (LSTM) [20], as an RNN 
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to a short sequence of frames, to simultaneously extract both 
spatial and temporal features for detecting the presence of 
the tools by end-to-end training.

A variety of different approaches were as following. Hu 
et al. [21] proposed an attention-guided method using two 
deep CNNs to extract local and global spatial features. In 
[22], a boosting mechanism was employed to combine dif-
ferent CNNs and RNNs. In [23], the tools were localized, 
after labeling the dataset with bounding boxes containing 
the surgical tools.

It should be noted that none of the previous methods takes 
advantage of any knowledge regarding the order of the tasks 
and, the correlations of the tools are not directly utilized in 
identifying different surgical instruments. In this paper, we 
propose a novel context-aware model called LapTool-Net to 
detect the presence of surgical instruments in laparoscopic 
videos. The uniqueness of our approach is based on the fol-
lowing three original ideas:

•	 A novel ML classifier is proposed as a part of LapTool-
Net, to take advantage of the co-occurrence of different 
tools in each frame—in other words, the context is taken 
into account in the detection process.

•	 The ML classifier and the decision model are trained in 
an end-to-end fashion.

•	 The model’s prediction for each video is sent to another 
RNN to consider the order of the usage of different tools/
tool combinations and long-term temporal dependencies; 
yet another consideration for the context.

The pre-print version of this paper with more results and 
detailed discussions can be found in [24]. The preliminary 
results were presented at the SAGES 2017 Annual Meeting.

Materials and methods

The overview of the proposed model is illustrated in Fig. 1. 
The goal is to design a classifier that maps the frames of sur-
gical videos, to the tools in the observed scene. The overall 
system is described based on the dataset from M2CAI161 
tool detection challenge, which is a subset of Cholec80 
dataset [10]. We chose the smaller dataset to highlight the 
improvements caused by the main contributions of this 
paper. The dataset contains 15 videos from cholecystectomy 
procedure, which is the surgery for removing the gallblad-
der. All the videos are labeled with seven tools for every 
25 frames. The tools are Bipolar, Clipper, Grasper, Hook, 
Irrigator, Scissors, and Specimen bags. There are ten vid-
eos for training and five videos for validation. The type and 

shape of all seven tools remain the same for the training and 
validation sets.

Since the publicly available Cholec80 dataset was used 
in this study to train and test our deep-learning model, an 
Institutional Review Board (IRB) approval is not required 
for this study.

Spatio‑temporal features

To detect the presence of surgical instruments in laparo-
scopic videos, the visual features (intra-frame spatial and 
inter-frame temporal features) need to be extracted. We use 
CNN to extract spatial features. CNN is a type of artificial 
neural network that is capable of processing still images 
and has been successfully applied to many computer vision 
tasks that involve image classification or object recognition. 
As shown in Fig. 1, the input frame xij is sent through the 
trained CNN and the output of the last convolutional layer 
(after pooling) forms a fixed size spatial feature vector vij.

Since there is a high correlation among video frames, it 
can be exploited by an RNN to improve the performance of 
the tool detection algorithm. An RNN uses its internal mem-
ory (states) to process a sequence of inputs for time series 
and videos-processing tasks [25]. This helps the model to 
identify the tools even when they are occluded or not clear 
due to motion blur. For this purpose, short sequences of 
frames (say 5 frames) are selected. We called the model con-
sisting of a CNN and an RNN, a Recurrent Convolutional 
Neural Network (RCNN).

For each frame xij , the sequence of the spatial features 
is the input for the RNN. The total length of the input is no 
longer than one second, which ensures that the tools remain 
visible during that time interval. We selected Gated Recur-
rent Unit (GRU) [26] as our RNN for its simplicity. The final 
hidden state hij is the output of the GRU and is the input to 
a fully connected neural network FC1.

Tool combination

In a laparoscopic cholecystectomy surgery, not all the 2K 
combinations are possible as the total number of incisions 
are typically 3 or 4. Figure 2 shows the percentage of the 
most likely combinations in the M2CAI dataset. The first 15 
classes out of a possible maximum of 128 span more than 
99.5% of the frames in both the training and the validation 
sets, and the tools combinations have almost the same dis-
tribution in both cases. Extracting the pattern in the surgical 
tool combination can potentially improve the performance of 
an automated tool detection algorithm. Furthermore, mod-
eling the tools’ co-occurrence is beneficial for assessing the 
performance by monitoring the wrong combinations.

To consider the tool combinations, in the well-known 
Label Power-set (LP) method, multiple tools are combined 1  http://camma​.u-stras​bg.fr/m2cai​2016/index​.php/progr​am-chall​enge.

http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge
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into one superclass (combination) and the problem is trans-
formed into a multiclass classification. The advantage of LP 
is that the class dependencies are automatically considered. 
Also, by eliminating uncommon combinations from the out-
puts, the classifier’s attention is directed towards the more 
possible combinations.

Since an LP classifier is MC, training a deep-learning 
model with Softmax loss requires the classes to be mutu-
ally exclusive. In other words, each superclass is treated as 
a separate class, i.e., separate features activate a superclass. 
This causes performance degradation in the classifier and 
therefore, more data are required for training. We address 
this issue by a novel use of LP as the decision model g, 

which we apply to the ML classifier f. The decision model 
is a fully connected neural network (FC2), which takes the 
confidence scores of f and maps them to the corresponding 
superclass (Fig. 1). Our method helps the classifier to con-
sider our superclasses as the combinations of classes rather 
than separate mutually exclusive classes.

Class imbalance

In a laparoscopic surgery, some tools are used more often 
than the others. For instance, in our dataset, Grasper is 
present in almost 80% of the procedure, whereas the Scis-
sors are visible in less than five seconds in each video. It is 

Fig. 1   Block diagram of the proposed classifier for detecting the presence of surgical tools in each frames of a laparoscopic video
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known that in skewed datasets, the classifier’s decision is 
inclined towards the majority classes. Therefore, it is always 
beneficial to have a uniform distribution for the classes dur-
ing training. This can be accomplished using over-sampling 
for the minority classes and under-sampling for the majority 
classes. However, in ML classification, finding a balancing 
criterion for re-sampling is challenging [27].

To overcome imbalance, we perform under-sampling 
to have a uniform distribution of the combination of the 
classes. The main advantage of under-sampling over other 
re-sampling methods is that it can also be applied to avoid 
overfitting caused by the high correlation between the neigh-
boring frames of a laparoscopic video. Therefore, we try 
different under-sampling rates to find the smallest training 
set without sacrificing the performance.

Figure 3 shows the relationship among the tools after re-
sampling. It can be seen that the LP-based balancing method 
not only tends to a uniform distribution in the superclass 
space, it also improves the balance of the dataset in the sin-
gle class space (with the exception of Grasper, which can be 
used with all the tools).

Training

We train the model to simultaneously identify the presence 
of each tool and the tools combinations. Having the vector 
of the confidence scores P, the ML loss Lf  is the sigmoid 
cross-entropy (CE) and the Softmax CE loss function Lg 
is used for training the decision model. We use the joint 

training paradigm for optimizing the ML, and MC losses as 
a multitask-learning approach.

The trainable weights for the ML optimizer are all the 
weights in the CNN, the weights in the RNN, and FC1. On 
the other hand, for the MC optimizer, the CNN, RNN, and 
FC2 are trainable. Note that the shared weights between the 
two optimizers are the RCNN weights. By keeping the FC1 
layer untouched by the MC optimizer, the spatio-temporal 
features are extracted by the RCNN, considering both the 
presence of each tool and the combination of them, and FC2 
is solely trained as a decision model.

Post‑processing

To smooth the RCNN prediction and consider the long-term 
ordering of the tools, we model the order in the usage of 
the tools with an RNN over all the frames of each video 
[28]. Due to memory constraints, the final predictions of the 
RCNN (j) are selected as the input for the post-processing 
RNN.

In the online mode, only the past frames are available 
for classifying the current frame. In the offline mode, future 
frames can also be used along with past frames to improve 
the classification results of the current frame. To accomplish 
this, a bi-directional RNN is employed. The post-processing 
RNN is a two-layer GRU with 128 and 32 units in each layer.

The post-processing method described in this section is 
similar to [22] in extracting the long-term temporal features 
using RNNs. However, in contrast to these researchers, we 
used the final predictions of the RCNN model instead of the 

Fig. 2   The distribution for the 
combination of the tools in 
M2CAI dataset
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vector of confidence scores of the tools. Besides containing 
the information about the co-occurrences, training RNNs 
can be accomplished easier with a single scalar versus the 
vector of the size of the total number of tools or the tools’ 
combinations. With the aid of the shorter size input, we were 
able to train larger sequences, even after performing the tem-
poral data augmentation (to be explained later).

Results

In this section, the performance of the different parts of the 
proposed tool detection model is validated through numer-
ous experiments using the appropriate metrics. We selected 
Tensorflow [29] for all of the experiments. The CNN in all 
the experiments was Inception-V1 [30]. To have better gen-
eralization, extensive data augmentation, such as random 
cropping, horizontal and vertical flipping, rotation and a 
random change in brightness, contrast, saturation, and hue 
were performed during training. The initial learning rate was 
0.001 with a decay rate of 0.7 after 5 epochs, and the results 
were taken after 100 epochs. The batch size was 32 for train-
ing the CNN models and 40 for the RNN-based models. All 
the experiments were conducted using an Nvidia TITAN 
XP GPU.

LapTool‑Net results on M2CAI dataset

Since the dataset was labeled only for one frame per 
second (out of 25 frames/sec), there was a possibility of 

using the unlabeled frames for training, as long as the tools 
remain the same between two consecutive labeled frames. 
We used this unlabeled data to balance the training set, 
according to the LPs.

To balance the datasets, 15 superclasses were selected 
and the original frames were re-sampled to have a uniform 
distribution. The numbers of frames for each superclass 
were randomly selected to be 400, forming a training set 
of 6000 frames. In other words, under-sampling was per-
formed based on the tool combinations.

We tested the model before and after adding the deci-
sion model. For training the RCNN model, we used 5 
frames at a time (current frame and 4 previous frames) 
with an inter-frame interval of 5, which resulted in a total 
distance of 20 frames between the first and last frames. 
The RCNN model was trained with a Stochastic Gradient 
Descent (SGD) optimizer. The data augmentation for the 
post-processing model includes adding random noise to 
the input and randomly dropping frames to change the 
duration of the sequences; the final predictions of the 
RCNN model are saved every 20 frames, and the frames 
are dropped with the probability of 10–30%. Table 1 shows 
the results of the proposed RCNN and LapTool-Net.

In the table, CNN represents the model that uses only 
still images, CNN-LP is the results after considering the 
tool combinations in still images, RCNN considers spa-
tio-temporal features from several successive frames, and 
LapTool-Net represents the performance of the mode after 
considering the long-term ordering of the tools usages.

Fig. 3   The chord diagram for the relationship between the tools before and after balancing based on the tools’ co-occurrences
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It can be seen that by considering the temporal features 
through the RCNN model, the exact match accuracy and 
F1-macro were improved by 3.15% and 7.52%, respectively. 
Also, the F1-macro improves by 2.94% after adding the LP 
decision model.

The higher performance of the LapTool-Net, shown in 
Table 1, is due to consideration of the long-term order of 
the usage of the tools. In the offline mode, the utilization of 

the frames from both the past and the future of the current 
frame causes the improvements over the online model in 
accuracy and F1-scores.

To check the effectiveness of the multitask approach 
used for the end-to-end training of the RCNN-LP model, 
we took the output of the ML classifier, after removing the 
decision model from the trained RCNN-LP. In other words, 
we replaced the LP-based decision layer of the trained model 
with the threshold-based decision method. The results are 
shown in Table 2. It is worth mentioning that this results 
show that the RCNN model without the LP decision can be 
taken for making prediction for all the combinations includ-
ing the rare combinations that were originally excluded dur-
ing training.

In order to localize the predicted tools, the attention maps 
were visualized using grad-CAM method [31]. The results 
for some of the frames are shown in Fig. 4. In order to avoid 
confusion with frames that multiple tools, only the class acti-
vation map of a single tool is shown based on the prediction 
of the model. The results show that the visualization of the 
attention of the proposed model can also be used in reliably 
identifying the location of each tool without any additional 
annotations for the location and shape of the tools.

Comparison with current work

To validate the proposed model, we compared it with previ-
ously published research on the M2CAI dataset. The result 
is shown in Table 3. We show that our model outperformed 
previous methods by a significant margin even when choos-
ing a relatively shallower model (Inception-V1) and while 
using less than 25% of the labeled images.

Table 1   Final results for the proposed model on M2CAI dataset

Acc (%) F1-macro (%) F1-micro (%)

CNN 74.36 74.43 87.70
CNN-LP 76.31 78.32 88.53
RCNN 77.51 81.95 89.54
RCNN-LP 78.58 84.89 89.79
Laptool-net(online) 80.95 88.29 91.24
Laptool-net(offline) 81.84 90.53 91.77

Table 2   The precision, recall, and F1-score of each tool for the ML 
classifier in RCNN-LP after removing the decision model

Tool Precision (%) Recall (%) F1 (%)

Bipolar 77.62 83.57 80.49
Clipper 83.22 81.90 82.56
Grasper 69.99 90.28 78.85
Hook 95.33 93.43 94.37
Irrigator 77.27 83.60 80.31
Scissors 82.91 82.91 82.91
Specimen bag 76.96 94.91 85.00
Mean 80.55 87.22 83.50

Fig. 4   The visualization of the class activation maps for some examples, based on the prediction of the model
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It is worth mentioning that a fair comparison with pre-
vious work on the same dataset is not feasible, since the 
evaluation metrics might not be the same. Nevertheless, we 
compared our ML classifier f, which is the RCNN model, 
along with the final models to show the superiority of our 
balancing and temporal consideration methods. Regardless 
of the choice of the CNN architecture, which is the most 
dominant component that can affect the results, the supe-
riority of our model over the works in Table 3 is due to the 
end-to-end temporal consideration and the inclusion of the 
context such as the co-occurrence and tasks ordering, which 
are the main contributions of this paper.

LapTool‑Net results on Cholec80 dataset

In this section, the performance of our model is evaluated 
on a larger dataset of laparoscopic cholecystectomy videos 
called Cholec80. We used the first 40 videos for training and 
the remaining 40 videos for testing our model.

The total number of tool combinations in Cholec80 data-
set is 32, out of which 20 combinations are present in over 
99.5% of the duration of videos. Compared with M2CAI 
dataset, the higher number of tool combinations is due to the 
more diversity in the larger dataset. Nonetheless, the extra 
five superclasses in Cholec80 dataset contain less than 0.4% 
of all frames. For each of the 20 tool combinations, 1500 
samples were selected, forming a uniform class distribution 
on 30 K frames.

We used the same model as for M2CAI dataset for 
extracting the spatio-temporal features, the decision policy, 
and the post-processing step, as well as the training strategy. 
The results for the different parts of the model are shown in 
Table 4. Compared with the M2CAI results in Table 1, we 
can see significant improvement in accuracy and F1-scores. 
For example, the F1-macro of the CNN on the balanced 
Cholec80 is 9.19% higher than M2CAI dataset.

As was to be expected, the accuracy and F1-scores 
increase after adding the LP-based decision layer. However, 

the improvements are relatively smaller compared with the 
M2CAI results. For instance, the F1-macro of the RCNN-
LP is less than one percent higher than RCNN. Similarly, 
the increase in the F1-macro for the CNN and RCNN is 
less compared with M2CAI dataset (less than 5% versus 
over 10% in M2CAI). The reason behind this observation is 
likely due to the fact that while the end-to-end training of the 
CNN, RNN, and LP layer results in the richer discriminat-
ing features, considering the co-occurrence and temporal 
coherence, the performance is dominated and bounded by 
the capacity of the CNN.

Discussion

In this paper, we proposed a novel system called LapTool-
Net, for automatically detecting the presence of tools in 
every frame of a laparoscopic video. The main feature of 
the proposed RCNN model is the context awareness, i.e., 
the model learns the short-term and long-term patterns of 
the usage of the tools by utilizing the correlation between 
the usage of the tools with each other and, with the surgical 
steps. Our method outperformed all previously published 
results on M2CAI dataset, while using less than 1% of the 
total frames in the training set.

While our model is designed based on the previous 
knowledge of the cholecystectomy procedure, it does not 
require any domain-specific knowledge from experts and 
can be effectively applied to any video captured from laparo-
scopic or even other forms of surgeries. Also, the relatively 
small training set after under-sampling suggests that the 
labeling process can be accomplished faster by using fewer 
frames (e.g., one frame every 5 s). Moreover, the simple 
architecture of the proposed LP-based classifier makes it 
easy to use it with other proposed models such as [22] and 
[21], or with weakly supervised models [32, 33] to localize 
the tools in the frames. To accomplish that, the threshold 
mechanism of the ML classifier in all these papers can be 
simply replaced by our combination-aware decision model.

Table 3   Comparison of tool presence detection methods on M2CAI

Method CNN Map (%) F1-macro (%)

Laptool-net(offline) Inception-V1 – 90.53
Laptool-net(online) Inception-V1 – 88.29
RCNN(ours) Inception-V1 89.88 81.95
[21] Resnet-101 [34] 86.9 –
[23] VGG 81.8 –
[16] Alexnet [11] 65 –
[15] Inception-v3 [35] 63.8 –
[12] Alexnet 61.5 –
[36] Alexnet 52.5 –

Table 4   Final results for the proposed model on Cholec80 dataset

Acc (%) F1-macro (%) F1-micro (%)

CNN 75.41 83.62 89.05
CNN-LP 76.30 86.16 89.56
RCNN 77.77 88.39 90.41
RCNN-LP 79.95 89.17 91.21
Laptool-net(online) 85.77 93.10 93.71
Laptool-net(offline) 91.92 96.11 96.40
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