REVIEW ARTICLE

Open versus laparoscopic hepatic resection for hepatocellular carcinoma: a systematic review and meta-analysis

Meng Xiangfei¹ · Xu Yinzhe¹ · Pan Yingwei¹ · Lu Shichun¹ · Duan Weidong¹

Received: 20 October 2018 / Accepted: 4 April 2019 / Published online: 28 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Background Several studies have been conducted comparing laparoscopic liver resection (LLR) versus open liver resection (OLR) for hepatocellular carcinoma (HCC), however, the optimal therapeutic approach has not been established. Therefore, we conducted a systematic review and meta-analysis of studies comparing LLR versus OLR for HCC.

Methods MEDLINE and Cochrane Central Register of Controlled Trials database were systematically searched for relevant studies.

Results Fifty-one studies were identified including a total of 6812 patients (2786 patients underwent LLR and 4026 patients were subjected to OLR). Blood transfusion rate, hospital stay in days, 30-days mortality rate and morbidity were significantly lower in LLR comparing with OLR (odds ratio (OR) 0.45; 95% confidence interval (CI) 0.30–0.69; P = 0.001; $l^2 = 55.83\%$), (MD – 3.87; 95% CI – 4.86 to – 2.89; P = 0.001; $l^2 = 87.35\%$), (OR 0.32; 95% CI 0.16–0.66; P = 0.001; $l^2 = 0\%$), and (OR 0.42; 95% CI 0.34–0.52; P = 0.001; $l^2 = 39.64$), respectively. There was no significant difference between LLR and OLR regarding the operative time in minutes, resection margin in centimeter and R0 resection (MD 18.29; 95% CI – 1.58 to 38.15; p = 0.07; $l^2 = 91.73\%$), (MD 0.04; 95% CI – 0.06 to 0.14; P = 0.41; $l^2 = 48.03\%$) and (OR 1.31; 95% CI 0.98–1.76; P = 0.07; $l^2 = 0\%$), respectively. The 1-year overall survival (1-OS) and 5-OS rates were significantly higher in LLR comparing with OLR (OR 1.45; 95% CI 1.06–1.99; P = 0.02; $l^2 = 25.59\%$) and (OR 1.36; 95% CI 1.07–1.72; P = 0.01; $l^2 = 14.88\%$), respectively.

Conclusion LLR is superior to OLR regarding intraoperative blood loss, blood transfusion rate, hospital stay in days, 30-days mortality and morbidity, however, randomized controlled trials are needed to identify the superiority of either strategy.

Keywords Carcinoma · Hepatocellular · Laparoscopy · Hepatectomy · Liver neoplasms

Hepatocellular carcinoma is the third most common causes of cancer-related death in the world [1]. Liver resection is considered the most widely used treatment for patients with hepatocellular carcinoma (HCC) [2]. Laparoscopic liver resection (LLR) has increasingly been adopted since it was first introduced in 1991 [3]. There has been a growing body of evidence that LLR is associated with lower mortality and morbidity rates in comparison with open liver

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00464-019-06781-3) contains supplementary material, which is available to authorized users.

Duan Weidong drduanwd@126.com resection (OLR) [4]. However, LLR is still a challenging approach for patients as well as surgeons since most HCC are developed on top of cirrhotic liver or chronic hepatitis [5–7]. Furthermore, LLR is associated with technical difficulties, relatively longer operative time and bleeding risk in parenchymal resection [8, 9]. Although many studies have been conducted comparing LLR versus OLR for HCC, data are still relatively controversial, given the recent advancements in laparoscopic devices and techniques over the last few years and the increase in surgeons' experience [10-16]. The recently published meta-analysis comparing between LLR and OLR did not differentiate between propensity score-matched studies and unmatched studies, therefore, its results might have an inherent risk of confounding bias limiting the causal relationship between both interventions and the observed clinical outcomes [17, 18]. Moreover, several studies have reported favorable clinical outcomes associated

Hepatobiliary Surgery Department, PLA General Hospital, 28th FuXing Road, HaiDian District, Beijing, China

with LLR for right HCC, however, the efficacy of LLR in right hepatectomy has not been well established [19, 20]. Therefore, we sought to conduct a systematic review and meta-analysis of studies comparing LLR versus OLR in patients with right and left HCC and reported clinical outcomes in propensity-score matched and unmatched cohorts, to mitigate the potential risk of confounding bias, to identify the safety and efficacy of LLR in terms of surgical and oncological outcomes.

Methods

This systematic review and meta-analysis is reported according to the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) [21]. MEDLINE and Cochrane Central Register of Controlled Trials database were systematically searched through July 2018 using the following search terms: (1) hepatocellular carcinoma, liver neoplasms, liver cirrhosis/complications, malignant liver tumor; (2) hepatectomy, open liver resection, open hepatectomy (3) laparoscopy, laparoscopic hepatectomy. We had no restrictions on studies' design. We included prospective and retrospective observational studies and randomized controlled trials (RCTs). Studies had to fulfill the following prespecified criteria to be considered qualified for inclusion in our meta-analysis; (1) comparing in a head to head fashion between LLR and OLR in patients with right or left HCC; (2) reported oncological and surgical outcomes, as mentioned below, in both treatment groups; (3) included patients with primary HCC. In case of duplicate publications reflecting the same population, we included the report with the longer follow-up duration. Our outcomes of interest were operative time in minutes (min), amount of blood loss in milliliter (ml), rate of blood transfusion, length of hospital stay in days, 30-days mortality, morbidity, recurrence rate, resection margin in centimeter (cm), R0 resection, 1-year over-all survival (1-OS), 3-years overall survival (3-OS), 5-years overall survival (5-OS), 1-year disease-free survival (1-DFS), 3-years disease-free survival (3-DFS), and 5-years disease-free survival (5-DFS) rates.

Two reviewers (Meng and Xu) independently screened databases for relevant studies based on the abovementioned criteria. After title and abstract screening, the full text of the selected articles was evaluated for eligibility. The two reviewers independently extracted the relevant data in a standardized extraction form, and third reviewer's opinion was sought in case of disagreements (Duan). We performed a subgroup analysis restricted to studies reported clinical outcomes in propensity-score matched cohorts to mitigate the potential risk of confounding bias in data gleaned from observational studies. We conducted a subgroup analysis focused on studies exclusively recruited patients with right HCC to investigate the role of LLR in comparison with OLR in right HCC.

This meta-analysis is exempt from the need for IRB approval.

Statistical analysis

For categorical variables, summary estimates were expressed as odds ratio (OR) with corresponding 95% confidence interval (CI), and for continuous variables, summary estimates were expressed as mean difference (MD) with corresponding CI. The OR of our outcomes of interest was calculated according to the DerSimonian-Laird random effects model [22]. Heterogeneity across studies was assessed using Q-statistic and I^2 –statistic [23]. The I^2 statistic describes the percentage of total variation across studies that is due to heterogeneity. Sensitivity analyses were performed using the one-study-removed method to show how the summary estimate changes if the study that has the largest effect size is removed. Egger's regression test and visual inspection of funnel plots were used to assess for potential publication bias since studies with statistically significant results are more likely to be published than studies with non-significant findings [24]. The statistical level of significance was 2-tailed P < 0.05. All Analyses were performed using random-effects model. All analyses were performed using Comprehensive Meta-analysis version 3.0 software (Biostat, Inc., New Jersey, USA).

Results

All studies meta-analysis

The process of studies selection is displayed in Fig. 1. Out of 1004 studies screened, the full text of 72 articles was reviewed. Fifty-one studies were identified including a total of 6812 patients, 2786 patients underwent LLR and 4026 patients were subjected to OLR. Studies' characteristics are shown in Table 1. Patients' characteristics are shown in Table 2. The recruitment periods of the included studies was between 1990 and 2017. The follow-up duration of the included studies ranged from 3 to 78.5 months.

The mean of operative time in minutes was reported in 26 studies including 3664 patients. There was no significant difference between LLR and OLR regarding the operative time in min (MD 18.29; 95% CI – 1.58 to 38.15; P=0.07; $I^2=91.73\%$), Fig. 2. The operative blood loss in ml was reported in 19 studies including 2112 patients. Operative blood loss was significantly lower in LLR in comparison with OLR (MD – 124.09; 95% CI – 188.21 to – 59.97; P=0.001; $I^2=94.09\%$). The incidence of blood transfusion

Fig. 1 Flow chart showing the process of studies screening and selection

was significantly lower in LLR comparing with OLR (OR 0.45; 95% CI 0.30–0.69; P = 0.001; $I^2 = 55.83\%$).

The mean of hospital stay in days, 30-days mortality rate and morbidity were significantly lower in LLR comparing with OLR (MD – 3.87; 95% CI – 4.86 to – 2.89; P=0.001; I^2 =87.35%), (OR 0.32; 95% CI 0.16–0.66; P=0.001; I^2 =0%), and (OR 0.42; 95% CI 0.34–0.52; P=0.001; I^2 =39.64), respectively, Fig. 3.

Resection margin in centimeter (cm) and R0 resection were not significantly different between LLR and OLR groups (MD 0.04; 95% CI – 0.06 to 0.14; P = 0.41; $I^2 = 48.03\%$) and (OR 1.31; 95% CI 0.98 — 1.76; P = 0.07; $I^2 = 0\%$), respectively. The recurrence rate was significantly

higher in the OLR group than LLR group (OR 0.83; 95% CI 0.71–0.98; P = 0.03; $l^2 = 0\%$), Fig. 4.

The 1-OS and 5-OS were significantly higher in LLR comparing with OLR group (OR 1.45; 95% CI 1.06–1.99; P = 0.02; $l^2 = 25.59\%$) and (OR 1.36; 95% CI 1.07–1.72; P = 0.01; $l^2 = 14.88\%$), respectively, Fig. 5. 3-OS was not significantly different between both groups (OR 1.07; 95% CI 0.70–1.63; P = 0.77; $l^2 = 56.6$). 1-DFS was significantly higher in LLR group comparing with OLR group (OR 1.42; 95% CI 1.032–1.972; P = 0.032; $l^2 = 55.57\%$), however, 3-DFS and 5-DFS did not differ significantly between both approaches (OR 1.349; 95% CI 1.349; 0.939–1.938;

Table 1	Characteristics	of the	included	studies
---------	-----------------	--------	----------	---------

Study name	Publication year	Study country	Study period	Design
Cheung [39]	2016	China (Hong Kong	2004–2014	Retrospective with propensity score matching 1:3
Ahn [29]	2016	Korea	2000-2013	Retrospective not matched
Xiang [14]	2016	China	2012-2015	Retrospective not matched
Lai [30]	2016	China	2005-2010	Retrospective not matched
Tanaka [16]	2015	Japan	2007-2014	Retrospective with propensity score matching 1:1
Jiang [40]	2015	China	2010-2014	Prospective patients randomly divided
Luo [41]	2015	China	2008-2015	Retrospective matched study 1:1
Takahara [38]	2015	Japan	2000-2010	Retrospective matched study 1:1
Han [42]	2015	Korea	2004-2013	Retrospective propensity score matched 1:1
Komatsu [43]	2015	France	2006-2014	Retrospective matched-pair analysis 1:1
Xiao [44]	2015	China	2010-2012	Retrospective not matched
Cho [45]	2015	Korea	2003-2012	Retrospective not matched
Leee [46]	2015	Canada	2006-2013	Retrospective 1:2 matchedpair analysis
Yoon [47]	2014	Korea	2007-2011	Retrospective 1:3 matched
Siniscalchi [48]	2014	Italy	2005-2010	Retrospective not matched
Yamashita [31]	2014	Japan	2000-2013	Retrospective not matched
Ahn [49]	2014	Korea	2005-2013	Retrospective matched 1:1
Memeo [50]	2014	France	1990-2009	Retrospective case–control study 1:1
Kim [51]	2014	Korea	2004-2012	Retrospective score matched 1:1
Cheung [52]	2013	China	2002-2009	Retrospective matched 1:2
Ai [53]	2013	China	2007-2011	Retrospective not matched
Kobayashi [54, 55]	2013	Japan	1997–2011	Prospective not matched Retrospective matched
HU [54, 55]	2011	China	2006-2011	Prospective matched analysis
Lee [56]	2011	Hong Kong	2000-2011	Prospective matched analysis
Ker [28]	2011	Taiwan	1998-2006	Prospective not matched
Kim [57]	2011	Korea	2005–2009	Prospective for LLRRetrospective for OLR case
Truent [58]	2011	France	2002 2009	Retrospective matched
Aldrighatti [50]	2011	Italy	2002-2009 NA	prospective case matched analysis
Tranchart [60]	2010	France	INA.	Retrospective case, control 1:1
Alami [61]	2011	LISA		Patrospective NA about matching
Samal [62]	2010	USA		Prospective matched analysis
J of [62]	2009	USA Hong Kong		Potrospective matched study
Cai [64]	2009	China		A pair matched retrospective analysis
Car [04]	2008	Eronco	1008 2000	A pail-inacticul retrospective analysis
Shimada [66]	2003	Ianon	1996-2000 NA 2000	Patrospective not matched
Chan [12]	2001	China	2015 2016	Retrospective not matched
Iun hua [53]	2017	China	2013-2010	Retrospective not matched
Amoto [10]	2013	Unina	2007-2011	retrospective analysis not matched
Wanda [12]	2017	Italy	2010-2014	Betrospective analysis not matched
Chaung [67]	2010	Unina Hong Kong	2005-2010	Prospective metched
Cheung [07]	2018	Chine	2013-2010	Prospective matched
Au [00]	2017	Unina	2011-2010	Retrospective not matched
$\frac{1}{20}$	2017	italy Koron	2000-2010	Patrospective not matched 1:1
$\frac{10011}{17}$	2017	China	2006-2013	Patrospective matched 1,1
Tomole: [70]	2010	Lonon	2013-2017	Renospective with propensity score matching 1:1 Patrospactive not metched
	2017	sapan	2000-2014.	Patrospective not matched
LI[12] Zhang [71]	2017	China	2005 to July 2010	Patrospective not matched
$\sum \max \lfloor / 1 \rfloor$	2010	China	2010-2013	Patrospective not matched
znang [12]	2010	China	2012-2014	Remospective not matched

Table 1 (continued)

Study name	Publication year	Study country	Study period	Design
Sposito [73]	2016	Italy	2006 to 2013	Retrospective with propensity score matching 1:1
Sotiropoulos [74]	2016	Greece	2011-2016	Retrospective not matched
Jiang [75]	2016	China	NA	Retrospective score matched 1:1
Study name	LLR (n)	OLR	Total n	Resected lobe
Cheung [39]	110	330	440	Left lobe
Ahn [29]	32	93	125	Left lobe
Xiang [14]	128	207	335	Both
Lai [30]	28	33	61	Both
Tanaka [16]	20	20	40	Both
Jiang [40]	50	50	100	Both
Luo [41]	53	53	106	Both
Takahara [38]	387	387	774	Both
Han [42]	88	88	176	Both
Komatsu [43]	38	38	76	Both
Xiao [44]	41	86	127	Both
Cho [45]	24	19	43	Right lobe
Leee [46]	43	86	129	Both
Yoon 2014 [47]	58	174	232	Both
Siniscalchi [48]	23	133	156	Both
Yamashita [31]	63	99	162	Both
Ahn [49]	51	51	102	Both
Memeo [50]	45	45	90	Both
Kim [51]	70	76	146	Both
Cheung [52]	32	64	96	Both
Ai [53]	97	178	275	Both
Kobayashi [54, 55]	21	27	48	Both
•				Both
HU [54, 55]	30	30	60	Both
Lee [56]	33	50	83	Both
Ker [28]	116	208	324	Both
Kim [57]	26	29	55	Both
Truant [58]	36	53	89	Both
Aldrighetti [59]	16	16	32	Both
Tranchart [60]	42	42	84	Both
Alemi [61]	28	25	53	Both
Sarpel [62]	20	56	76	Both
Lai [63]	25	33	58	Both
Cai [64]	31	31	62	Both
Laurent [65]	13	14	27	Both
Shimada [66]	17	38	55	Both
Chen [13]	126	133	259	Both
Jun-hua [53]	97	178	275	Both
Amato [10]	11	18	29	Both
Wenda [12]	133	87	220	Both
Cheung [67]	20	120	140	Both
Xu [68]	50	59	109	Both
Tarantino [20]	13	51	64	Right lobe
Yoon [19]	33	33	66	Right lobe
Xu [69]	32	32	64	Both

Table 1 (continued)

(, , , , , , , , , , , , , , , , , , ,					
Study name	LLR (n)	OLR	Total n	Resected lobe	
Tomoki [70]	40	30	70	Both	
Li [12]	133	87	220	Both	
Zhang [71]	35	42	77	Right lobe	
Zhang [72]	20	25	45	Left lobe	
Sposito [73]	43	43	86	Both	
Sotiropoulos [74]	11	21	32	Both	
Jiang [75]	59	59	118	Both	

LLR Laparoscopic liver resection, OLR open liver resection

 $P = 0.105; I^2 = 78.66\%$) and (OR 0.79; 95% CI 0.48–1.31; $P = 0.36; I^2 = 81.49\%$), respectively, Fig. 6.

Propensity score-matched studies subgroup analysis

Our subgroup analysis restricted to propensity scorematched studies did not show significant difference between both methods in terms of operative time in min (MD 11.64; 95% CI – 20.02 to 43.33; P=0.47; I2=87.53%), blood loos in ml (MD – 95.62; 95% CI – 206.17 to 14.93; P=0.09; $l^2=82.32$), but significantly reduced blood transfusion rate with LLR than with OLR (OR 0.54; 95% CI 0.38–0.78; P=0.001; $l^2=0\%$), Fig. 7.

The mean of hospital stay in days, 30-days mortality, and morbidity were significantly lower in LLR in comparison with OLR (MD – 4.306; 95% CI – 5.79 to – 2.81; P=0.001; I^2 = 62.68%), (OR 0.31; 95% CI 0.11–0.84; P=0.02; I^2 =0%), and (OR 0.51; 95% CI 0.39–0.67; P=0.001; I^2 =33.98%), respectively, Fig. 8. Resection margin in cm and R0 resection did not differ from all-studies analysis, Fig. 9. However, recurrence rate showed non-significant difference between both approaches when the analysis was limited to propensity-score matched studies (OR 0.93; 95% CI 0.74–1.16; P=0.50; I^2 =13.86%).

1-OS showed a trend favoring LLR over OLR (OR 1.53; 95% CI 0.94–2.47; P = 0.09; $I^2 = 39.4\%$). 3-OS and 5-OS did not differ from all-studies analysis, Fig. 10. 1-DFS and 3-DFS showed a trend favoring LLR over OLR (OR 1.527; 95% CI 0.99–2.34; P = 0.05; $I^2 = 68.13\%$) and (OR 1.24; 95% CI 1.01–1.53; P = 0.04; $I^2 = 18.18\%$), Fig. 11. 5-DFS did not differ from all-studies analysis.

Right hepatectomy subgroup analysis

When the analysis was restricted to studies of right hepatectomy, operative time was significantly lower in the OLR group than LLR group (MD 135.05; 95% CI 47.83–222.27; P = 0.001; $I^2 = 70.57\%$). Blood loss showed a trend of reduced blood loss amount with LLR than with OLR group (MD 43.88; 95% CI – 162.54 to 9.48; P=0.08; $I^2=45.05\%$). Hospital stay in days and morbidity were significantly lower in LLR comparing with OLR (MD -3.96; 95% CI – 6.19 to – 1.743; P=0.001; $II^2=83.04\%$) and (OR 0.16; 95% CI 0.06–0.43; P=0.001; $II^2=0\%$), respectively, Fig. 12. Resection margin did not significantly differ between both approaches (MD 0.03; 95% CI – 0.20 to 0.25; P=0.82; $I^2=60.00\%$).

Our sensitivity analysis using one-study-removal approach did not show any change in any outcomes of our interest, Supplemental Figs. 1, 2, and 3. Funnel plots of publication bias didn't show any risk of publication bias with our outcomes of interest, Supplemental Fig. 4. Egger's test showed a significant risk of publication bias with morbidity (Egger's regression intercept -1.37; 95% CI -2.06 to -0.68; P = 0.001), R0 resection (Egger's regression intercept 0.88; 95% CI 0.18 -.57; P = 0.015) and 5-years DFS (Egger's regression intercept 5.56; 95% CI 3.38–7.74; P = 0.001), Table 3. Egger's test did not show any significant risk of publication bias with any other outcome.

Discussion

Our meta-analysis showed that blood loss, blood transfusion rate, 30-days mortality, hospital stay in days and recurrence rate were significantly lower in the LLR group in comparison with OLR group. 1-OS, 5-OS and 1-DFS rates showed a significantly favorable outcome associated with LLR in comparison with OLR. There was no significant difference between both groups regarding operative time in min, 3-OS, 3-DFS and 5-DFS. In a subgroup analysis restricted to right hepatectomy, our meta-analysis did not find any significant difference between both groups in terms of operative time in min and resection margin in cm. There was a strong trend, albeit non-significant, favoring LLR over OLR regarding blood loss. Hospital stay in days and morbidity were significantly lower in LLR comparing with OLR. Our subgroup analysis restricted to studies reported clinical outcomes in propensity-score matched populations showed

 Table 2
 Patients' baseline characteristics of the included studies

Study name	Age		M/F		Tumor size (cm))	Child–pugh A/B		
	OLR	LLR	OLR	LLR	OLR	LLR	OLR	LLR	
Cheung [39]	61 (25–89)	60 (32–84)	258/72	80/30	2.85 (0.8–10)	2.6 (0.6–10)	330/0	110/0	
Ahn [29]	56.9 ± 9.6	55.6 ± 11.5	80/13	26/6	3.02 ± 2.3	3.1 ± 1.9	83/9	28/2	
Xiang [14]	50.5	50.9	171/36	109/19	6.9 (1.5)	6.7 (1.5)	183/24	108/20	
Lai [30]	52.8 ± 11.8	56.5 ± 12.6	28/33	24/28	3.3 ± 1.1	3.0 ± 1.1	31/33	28/28	
Tanaka [16]	71 (67–75)	70 (66–73)	14/6	17/3	2.3 (1.9-2.8)	2.3 (2.0-2.7)	20/0	20/0	
Jiang [40]	56.55 ± 1.87	55.40 ± 2.62	37/13	35/15	3.22 ± 0.31	3.18 ± 0.29	NA	NA	
Luo [41]	51 (38–68)	49 (36–72)	35/18	38/15	3 (1-6)	3 (2–5)	53/0	53/0	
Takahara [38]	66.19 ± 9.96	66.42 ± 9.84	261/126	262/125	28.8 ± 15.0	28.8 ± 15.1	311/70	312/65	
Han [42]	59.5 (20-85)	60 (26-81)	74/14	72/16	3 (1.5–15)	3 (1-12)	77/9	79/6	
Komatsu [43]	61.7 (16.1)	61.5 (12.2)	33/5	34/4	85.0 (20-180)	47.5 (23–180	38/0	38/0	
Xiao [44]	50.28 ± 11.89	52.07 ± 11.62	77/9	34/7	4.30 ± 1.49	4.22 ± 2.05	83/3	39/2	
Cho [45]	60.0 ± 8.9	53.9 ± 12.6	16/3	17/7	4.8 ± 2.5	3.7 ± 1.8	NA	NA	
Leee [46]	63.0 (34–84)	62.0 (30-86)	69/17	29/14	4.4 (2–14)	5.4 (2-16)	81/2	41/1	
Yoon [47]	55.0 (49–61)	54.3 (49-63)	130/44	45/13	3.04 (0.20-4.9)	2.87 (0.70-4.9)	158/16	53/5	
Siniscalchi [48]	63.26 (41–77)	57.91 (30-73)	104/29	15/8	NA	NA	NA	NA	
Yamashita [31]	65.2 (10.1)	67.5 (9.5)	74/25	48/15	2.6 (1.1)	2.5 (1.0)	96/3	59/4	
Ahn [49]	57.1 ± 10.6	58.2 ± 10.4	40/11	36/15	2.8 ± 1.2	2.6 ± 1.5	51/0	51/0	
Memeo [50]	60 (43-80)	62 (34–75)	37/8	35/10	3.7 (0.1–15)	3.2 (0.9–11)	43/2	44/1	
Kim [51]	57.41 ± 8.64	59.30 ± 9.43	58/18	58/12	2.45 ± 1.27	2.58 ± 1.44	NA	NA	
Cheung [52]	61 (29-82)	59.5 (39–79)	50/14	22/10	3 (1-10)	2.5 (1-10)	60/4	32/0	
Ai [53]	52.36	51.64	137/41	75/22	7.64 ± 2.36	7.85 ± 2.15	104/74	59/38	
Kobayashi [54, 55]	66 (44–81)	67 (48–86)	19/8	15/9	22 (10-30)	20 (10–54)	20/4	25/4	
HU [54, 55]	48 ± 15	46 ± 12	19/11	20/10	8.7 ± 2.3	6.7 ± 3.1	24/6	29/1	
Lee [56]	58.5 (32-81)	59 (36-85)	40/10	24/9	2.9 (1.2–9)	2.5 (1.5–9)	50/0	33/0	
Ker [28]	57.9 ± 11.2	58.31 ± 12.7	156/52	92/24	5.4 ± 3.5	2.5 ± 1.2	197/10	98/17	
Kim [57]	57.08 ± 9.78	57.84 ± 9.66	20/9	18/8	3.6 (1-19)	3.15 (1-8)	NA	NA	
Truant [58]	63.3 ± 7.6	60.6 ± 10.2	47/6	31/5	3.1 ± 1.2	2.9 ± 1.2	53/0	36/0	
Aldrighetti [59]	71 ± 6	65 ± 10	12/4	11/5	4.6 ± 2.5	4 ± 2.2	9/16	9/16	
Tranchart [60]	65.7 ± 7.1	63.7 ± 13.1	28/14	27/15	36.8 ± 20.9	35.8 ± 17.5	33/1	30/1	
Alemi [61]	65.1 (49–88)	61.4 (37–81)	24/1	27/1	5.2	4	NA	NA	
Sarpel [62]	58.3 ± 11.0	63.8 ± 10.3	45/11	15/5	4.3 ± 2.2	4.3 ± 2.1	56/0	20/0	
Lai [63]	59 (38–77)	59 (35–79)	21/12	18/7	2.6 (1-8)	2.5 (1-7)	31 (class A)	23 (Class A	
Truant [58]	51.7 (38–71)	54.2 (23-81)	26/5	24/7	3.62 (1.8-8.9)	3.99 (1.5–9)	14/4	13/3	
Laurent [65]	65.9 <u>±</u> 5.5	62.6 ± 9.5	10/4	10/3	34.3 ± 10.5	33.5 ± 8.9	14 (100%)	13 (100%)	
Shimada [66]	63 ± 79	62 ± 9	24/14	15/2	2.5 ± 1.0	2.6 ± 0.9	NA	NA	
Chen [13]	51 (12–74)	51 (21–76)	108/25	93/33	6.7 (1.6–24.0)	6.4 (1.4–13.0)	127/6	124/2	
Jun-hua [53]	52.36	51.64	137/41	75/22	7.64 ± 2.36	7.85 ± 2.15	104/74	59/38	
Amato [10]	78 ± 1.9	77 ± 1.6	6/12	4/7	39.83 ± 6.8	35.45 ± 5.27	NA	NA	
Wenda [12]	63(40-77)	61(33–73)	71/16	112/21	2.3 ± 0.5	2.0 ± 0.5	62/25	101/32	
Cheung [67]	61.5 (25.0-86.0)	60.5 (47.0–73.0)	99/21	15/5	3.45 (1-9.5)	2.75 (1.2-6.5)	120/0	20/0	
Xu [68] Tarantino [20]	55.39 ± 9.2	55.18 ± 10.9	46/13	35/15	4.03 ± 2.67	3.38 ± 1.99	53/6	44/6	
Yoon [19]	65.5 ± 9	65 ± 13	37/14	7/6	26.5 ± 9.5	36.78 ± 23.4	9/4	46/5	
Xu [69]	57.33	56.03	26/7	23/10	2.96 (1.5)	3.31 (1.65)	33/0	33/0	
Tomoki [70]	52.0	53.5	28/4	28/4	6.2 (1.5-10.0)	4.0 (1.0-10.0)	NA	NA	
Cheung [67]	70 (40-82)	69 (33-86)	23/7	31/9	4.9 (1.0–14.5)	3.9 (1.1–17.0)	30/0	40/0	
Li [12]	63(40-77)	61(33–73)	71/16	112/21	2.3 ± 0.5	2.0 ± 0.5	62/25	101/32	
Zhang [71]	63 ± 10.5	58±9.5	26/16	25/10	5.91 ± 3.01	6.68 ± 4.15	NA	NA	

Table 2 (continued)

Study name	Age		M/F		Tumor size (cn	n)	Child–pugh A/B		
	OLR	LLR	OLR	LLR	OLR	LLR	OLR	LLR	
Zhang [72]	52 ± 10.5	47±8.5	15/10	12/8	NA	NA	25/0	20/0	
Sposito [73]	68 (49-83)	66 (40-85)	35/8	28/15	2.2 (1.0-8.5)	2.6 (1.0-6.5)	41/2	42/1	
Sotiropoulos [74]	70 (40-89)	65 (54–81)	20/1	9/2	6.1 (2.5–22)	4.7 (1.8–9.7)	30/2		
Jiang [75]	51 (36–68)	50 (38–70)	42/17	38/21	3 (2–5)	3 (1–6)	NA	NA	
Study name	Conversion to	labarotomy	HBV n (%)		HCV n (%)		Cirrhosis		
	OLR	LLR	OLR	LLR	OLR	LLR	OLR	LLR	
Cheung [39]	NA	NA	285 (86.4%)	88 (80%)	23 (7%)	7 (6.4%)	NA	NA	
Ahn [29]	NA	NA	61 (65.5%)	17 (53.1%)	NA	NA	62 (66.6%)	24 (75%)	
Xiang [14]	NA	2	172 (83.1%)	172 (83.1%)	NA	NA	167 (80.7%)	104 (80.7%)	
Lai [30]	0	0	29 (88%)	23 (82%)	0 (0%)	1 (4%)	22 (67%)	18 (64%)	
Tanaka [16]	0	0	2 (10%)	4 (20%)	15 (75%)	12 (60%)	20 (100%)	20 (100%)	
Jiang [40]	NA	NA	NA	NA	NA	NA	36 (72%)	40 (80%)	
Luo [41]	0	0	38 (71%)	41 (77.4%)	8 (15.1%)	8 (15.1%)	53 (100%)	53 (100%)	
Takahara [38]	0	18	100 (25.84%)	1 (23.51%)	198 (51.16%)	195 (50.39%)	NA	NA	
Han [42]	0	8	65	61	4	6	52 (40.9%)	55 (37.5%)	
Komatsu [43]	0	13	9 (23.7%)	10 (26.3%)	6 (15.8%)	7 (18.4%)	38 (100%)	38 (100%)	
Xiao [44]	0	3	81 (94%)	37 (90.2%)	NA	NA	72 (83.7%)	33 (80.4%)	
Cho [45]	0	3	NA	NA	NA	3.7 ± 1.8	10 (23.5%)	· · · ·	
Lee [46]	0	6	52 (60.5%)	19 (44.2%)	18 (20.9%)	13 (30.2%)	33 (38.4%)	18 (41.8%)	
Yoon [47]	0	0	165 (94.8%)	54 (93.1%)	6 (3.5%)	3 (5.2%)	NA	NA	
Siniscalchi [48]	NA	NA	35 (26.5%)	6 (26.1%)	88 (67.6%)	17 (73.9%)	133 (100%)	23 (100%0	
Yamashita [31]	NA	NA	17 (17%)	10 (16%)	68 (68%)	40 (63%)	99 (100%)	63 (100%)	
Ahn [49]	NA	NA	37 (72.5%)	40 (78 4%)	5 (9.8%)	1 (2 0%)	34 (66 75%)	35 (68 6%)	
Memeo [50]	NA	NA	13 (29%)	16 (35%)	17 (38%)	18(40%)	45 (100%)	45 (100%)	
Kim [51]	0	6	54 (71.05%)	46 (65 71%)	2(2.63%)	1 (1 43%)	NA	NA	
Cheung [52]	NA	NA	49 (76.6%)	26 (81.3%)	2(2.03%) 7(10.9%)	2(6.3%)	64 (100%)	32 (100%)	
Ai [53]	0	0	136	20 (01.5 <i>%</i>)	NA	2 (0.570) NA	143	78	
Kobayashi [54	NA NA	NA	12 (44 4%)	0 (37 5%)	15 (55 6%)	12 (50.0%)	NA	NA	
55]	NA .	NA .	12 (44.470)	9 (37.370)	15 (55.0%)	12 (30.0%)	nA .	NA .	
HU [54, 55]	NA	NA	NA	24 (80%)	NA	3 (10%)	NA	25 (83%)	
Lee [56]	0	6	43 (86%)	22 (72.7%)	6 (12%)	8(24.2%)	32 (64%)	28 (84.8%)	
Ker [28]	0	6	124 (59.6%)	74 (63.8%)	78 (37.5%)	41 (35.3%)	NA	NA	
Kim [57]	0	3	20 (69.0%)	16 (61.5%)	1 (3.4%)	2 (7.7%)	25 (86.2%)	24 (92.3%)	
Truant [58]	0	7	4 (7.6%)	3 (8.3%)	6 (11.3%)	4 (11.1%)	53 (100%)	36 (100%)	
Aldrighetti [59]	0	1	NA	NA	NA	NA	16 (100%)	16(100%)	
Tranchart [60]	0	2	NA	NA	NA	NA	34 (81)	31 (73.8)	
Alemi [61]	NA	NA	0	0	25 (100%)	28 (100%)	25 (100%)	28 (100%)	
Sarpel [62]	0	4	NA	NA	NA	NA	27 (48%)	9 (45%)	
Lai [<mark>63</mark>]	0	1	NA	23 (92%)	NA	1 (4%)	33 (100%)	25 (100%)	
Cai [64]	NA	NA	18 (58%)	18 (60%)	NA	NA	18 (58.1%)	16 (51.6%)	
Laurent [65]	0	2	6 (42.8%)	4 (30.7%)	5 (35.7%)	5 (38.4%)	14 (100%)	13 (100%)	
Shimada [66]	NA	NA	18.40%	11.80%	63.20%	70.60%	73.70%	76.50%	
Chen [13]	0	3	104 (78.2%)	95 (75.4%)	2 (1.5%)	2 (1.6%)	NA	NA	
Jun-hua [53]	0	9	136	75	NA	NA	143	78	
Amato [10]	NA	NA	NA	NA	NA	NA	NA	NA	
Wenda [12]	NA	NA	NA	NA	NA	NA	NA	NA	

 Table 2 (continued)

Study name	Conversion	to labarotomy	HBV n (%)		HCV n (%)		Cirrhosis		
	OLR	LLR	OLR	LLR	OLR	LLR	OLR	LLR	
Cheung [67]	NA	NA	104 (86.7%)	18 (90.0%)	5 (4.2%)	1 (5.0%)	120 (100%)	20 (100%)	
Xu [<mark>68</mark>]	NA	NA	NA	NA	NA	NA	84.7%	86%	
Tarantino [20]	0	3	8 (15.6%)	3 (23%)	41 (80%)	7 (53.8%)	49 (96%)	13 (100%)	
Yoon [19]	0	0	28 (80.7%)	29 (87.88%)	2 (6.06%)	1 (3.03%)	33 (100%)	33 (100%)	
Xu [<mark>69</mark>]	NA	NA	15 (46.9%)	18 (56.3%)	NA	NA	NA	NA	
Tomoki [70]	NA	NA	6 (20%)	5 (12%)	11 (37%)	20 (50%)	13 (43%)	12 (40%)	
Li [<mark>12</mark>]	NA	NA	NA	NA	NA	NA	NA	NA	
Zhang [71]	NA	NA	NA	NA	NA	NA	NA	NA	
Zhang [72]	0	0	NA	NA	NA	NA	NA	NA	
Sposito [73]	0	2	10 (23%)	6 (14%)	23 (53%)	28 (65%)	43 (100%)	43 (100%)	
Sotiropoulos [74]	0	0	10 (47.6%)	7 (63.6%)	2 (6.2%)		12 (37.5%)		
Jiang [75]	0	3	35	32	5	3	NA	NA	

a non-significant difference regarding blood loss and recurrence rate between both approaches, however LLR was associated with a significantly reduced blood transfusion rate.

In consistent with previous studies, we found favorable outcomes associated with LLR regarding operative blood loss and blood transfusion [18, 25]. The reduction in bleeding with LLR may be explained by the less risk of hepatic vein or vena cava injury because of the meticulous parenchymal dissection provided by the laparoscopy modality and the hemostatic effect of pneumoperitoneum which might have controlled bleeding from hepatic vein branches [26]. Furthermore, the magnification provided by laparoscopy allows better identification of small blood vessels which might have reduced the risk of blood loss and subsequently the blood transfusion rate.

In line with previous meta-analyses, LLR was significantly associated with lower postoperative 30-days mortality and shorter hospital stay in days comparing with OLR group [18, 25]. This might be explained by the less manipulation of abdominal organs, smaller incision, decreased rate of complications, less severe pain, lower need for narcotic pain medications, and early ambulation in the LLR group in comparison with OLR group.

In contradiction with previous studies, our all-studies meta-analysis showed that LLR was significantly associated with decreased recurrence rate comparing with OLR [25], which came as no surprise because of the decreased operative blood loss in the LLR group. Katz et al. concluded that intraoperative blood loss is an independent predictable factor to the tumor recurrence and survival rates [27]. Furthermore, although resection margin status was not significantly different between both groups in our analysis, there were other different preoperative and postoperative factors, such as Child–Pugh classification, amount of blood loss, and resected liver volume between LLR and OLR groups which might have influenced the recurrence rate [14, 28–31]. Therefore, the recurrence rate between both groups was not significantly different after restricting the analysis to propensity score-matched studies.

The second international consensus conference rated the quality of evidence supporting the superiority of LLR as low since most of the evidence derived from observational studies comparing LLR versus OLR [8, 32, 33]. The jury of the conference strongly recommended launching studies comparing between LLR and OLR in a head-to-head randomized fashion. Currently, there are a few ongoing randomized controlled trials randomizing patients with HCC to LLR versus OLR (NCT01768741), (NCT00606385), and (NCT02526043). Hopefully, these studies can provide a valid, non-biased evidence regarding the superiority of either strategy.

Our meta-analysis demonstrated a favorable survival rate at 5 years in LLR in all-studies analysis, and this survival benefit persisted even after restricting the analysis to propensity score-matched studies. Previous studies that investigated the correlation between resection margin and the OS and DFS concluded that resection margin can significantly predict the prognosis of HCC [34, 35]. Our meta-analysis showed a non-significant difference between both groups in terms of resection margin, therefore, the difference in survival benefits was most probably driven by other postoperative clinical outcomes, such as blood loss, postoperative complications, morbidity and 30-days mortality. Furthermore, the more manipulation and compression of the tumor during OLR might have resulted in more dissemination of tumor cells through portal vein to systematic circulation and A Operative time

Study name	т	otal	Statistics for each study						Difference	in means a	nd 95% Cl	l	
	OLR	LLR	Difference in means	Standard error	Lower limit	Upper limit	p-Value					R	elative weight
Abn 2016	93	32	-27.20	15.73	-58.03	3.63	0.08	1				- 1	4.17
Lai	33	28	-39.60	14.33	-67.68	-11.52	0.01			-			4.25
Jiang HT	50	50	-9.80	6.97	-23 46	3.86	0.16		-				4 54
Takahara	387	387	23 40	15.97	-7 89	54 69	0.14				_		4.16
Xiao	86	41	7.03	12.99	-18.42	32.48	0.59						4.31
Cho	19	24	251.30	50.51	152.31	350.29	0.00			_		>	2.16
Siniscalchi	133	23	10.00	18.44	-26.14	46.14	0.59		-		_		4.02
Yamashita	99	63	12.10	16.54	-20.31	44.51	0.46				_		4.13
Ahn 2014	51	51	8.70	19.71	-29.93	47.33	0.66		_				3.95
Kim SJ	76	70	-66.80	16.95	-100.03	-33.57	0.00	-					4.11
Ai	178	97	20.00	771.04	-1491.22	1531.22	0.98	-				-	0.02
Hu	30	30	10.00	10.08	-9.76	29.76	0.32			_			4.44
Ker	208	116	-34.60	22.58	-78.85	9.65	0.13						3.77
Truant	53	36	-22.40	20.55	-62.68	17.88	0.28						3.90
Aldrighetti	16	16	-90.00	33.44	-155.54	-24.46	0.01			_			3.08
Tranchart	42	42	11.30	15.99	-20.04	42.64	0.48				_		4.16
Sarpel	56	20	-4.00	12.87	-29.22	21.22	0.76		-				4.32
Laurent	14	13	85.00	26.36	33.33	136.67	0.00				_		3.53
Jun-hua Ai	178	97	20.00	13.83	-7.11	47.11	0.15				_		4.27
Amato B	18	11	-6.00	17.17	-39.66	27.66	0.73		_	_			4.09
Wenda Li	87	133	88.10	6.41	75.53	100.67	0.00			_			4.55
Xu 2017	59	50	23.23	10.88	1.91	44.55	0.03				_		4.40
Tarantino	51	13	18.00	21.81	-24.74	60.74	0.41		-		_		3.82
Yoon 2017	33	33	121.00	22.27	77.35	164.65	0.00						3.79
YueZhang Rt	42	35	176.00	24.97	127.06	224.94	0.00					>	3.62
YueZhang Lt	25	20	6.00	9.75	-13.10	25.10	0.54						4.45
			18.29	10.14	-1.58	38.15	0.07	1	1			1	
								-100.00	-50.00	0.00	50.00	100.00	
									Favours LLR	F	avours OL	R	

B Blood loss in ml

C Blood transfusion

Study name	Tot	al	Statistics for each study				Difference in means and 95% CI						
	OLR	LLR	Difference in means	Standard error	Lower	Upper limit	p-Value					Rela we	itive eight
Lai	33	28	-510.00	328.79	-1154.43	134.43	0.12	-		_	-		0.87
Jiang HT	50	50	-211.00	26.91	-263.74	-158.26	0.00		+				7.13
Xiao	86	41	-177.92	56.98	-289.60	-66.24	0.00			-			6.10
Yamashita	99	63	19.10	84.71	-146.93	185.13	0.82				_		4.99
Ahn 2014	51	51	-5.20	74.71	-151.63	141.23	0.94				-		5.39
Ai	178	97	6.00	806.00	-1573.73	1585.73	0.99	-					0.16
Hu	30	30	40.00	10.03	20.35	59.65	0.00						7.44
Ker	208	116	-1008.50	155.00	-1312.30	-704.70	0.00	K					2.79
Truant	53	36	5.00	75.35	-142.68	152.68	0.95		-		-		5.36
Aldrighetti	16	16	-359.00	117.81	-589.91	-128.09	0.00						3.80
Tranchart	42	42	-359.40	109.42	-573.86	-144.94	0.00	-					4.08
Laurent	14	13	-100.00	75.15	-247.28	47.28	0.18						5.37
Jun-hua Ai	178	97	6.00	48.91	-89.86	101.86	0.90				•		6.42
Amato B	18	11	-112.00	26.71	-164.35	-59.65	0.00						7.14
Xu 2017	59	50	-22.84	17.62	-57.37	11.69	0.19			_			7.33
Tarantino	51	13	-83.00	74.19	-228.41	62.41	0.26						5.41
Yoon 2017	33	33	-6.50	50.49	-105.46	92.46	0.90		_				6.36
YueZhang Rt	42	35	-140.00	48.55	-235.16	-44.84	0.00			_			6.43
YueZhang Lt	25	20	-170.00	10.95	-191.45	-148.55	0.00						7.43
			-124.09	32.71	-188.21	-59.97	0.00				1	1	
								-500.00	-250.00	0.00	250.00	500.00	
									Favours LLR		Favours OLR		

		idy	cs for each stu	Statistic	nts / Total	Ever	Study name
	p-Value	Upper limit	Lower limit	Odds ratio	LLR	OLR	
-	0.22	1.58	0.13	0.46	3 / 110	19 / 330	Cheung 2016
	0.10	1.27	0.06	0.28	2/32	18 / 93	Ahn 2016
1	0.60	1.51	0.49	0.86	23 / 128	42 / 207	Xiang
-	0.04	0.94	0.11	0.31	7 / 28	17 / 33	Lai
	0.37	1.47	0.36	0.73	18 / 88	23 / 88	Han
+	0.56	23.68	0.18	2.06	2/38	1/38	Komatsu
_	0.29	1.83	0.13	0.49	3/41	12 / 86	Xiao
	0.29	2.02	0.10	0.44	2 / 58	13 / 174	Yoon 2014
_	0.05	0.96	0.00	0.06	0/23	36 / 133	Siniscalchi
	0.18	18.51	0.58	3.29	4/63	2/99	Yamashita
_	0.47	2.54	0.13	0.58	3/51	5/51	Ahn 2014
	0.04	0.95	0.23	0.47	17 / 70	31 / 76	Kim SJ
	0.56	5.68	0.39	1 49	4/97	5/178	Ai
_	0.53	3.19	0.11	0.58	2/33	5 / 50	Lee KF
_	0.80	8.35	0.06	0.73	1/36	2 / 53	Truant
_	0.45	2.54	0.12	0.56	4 / 16	6 / 16	Aldrighetti
_	0.34	1.95	0.14	0.53	4/42	7/42	Tranchart
	0.07	1,13	0.08	0.30	4 / 28	9/25	Alemi
-	0.19	2.18	0.02	0.21	1/13	4/14	Laurent
	0.59	5.14	0.05	0.53	1/17	4 / 38	Shimada
	0.00	0.07	0.01	0.03	6 / 126	22 / 33	Chen J
_ →	0.56	5.68	0.39	1.49	4 / 97	5 / 178	Jun-hua Ai
	0.44	5.81	0.02	0.32	0 / 20	8 / 120	Cheung TT
	0.32	3.17	0.03	0.31	1/32	3/32	Xu 2018
	0.00	0.40	0.01	0.06	4 / 11	19/21	Sotiropouos
	0.00	0.69	0.30	0.45			
0.2 0.5	0.1						
Favours LLR							

Fig. 2 Forest plot showing: **A** the mean difference of operative time in minutes in laparoscopic liver resection (LLR) in comparison with open liver resection (OLR), **B** The mean difference of blood loss in

ml in LLR in comparison with OLR, and ${\bf C}$ The rate of blood transfusion in LLR) in comparison with OLR

A Hospital stay

tudu namo	Tot	tal	Difference	Statistics for	or each st	tudy			Difference	in means	and 95% CI		Polativo
study name	LLR	OLR	in means	error	limit	limit	p-Value		_	-	_	_	weight
Ahn 2016	32	93	-5.00	1.22	-7.40	-2.60	0.00						4.64
Xiang	128	207	-4.40	0.71	-5.80	-3.00	0.00						5.66
Lai	28	33	-2.50	1.32	-5.08	0.08	0.06						4.45
Jiang HT	50	50	-2.75	0.37	-3.47	-2.03	0.00				1		6.17
Xiao	41	86	4.91	0.99	2.97	6.85	0.00						5.13
Cho	24	19	-0.50	2.52	-5.45	4.45	0.84		_				2.46
Yamashita	63	99	-5.90	1.75	-9.32	-2.48	0.00						3.62
Ahn 2014	51	51	-4.10	1.37	-6.78	-1.42	0.00						4.35
Kim SJ	70	76	-5.13	3.25	-11.50	1.24	0.11			_			1.75
Ai	97	178	-5.30	8.04	-21.06	10.46	0.51			_			0.37
Hu	30	30	-7.00	0.70	-8.37	-5.63	0.00						5.69
Kim HH	26	29	-4.99	2.29	-9.48	-0.50	0.03			_			2.76
Truant	36	53	-3.00	0.88	-4.73	-1.27	0.00						5.34
Aldrighetti	16	16	-2.70	1.04	-4.74	-0.66	0.01			_			5.02
Tranchart	42	42	-2.90	1.05	-4.96	-0.84	0.01						5.00
Laurent	13	14	-2.00	5.73	-13.23	9.23	0.73					_	0.69
Shimada	17	38	-10.00	2.11	-14.13	-5.87	0.00						3.02
Jun-hua Ai	97	178	-5.30	0.47	-6.22	-4.38	0.00		-				6.05
Amato B	11	18	-2.52	0.29	-3.09	-1.95	0.00						6.25
Tarantino	13	51	-5.00	1.45	-7.85	-2.15	0.00						4.17
Yoon 2017	33	33	-3.97	0.79	-5.51	-2.43	0.00						5.52
YueZhang Rt	35	42	-6.00	0.59	-7.16	-4.84	0.00						5.86
YueZhang Lt	20	25	-5.00	0.49	-5.96	-4.04	0.00						6.02
-			-3.87	0.50	-4.86	-2.89	0.00						
								-10.00	-5.00	0.00	5.00	10.00	
									Favours LLR		Favours OLR		

B 30-days mortality

Study name	Events / Tot	al	Statistics	for each stu	idy		С	dds ratio and 95%	% CI			
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value					Relative weight	
Cheung 2016	6 / 330	0 / 110	0.23	0.01	4.04	0.31					6.22	
Xiang	2 / 207	1 / 128	0.81	0.07	8.99	0.86					8.90	
Lai	1/33	0/28	0.38	0.01	9.70	0.56					4.93	
Takahara	1/387	0/387	0.33	0.01	8.19	0.50					5.04	
Han	1 / 88	1/88	1.00	0.06	16.24	1.00					6.66	
Siniscalchi	10 / 133	0/23	0.25	0.01	4.42	0.34					6.28	
Memeo	2/45	0/45	0.19	0.01	4.10	0.29					5.51	
Cheung 2013	1/64	0/32	0.65	0.03	16.44	0.79					4.96	
Ker	6 / 208	0 / 116	0.13	0.01	2.39	0.17			_		6.21	
Truant	4 / 53	0/36	0.15	0.01	2.89	0.21			_		5.93	
Tranchart	1/42	1/42	1.00	0.06	16.53	1.00					6.57	
Lai EC	1/33	0/25	0.42	0.02	10.87	0.60					4.92	
Cai	10/31	0/31	0.03	0.00	0.58	0.02					6.20	
Laurent	2/14	0/13	0.19	0.01	4.25	0.29	-				5.27	
Chen J	1/33	0/126	0.09	0.00	2.15	0.14			-		4.98	
Xu 2017	1 / 59	1 / 50	1.18	0.07	19.42	0.91					6.61	
Sotiropoulos	1/21	0 / 11	0.59	0.02	15.81	0.76					4.81	
			0.32	0.16	0.66	0.00	1					
							0.01	0.1 1	10	100		

Favours LLR

Favours OLB

C Morbidity

Fig. 3 Forest plot showing: A the mean difference of hospital stay in days in in laparoscopic liver resection (LLR) in comparison with open liver resection (OLR), B the 30-days mortality rate in LLR

group comparing with OLR group, and ${\bf C}$ The morbidity rate in LLR in comparison with OLR

Fig. 4 Forest plot showing: A the mean difference of resection margin in CM in laparoscopic liver resection (LLR) in comparison with open liver resection (OLR), B the R0 resection rate in LLR in comparison with OLR, and C The recurrence rate in LLR in comparison with OLR

0.43

0.11 0.46

0.03

0.1 0.2

0.33

0.02

0.37

0.71

4.94

1.12

1.52

1.57

0.98

1.42

0.65

0.16 0.76

0.83

this could have impacted the survival rate [36]. Our results are inconsistent with Poon et al's findings that concluded that the resection margin was not associated with postoperative recurrence pattern and subsequently survival rate [37].

27 / 51

42 / 87

30 / 59

8/13

50 / 133

1 / 11 26 / 59

Tarantino

Jiang X

Li

Our study did not find a statistically significant difference between LLR and OLR regarding 3-OS which might be explained by the limited number of studies reported 3-OS in comparison to studies reported 1-OS. Although there was a limited number of studies reported 5-OS, this

2

0.5

Favours LLR

1.71

7.80

0.54

10

5

Favours OLR

.

B 3-years survival rate

C 5-years survival rate

A 1-year sur	vival rate													
Study name	Events	/ Total	Statist	tics for e	ach stud	ly			Odds ra	itio and	95% CI			
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value								Relative weight
Cheung 2016	310 / 330	109 / 110	7.03	0.93	53.02	0.06				+				2.15
Takahara	371 / 387	371/387	1.00	0.49	2.03	1.00					-			9.47
Han	82 / 88	81 / 88	0.85	0.27	2.63	0.77			_		<u> </u>			5.43
Komatsu	33 / 38	33 / 38	1.00	0.26	3.78	1.00						•		4.30
Xiao	77 / 86	39 / 41	2.28	0.47	11.06	0.31				_	_	_		3.27
Leee JJ	81 / 86	41/43	1.27	0.24	6.81	0.78		-		_		_		2.95
Yoon 2014	171 / 174	55 / 58	0.32	0.06	1.64	0.17	(•			3.11
Memeo	28 / 45	40 / 45	4.86	1.60	14.71	0.01								5.60
Cheung 2013	61/64	31 / 32	1.52	0.15	15.27	0.72		_				_		1.70
Ai	162 / 178	91 / 97	1.50	0.57	3.96	0.42						-		6.66
Lee KF	49 / 50	29/33	0.15	0.02	1.39	0.09			_					1.79
Ker	173 / 208	101 / 116	1.36	0.71	2.62	0.35								10.19
Kim HH	26 / 29	26 / 26	7.00	0.34	142.25	0.21			_	_	_	_		1.04
Tranchart	34 / 42	39 / 42	3.06	0.75	12.46	0.12				_		_		3.95
Alemi	16 / 25	18 / 28	1.01	0.33	3.12	0.98			_	_	—			5.49
Sarpel	53 / 56	20 / 20	2.68	0.13	54.23	0.52					_			1.04
Lai EC	27 / 33	23 / 25	2.56	0.47	13.91	0.28				_		_		2.92
Cai	26 / 31	23 / 31	0.55	0.16	1.93	0.35		-			_			4.72
Jun-hua Ai	169 / 178	91 / 97	0.81	0.28	2.34	0.69					-			5.92
Wenda Li	82 / 87	132 / 133	8.05	0.92	70.12	0.06				-	_			1.91
Cheung TT	113 / 120	19 / 20	1.18	0.14	10.11	0.88			_	_	_	_		1.93
Xu 2017	44 / 59	39 / 50	1.21	0.50	2.94	0.68			_					7.42
Yoon 2017	10 / 33	22 / 33	4.60	1.63	12.97	0.00					+	_		6.13
Xu 2018	31 / 32	32 / 32	3.10	0.12	78.87	0.49					-			0.90
			1.45	1.06	1.99	0.02	1							
							0.1	0.2	0.5	1	2	5	10	
								Favou	rs OLR		Favour	rs LLR		

Study name	Events	/ Total	Statis	stics for o	each stu	dy		Odds ra	atio and 9	95% CI		
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value						Relative weight
Cheung 2016	262 / 330	99 / 110	2.34	1.19	4.60	0.01						10.72
Tanaka	16 / 20	19/20	4.75	0.48	46.91	0.18			_		-	2.76
Takahara	325 / 387	344 / 387	1.53	1.01	2.32	0.05			-			12.93
Han	77 / 88	77 / 88	1.00	0.41	2.44	1.00			_			8.90
Komatsu	38 / 38	28/38	0.04	0.00	0.63	0.02	(- 1			1.88
Leee JJ	77 / 86	39/43	1.14	0.33	3.93	0.84		-	_	-		6.51
Yoon 2014	146 / 174	50 / 58	1.20	0.51	2.80	0.68			_			9.26
Cheung 2013	56 / 64	23/32	0.37	0.13	1.06	0.06						7.60
Lee KF	40 / 50	27 / 33	1.13	0.37	3.46	0.84		-	_	-		7.23
Tranchart	31/42	31/42	1.00	0.38	2.65	1.00			_			8.29
Sarpel	48 / 56	20 / 20	7.19	0.40	130.40	0.18			_			1.86
Lai EC	22/33	15 / 25	0.75	0.25	2.21	0.60						7.53
Cai	26 / 31	16 / 31	0.21	0.06	0.67	0.01			- 1			6.81
Yoon 2017	8/33	15 / 33	2.60	0.91	7.44	0.07						7.73
			1.07	0.70	1.63	0.77			-		1	
							0.01	0.1	1	10	100	
								Favours OLR		Favours LL	R	

Study name	Events	/ Total	Statis	tics for e	ach stud	dy		Odds	ratio and 9	5% CI		
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value						Relative weight
Cheung 2016	222 / 330	92 / 110	2.49	1.43	4.33	0.00			· · · · · · · · · · · · · · · · · · ·			13.34
Tanaka	12 / 20	9/20	0.55	0.16	1.91	0.34						3.26
Takahara	274 / 387	297 / 387	1.36	0.99	1.88	0.06			-			26.63
Han	64 / 88	67 / 88	1.20	0.61	2.36	0.60			_			9.72
Leee JJ	75 / 86	39/43	1.43	0.43	4.79	0.56				-		3.50
Kim SJ	44 / 76	42 / 70	1.09	0.56	2.11	0.80			_			10.16
Cheung 2013	37 / 64	25 / 32	2.61	0.98	6.90	0.05				_		5.20
Lee KF	38 / 50	25 / 33	0.99	0.35	2.76	0.98			<u> </u>			4.72
Tranchart	20 / 42	25 / 42	1.62	0.68	3.84	0.28			_	-		6.44
Sarpel	43 / 56	19 / 20	5.74	0.70	47.11	0.10			_	_	-	1.21
Lai EC	12 / 33	10 / 25	1.17	0.40	3.40	0.78			_	-		4.39
Cai	14 / 31	14 / 31	1.00	0.37	2.72	1.00			<u> </u>			4.96
Sposito	20 / 43	16 / 43	0.68	0.29	1.61	0.38						6.48
			1.36	1.07	1.72	0.01			♦			
							0.01	0.1	1	10	100	

Fig. 5 Forest plot showing: A 1-year overall survival rate, B 3-years overall survival rate, and C 5-years overall survival rate

Relative weight 6.95 4.50 3.73 7.43 6.45 5.08 5.60 5.85 6.40 5.21 6.28 4.33 5.33 5.37 4.74 6.70 4.59 5.45

10

5 Favours LLR

A Disease-free survival 1 year

Study name	Events	/ Total		Statis	tics for e	each stud	y
	OLR	LLR	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Cheung 2016	248 / 330	96 / 110	2.267	1.227	4.189	2.614	0.009
Tanaka	14 / 20	15 / 20	1.286	0.319	5.175	0.354	0.724
Takahara	308 / 387	324 / 387	1.319	0.915	1.902	1.483	0.138
Han	66 / 88	61 / 88	0.753	0.389	1.460	-0.840	0.401
Komatsu	18 / 38	22/38	1.528	0.618	3.779	0.917	0.359
Xiao	71/86	36 / 41	1.521	0.512	4.518	0.755	0.450
Leee JJ	70 / 86	26 / 43	0.350	0.154	0.792	-2.519	0.012
Yoon 2014	153 / 174	48 / 58	0.659	0.290	1.496	-0.998	0.318
Memeo	27 / 45	36 / 45	2.667	1.039	6.847	2.039	0.041
Cheung 2013	41 / 64	28 / 32	3.927	1.224	12.595	2.300	0.021
Ai	164 / 178	90 / 97	1.098	0.427	2.818	0.193	0.847
Kobayashi	26 / 27	20 / 21	0.769	0.045	13.067	-0.182	0.856
Kim HH	24 / 29	22 / 26	1.146	0.272	4.819	0.186	0.853
Tranchart	30 / 42	34 / 42	1.700	0.613	4.717	1.019	0.308
Lai EC	24 / 33	22 / 25	2.750	0.659	11.480	1.387	0.165
Jun-hua Ai	164 / 178	90 / 97	1.098	0.427	2.818	0.193	0.847
Xu 2017	30 / 59	30 / 50	1.450	0.677	3.107	0.956	0.339
Yoon 2017	13 / 33	30 / 33	15.385	3.882	60.969	3.891	0.000
			1.426	1.032	1.972	2.150	0.032

Study name	Events	/ Total		Statis	tics for e	ach stud	ly		Odds ra	tio and 9	95% C
	OLR	LLR	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value				
Cheung 2016	186 / 330	72 / 110	1.467	0.936	2.299	1.672	0.095				H+-
ai	25/33	18 / 28	0.576	0.190	1.747	-0.974	0.330	_ _	_	_	-
anaka	6 / 20	6 / 20	1.000	0.259	3.867	0.000	1.000				+-
Takahara	195 / 387	226 / 387	1.382	1.041	1.836	2.235	0.025			_	-1
lan	44 / 88	46 / 88	1.095	0.606	1.978	0.302	0.763			_	-
Comatsu	11 / 38	19/38	2.455	0.953	6.325	1.859	0.063			- 	-+-
Kiao	59 / 86	29/41	1.106	0.491	2.492	0.243	0.808			_	+
eee JJ	57 / 86	23/43	0.585	0.277	1.236	-1.405	0.160			-	
Yoon 2014	108 / 174	33 / 58	0.807	0.441	1.475	-0.698	0.485		- +		
Cheung 2013	32 / 64	23 / 32	2.556	1.025	6.369	2.014	0.044				
Ai	19 / 178	64 / 97	16.230	8.604	30.615	8.607	0.000				
Kobayashi	17 / 27	11 / 21	0.647	0.203	2.062	-0.736	0.462				-
_ee KF	28 / 50	17 / 33	0.835	0.346	2.017	-0.401	0.688		_		-
Franchart	23/42	26 / 42	1.342	0.562	3.204	0.663	0.507				+-
_ai EC	16 / 33	13 / 25	1.151	0.407	3.257	0.265	0.791				+
Jun-hua Ai	119 / 178	64 / 97	0.962	0.570	1.623	-0.147	0.883				
Yoon 2017	7/33	14 / 33	2.737	0.927	8.084	1.822	0.068			±	
Sposito	19/43	19 / 43	1.000	0.427	2.342	0.000	1.000			-	+
			1.349	0.939	1.938	1.621	0.105				

Favours OLR

C Diseas	e-free sur	vival 5 ye	ears												
Study name	Events / Tot	tal		Statist	ics for e	ach stud	у			Odds ra	tio and	95% CI			
	OLR	LLR	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value								Relative weight
Cheung 2016	247 / 330	57 / 110	0.361	0.231	0.566	-4.442	0.000								13.02
Takahara	152 / 387	58 / 387	0.273	0.193	0.385	-7.369	0.000			-					13.60
Han	36 / 88	37 / 88	1.048	0.575	1.909	0.153	0.878				_	_			12.04
Leee JJ	50 / 86	23 / 43	0.828	0.396	1.730	-0.502	0.616			+		- 1			11.07
Kim SJ	41 / 76	36 / 70	0.904	0.472	1.732	-0.305	0.761			- -		-			11.68
Cheung 2013	28 / 64	17/32	1.457	0.622	3.416	0.866	0.386								10.24
Lee KF	28 / 50	15 / 33	0.655	0.271	1.585	-0.939	0.348					-			10.02
Tranchart	16 / 42	19 / 42	1.342	0.562	3.204	0.663	0.507								10.12
Sposito	5/43	11 / 43	2.613	0.821	8.309	1.627	0.104						_	-	8.20
			0.793	0.480	1.310	-0.906	0.365								
								0.1	0.2	0.5	1	2	5	10	
									Favours	OLR		Favou	ırs LLR		

Fig. 6 Forest plot showing: A 1-year disease-free survival rate, B 3-years disease-free survival rate, and C 5-years disease-free survival rate

_

A Operative time

Study name	Stat	istics for each	study				Difference	in means	and 95% Cl	
Takahara Ahn 2014 Kim SJ Hu Aldrighetti Tranchart Sarpel Laurent Yoon 2017	Difference in means 23.40 8.70 -66.80 10.00 -90.00 11.30 -4.00 85.00 121.00 11.64	Standard error 15.97 19.71 16.95 10.08 33.44 15.99 12.87 26.36 22.27 16.17	Lower limit -7.89 -29.93 -100.03 -9.76 -155.54 -20.04 -29.22 33.33 77.35 -20.06	Upper limit 54.69 47.33 -33.57 29.76 -24.46 42.64 21.22 136.67 164.65 43.33	p-Value 0.14 0.66 0.00 0.32 0.01 0.48 0.76 0.00 0.00 0.00 0.47	-100.00	-50.00 Favours LLR	0.00	50.00 Favours OLR	100.00

B Blood loss

Study name		Statistics for	each study			Difference in means and 95% Cl
	Difference in means	Standard error	Lower limit	Upper limit	p-Value	
Ahn 2014	-5.20	74.71	-151.63	141.23	0.94	
Hu	40.00	10.03	20.35	59.65	0.00	
Aldrighetti	-359.00	117.81	-589.91	-128.09	0.00	
Tranchart	-359.40	109.42	-573.86	-144.94	0.00	└──── ───
Laurent	-100.00	75.15	-247.28	47.28	0.18	
Yoon 2017	-6.50	50.49	-105.46	92.46	0.90	
	-95.62	56.40	-206.17	14.93	0.09	
						-500.00 -250.00 0.00 250.00
						Favours LLR Favours Ol

C Blood transfusion

Study name	Sta	atistics for ea	ch study	Odds ratio and 95% Cl								
	Odds ratio	Lower limit	Upper limit	p-Value								
Cheung 2016	0.46	0.13	1.58	0.22	╷┽╶╡ <u></u> ╴╷╷╷╷							
Han	0.73	0.36	1.47	0.37								
Komatsu	2.06	0.18	23.68	0.56								
Yoon 2014	0.44	0.10	2.02	0.29								
Ahn 2014	0.58	0.13	2.54	0.47								
Kim SJ	0.47	0.23	0.95	0.04								
Lee KF	0.58	0.11	3.19	0.53								
Aldrighetti	0.56	0.12	2.54	0.45								
Tranchart	0.53	0.14	1.95	0.34								
Laurent	0.21	0.02	2.18	0.19								
Cheung TT	0.32	0.02	5.81	0.44								
Xu 2018	0.31	0.03	3.17	0.32								
	0.54	0.38	0.78	0.00								
					0.1 0.2 0.5 1 2 5 10							
					Favours LLR Favours OLR							

Fig.7 Forest plot showing: **A** the mean operative time of laparoscopic liver resection (LLR) in comparison with open liver resection (OLR) in propensity score-matched studies, **B** The mean blood loss

in ml in LLR in comparison with OLR in propensity score matched studies, and C The rate of blood transfusion in LLR in comparison with OLR in propensity score-matched studies

A Hospital stay

B 30-days Mortality

Study name	Events /	Total	Statistics for each study				
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value	
Cheung 2016	6 / 330	0 / 110	0.23	0.01	4.04	0.31	
Takahara	1 / 387	0 / 387	0.33	0.01	8.19	0.50	
Han	1 / 88	1 / 88	1.00	0.06	16.24	1.00	
Memeo	2/45	0/45	0.19	0.01	4.10	0.29	
Cheung 2013	1/64	0/32	0.65	0.03	16.44	0.79	
Tranchart	1/42	1/42	1.00	0.06	16.53	1.00	
Lai EC	1/33	0 / 25	0.42	0.02	10.87	0.60	
Cai	10/31	0/31	0.03	0.00	0.58	0.02	
Laurent	2/14	0 / 13	0.19	0.01	4.25	0.29	
			0.31	0.11	0.84	0.02	

Events / Total	
OLR	

C Morbidity

	Events / Tota	al de la companya de	Statistics for each study						
			Odds	Lower	Upper				
	OLR	LLR	ratio	limit	limit	p-Value			
Cheung 2016	165 / 330	49 / 110	0.80	0.52	1.24	0.32			
Tanaka	9/20	0 / 20	0.03	0.00	0.56	0.02			
Takahara	50 / 387	56 / 387	1.14	0.76	1.72	0.53			
Han	18 / 88	11 / 88	0.56	0.25	1.26	0.16			
Komatsu	23 / 38	12 / 38	0.30	0.12	0.77	0.01			
Leee JJ	34 / 86	10 / 43	0.46	0.20	1.06	0.07			
Yoon 2014	39 / 174	4 / 58	0.26	0.09	0.75	0.01			
Ahn 2014	5/51	3 / 51	0.58	0.13	2.54	0.47			
Memeo	20 / 45	9 / 45	0.31	0.12	0.80	0.02			
Kim SJ	11 / 76	5/70	0.45	0.15	1.38	0.16			
Cheung 2013	12 / 64	2/32	0.29	0.06	1.38	0.12			
Hu	3 / 30	4 / 30	1.38	0.28	6.80	0.69			
Lee KF	12 / 50	2/33	0.20	0.04	0.98	0.05			
Kim HH	7 / 29	1 / 26	0.13	0.01	1.10	0.06			
Aldrighetti	7 / 16	4 / 16	0.43	0.10	1.92	0.27			
Tranchart	5/42	4 / 42	0.78	0.19	3.13	0.72			
Sarpel	4 / 56	1 / 20	0.68	0.07	6.51	0.74			
Lai EC	5/33	4 / 25	1.07	0.25	4.46	0.93			
Laurent	7 / 14	4 / 13	0.44	0.09	2.15	0.31			
Cheung TT	4 / 120	0 / 20	0.63	0.03	12.18	0.76			
Yoon 2017	7/33	1/33	0.12	0.01	1.00	0.05			
Xu 2018	12 / 32	10 / 32	0.76	0.27	2.13	0.60			
Sposito	21/43	8 / 43	0.24	0.09	0.63	0.00			
Jiang X	16 / 59	12 / 59	0.69	0.29	1.61	0.39			
			0.51	0.39	0.67	0.00			

Fig. 8 Forest plot showing: A the mean difference of hospital stay in days in laparoscopic liver resection (LLR) in comparison with open liver resection (OLR) in propensity score matched studies, B The 30-days mortality rate of LLR in comparison with OLR in propensity score-matched studies, and C The rate of morbidity in LLR in comparison with OLR in propensity score-matched studies

A Resection margin

B R0 resection

Study name				Statistics f	or each s	tudy			Difference	in means	and 95% Cl		
	OLR	LLR	Difference in means	Standard error	Lower limit	Upper limit	p-Value						Relative weight
Ahn 2014	51	51	0.40	0.26	-0.12	0.92	0.13	I				- 1	10.43
Kim SJ	76	70	0.27	0.19	-0.09	0.63	0.14			_			15.47
Aldrighetti	16	16	-0.59	0.22	-1.03	-0.15	0.01	-	_	-			12.71
Tranchart	42	42	-0.02	0.19	-0.38	0.34	0.91			_	_		15.42
Laurent	14	13	0.02	0.08	-0.13	0.17	0.79			_			25.58
Shimada	38	17	0.10	0.18	-0.26	0.46	0.59			_			15.53
Yoon 2017	33	33	0.59	0.44	-0.27	1.45	0.18			_			4.86
			0.05	0.11	-0.15	0.26	0.60	I					
								-1.00	-0.50	0.00	0.50	1.00	
									Favours LLR		Favours OLR		

	Events /	Total	Sta	atistics for	each stu	dy		Odds ratio and 95% Cl				
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value						
Cheung 2016	317 / 330	109 / 110	4.47	0.58	34.57	0.15			+			
Takahara	370 / 387	369 / 387	0.94	0.48	1.86	0.86			_			
Han	83 / 88	87 / 88	5.24	0.60	45.81	0.13			-			
Komatsu	6 / 38	6 / 38	1.00	0.29	3.43	1.00		_		-		
Leee JJ	68 / 86	43 / 43	23.50	1.38	399.99	0.03						
Yoon 2014	171 / 174	58 / 58	2.39	0.12	46.92	0.57					() ()	
Aldrighetti	13 / 16	16 / 16	8.56	0.41	180.52	0.17						
Sarpel	41 / 56	18 / 20	3.29	0.68	15.92	0.14			-			
Shimada	19 / 38	10 / 17	1.43	0.45	4.54	0.55			_	_		
Jun-hua Ai	138 / 178	77 / 97	1.12	0.61	2.04	0.72						
Tarantino	50 / 51	13 / 13	0.80	0.03	20.82	0.89		_				
Xu 2018	30 / 32	31 / 32	2.07	0.18	24.01	0.56						
Tomoki	25 / 30	38 / 40	3.80	0.68	21.13	0.13			-			
Sposito	42 / 43	42 / 43	1.00	0.06	16.52	1.00				_		
Jiang X	58 / 59	56 / 59	0.32	0.03	3.19	0.33				-		
			1.40	0.98	2.00	0.07						
							0.01	0.1	1	10	100	
								Favours LLR		Favours OLR		

C Recurrence	ce rate														
Study name	Events / Tota	al	Sta	atistics for	each stu	dy		c							
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value								Relative weight	
Cheung 2016 Ahn 2016 Lai Han Yoon 2014 Memeo Kim SJ Lee KF Kim HH Truant Aldrighetti Tranchart Cai Laurent Cheung TT Jiang X	160 / 330 47 / 93 8 / 33 24 / 53 53 / 88 31 / 174 28 / 45 21 / 76 19 / 50 10 / 29 23 / 53 6 / 16 12 / 42 8 / 31 7 / 14 9 / 120 30 / 59	36 / 110 13 / 32 10 / 28 20 / 53 53 / 88 16 / 58 25 / 45 30 / 70 15 / 33 7 / 26 16 / 36 6 / 16 10 / 42 9 / 31 5 / 13 1 / 20 26 / 59	0.52 0.67 1.74 0.73 1.00 1.76 0.76 1.36 0.70 1.04 1.00 0.78 1.18 0.63 0.65 0.76	0.33 0.57 0.34 0.55 0.88 0.33 0.98 0.56 0.22 0.44 0.29 0.38 0.14 0.28 0.37 0.7	0.81 1.51 5.27 1.59 1.83 3.52 1.76 3.92 3.32 2.22 2.45 4.18 2.07 3.60 2.89 5.42 1.57	0.00 0.33 0.33 1.00 0.11 0.52 0.66 0.55 0.92 1.00 0.62 0.78 0.55 0.69 0.46	-					-		$\begin{array}{c} 15.32 \\ 6.26 \\ 3.61 \\ 6.81 \\ 10.19 \\ 8.17 \\ 5.91 \\ 8.24 \\ 5.35 \\ 3.35 \\ 5.78 \\ 2.24 \\ 4.56 \\ 3.56 \\ 1.97 \\ 1.05 \\ 7.62 \end{array}$	
			0.00	5.14		5.50	0.1	0.2	0.5	1	2	5	10		
								Favoui	rs llk		Favours	S OLR			

Fig. 9 Forest plot showing: A the mean difference of resection margin in CM of laparoscopic liver resection (LLR) in comparison with open liver resection (OLR) in propensity score-matched studies, B The R0 resection rate of LLR in comparison with OLR in propensity score-matched studies, and C The recurrence in LLR in comparison with OLR in propensity score-matched studies

A 1-year over all survival

Study name	Events / To	otal	Sta	atistics fo	or each s	tudy		Odds ratio and 95% CI					
Cheung 2016 Takahara Han Komatsu Leee JJ Yoon 2014 Memeo Cheung 2013 Lee KF Kim HH Tranchart Sarpel Lai EC Cai Cheung TT Yoon 2017 Xu 2018	OLR 310 / 330 371 / 387 82 / 88 33 / 38 81 / 86 171 / 174 28 / 45 61 / 64 49 / 50 26 / 29 34 / 42 53 / 56 27 / 33 26 / 31 113 / 120 10 / 33 31 / 32	LLR 109 / 110 371 / 387 81 / 88 33 / 38 41 / 43 55 / 58 40 / 45 31 / 32 29 / 33 26 / 26 39 / 42 20 / 20 23 / 25 23 / 31 19 / 20 22 / 33 32 / 32	Odds ratio 7.03 1.00 0.85 1.00 1.27 0.32 4.86 1.52 0.15 7.00 3.06 2.68 2.56 0.55 1.18 4.60 3.10 1.53	Lower limit 0.93 0.27 0.26 0.24 0.06 1.60 0.15 0.02 0.34 0.75 0.13 0.75 0.13 0.47 0.16 0.14 1.63 0.12 0.94	Upper limit 53.02 2.03 3.78 6.81 1.64 14.71 15.27 1.39 142.25 12.46 54.23 13.91 1.93 10.11 12.97 78.87 2.47	p-Value 0.06 1.00 0.77 1.00 0.78 0.01 0.72 0.09 0.21 0.12 0.52 0.28 0.35 0.88 0.00 0.49 0.09	0.01	0.1			Relative we	ativi 4.2.37 5.57 8.32 6.22 5.4 7.3 9.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	
								ravours OLR	1	avours LL	.ĸ		

C 5-years over all survival

	Events /	Total	Sta	atistics fo	or each s	tudy	Odds ratio and 95% Cl					
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value	_	_	_	_	R	elative veight
Cheung 2016 Tanaka Takahara Han Leee JJ Ahn 2014 Memeo Kim SJ Cheung 2013 Hu Lee KF Tranchart Sarpel Lai EC Cai Sposito	222 / 330 12 / 20 274 / 387 64 / 88 75 / 86 44 / 51 20 / 45 44 / 76 37 / 64 16 / 30 38 / 50 20 / 42 43 / 56 12 / 33 14 / 31 20 / 43	92 / 110 9 / 20 297 / 387 67 / 88 39 / 43 41 / 51 27 / 45 42 / 70 25 / 32 15 / 30 25 / 33 25 / 42 19 / 20 10 / 25 14 / 31 16 / 43	2.49 0.55 1.36 1.20 1.43 0.65 1.88 0.99 1.62 5.74 1.17 1.00 0.68 1.32	1.43 0.16 0.99 0.61 0.43 0.23 0.81 0.56 0.98 0.32 0.35 0.68 0.70 0.40 0.37 0.29 1.07	4.33 1.91 1.88 2.36 4.79 1.87 4.33 2.11 6.90 2.41 2.76 3.84 47.11 3.40 2.72 1.61 1.64	0.00 0.34 0.06 0.60 0.56 0.43 0.14 0.80 0.05 0.80 0.98 0.28 0.28 0.10 0.78 1.00 0.38 0.01	0.01	0.1	╴ ╺╏┨╽╽╽╽╻╻╏╽╻╻	10	- 100	11.51 2.76 23.57 8.34 2.97 3.82 5.80 8.72 4.42 4.11 5.49 1.02 3.73 4.21 5.52
							Fav	ours OLR	Far	vours LLR		

Fig. 10 Forest plot showing: A 1-year overall survival rate in propensity score matched studies, B 3-years overall survival rate in propensity score-matched studies, and C 5-years overall survival rate in propensity score matched studies

A Disease-free survival 1 year

	Even	ts / Total		Statistics	s for each st	udy		Odds ratio and 95% Cl					
	OLR	LLR	Odds ratio	Lower limit	Upper limit	p-Value							Relative weight
Cheung 2016	248 / 330	96 / 110	2.267	1.227	4.189	0.009				- I -	_	- 1	10.07
Tanaka	14 / 20	15 / 20	1.286	0.319	5.175	0.724			_				5.41
Takahara	308 / 387	324 / 387	1.319	0.915	1.902	0.138							11.62
Han	66 / 88	61 / 88	0.753	0.389	1.460	0.401							9.74
Komatsu	18 / 38	22/38	1.528	0.618	3.779	0.359			- 1-			-	8.09
Leee JJ	70 / 86	26 / 43	0.350	0.154	0.792	0.012		+-		- 1			8.68
Yoon 2014	153 / 174	48 / 58	0.659	0.290	1.496	0.318					•		8.66
Memeo	27 / 45	36 / 45	2.667	1.039	6.847	0.041							7.85
Cheung 2013	41/64	28 / 32	3.927	1.224	12.595	0.021					-		6.54
Kim HH	24 / 29	22 / 26	1.146	0.272	4.819	0.853			_	_	_		5.22
Tranchart	30 / 42	34 / 42	1.700	0.613	4.717	0.308			- 1 -			_	7.37
Lai EC	24 / 33	22 / 25	2.750	0.659	11.480	0.165			- I •				5.25
Yoon 2017	13 / 33	30 / 33	15.385	3.882	60.969	0.000							5.48
			1.527	0.996	2.342	0.052							
							0.1	0.2	0.5	1	2	5 10	
								Favours	OLR		Fa	avours LLR	

B Disease-fr	ree survival	3 year												
Study name Cheung 2016 Tanaka Takahara Han Komatsu Leee JJ Yoon 2014 Cheung 2013 Lee KF Tranchart Lai EC Yoon 2017	Eve OLR 186 / 330 6 / 20 195 / 387 44 / 88 11 / 38 57 / 86 108 / 174 32 / 64 28 / 50 23 / 42 16 / 33 7 / 33	ents / Total LLR 72 / 110 6 / 20 226 / 387 46 / 88 19 / 38 23 / 43 33 / 58 23 / 32 17 / 33 26 / 42 13 / 25 14 / 33	Odds ratio 1.467 1.000 1.382 1.095 2.455 0.585 0.585 0.585 0.585 0.585 1.342 1.151 2.737	Statistics for Lower limit 0.936 0.259 1.041 0.606 0.953 0.277 0.441 1.025 0.346 0.346 0.346 0.346 0.407 0.927	Upper limit 2.299 3.867 1.836 1.978 6.325 1.236 1.475 6.369 2.017 3.204 3.257 8.084	dy p-Value 0.095 1.000 0.025 0.763 0.160 0.485 0.044 0.688 0.507 0.791 0.068		-	Odds ra	itio and	95% Cl	-	_	Relative weight 14.75 2.29 24.75 9.88 4.45 6.73 9.57 4.75 5.05 5.17 3.75 3.48
Sposito	19/43	19 / 43	1.000 1.246	0.427 1.010	2.342 1.537	1.000 0.040	0.1	0.2	0.5	1	2	5	 10	5.38
							F	avours O	LR		Favo	urs LLR		

	o year												
Even OLR 247 / 330 152 / 387 36 / 88 50 / 86 28 / 51 10 / 45 41 / 76 28 / 64 28 / 50 16 / 42 5 / 43	ts / Total LLR 57 / 110 58 / 387 37 / 88 23 / 43 35 / 51 9 / 45 36 / 70 17 / 32 15 / 33 19 / 42 11 / 43	Odds ratio 0.361 0.273 1.048 0.828 1.797 0.875 0.904 1.457 0.655 1.342 2.613	Statistics for Lower limit 0.231 0.575 0.396 0.800 0.318 0.472 0.622 0.271 0.562 0.821	each stuc Upper limit 0.566 0.385 1.909 1.730 4.034 2.411 1.732 3.416 1.585 3.204 8.309	y p-Value 0.000 0.878 0.816 0.156 0.796 0.761 0.348 0.507 0.104			Odds ratio	o and 95%	% CI			Relative weight 10.05 10.51 9.27 8.50 8.10 6.97 8.99 7.85 7.67 7.75 6.25
44 / 59	42 / 59	0.842 0.856	0.374 0.555	1.899 1.321	0.679 0.482	0.1 Fa	0.2 Ivours O	0.5	1 2	2 Favo	5 urs LL	10 R	8.07
	Even OLR 247 / 330 152 / 387 36 / 88 50 / 86 28 / 51 10 / 45 41 / 76 28 / 64 28 / 50 16 / 42 5 / 43 44 / 59	Events / Total OLR LLR 247 / 330 57 / 110 152 / 387 58 / 387 36 / 88 37 / 88 50 / 86 23 / 43 28 / 51 35 / 51 10 / 45 9 / 45 41 / 76 36 / 70 28 / 50 15 / 33 16 / 42 19 / 42 5 / 43 11 / 43 44 / 59 42 / 59	Events / Total Odds ratio OLR LLR ratio 247 / 330 57 / 110 0.361 152 / 387 58 / 387 0.273 36 / 88 37 / 88 1.048 50 / 86 23 / 43 0.828 28 / 51 35 / 51 1.797 10 / 45 9 / 45 0.875 41 / 76 36 / 70 0.904 28 / 50 15 / 33 0.655 16 / 42 19 / 42 1.342 5 / 43 11 / 43 2.613 44 / 59 42 / 59 0.842 0.856 0.856	Events / Total Statistics for OLR LLR ratio limit 247 / 330 57 / 110 0.361 0.231 152 / 387 58 / 387 0.273 0.193 36 / 88 37 / 88 1.048 0.575 50 / 86 23 / 43 0.828 0.396 28 / 51 35 / 51 1.797 0.800 10 / 45 9 / 45 0.875 0.318 41 / 76 36 / 70 0.904 0.472 28 / 64 17 / 32 1.457 0.622 28 / 50 15 / 33 0.655 0.271 16 / 42 19 / 42 1.342 0.562 5 / 43 11 / 43 2.613 0.821 44 / 59 42 / 59 0.842 0.374 0.856 0.555 0.555 0.555	Events / Total Statistics for each study OLR LLR Odds ratio Upper limit 247 / 330 57 / 110 0.361 0.231 0.566 152 / 387 58 / 387 0.273 0.193 0.385 36 / 88 37 / 88 1.048 0.575 1.909 50 / 86 23 / 43 0.828 0.396 1.730 28 / 51 35 / 51 1.797 0.800 4.034 10 / 45 9 / 45 0.875 0.318 2.411 41 / 76 36 / 70 0.904 0.472 1.732 28 / 64 17 / 32 1.457 0.622 3.416 628 / 50 15 / 33 0.655 0.271 1.585 16 / 42 19 / 42 1.342 0.562 3.204 5 / 43 11 / 43 2.613 0.821 8.309 44 / 59 42 / 59 0.842 0.374 1.899 0.856 0.555 1.321 0.856 0.555 1.321	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Events / Total Statistics for each study OLR LLR Odds ratio Lower limit Upper limit p-Value 247 / 330 57 / 110 0.361 0.231 0.566 0.000 152 / 387 58 / 387 0.273 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.318 2.411 0.796 41 / 76 36 / 70 0.904 0.472 1.732 0.761 28 / 64 17 / 32 1.457 0.622 3.416 0.386 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104	Events / Total Statistics for each study OLR LLR ratio limit lpper 152 / 330 57 / 110 0.361 0.231 0.566 0.000 152 / 387 58 / 387 0.273 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.318 2.411 0.796 41 / 76 36 / 70 0.904 0.472 1.732 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.899 0.679 0.856 0	Events / Total Statistics for each study Odds ratio 0LR LLR ratio limit p-Value 247 / 330 57 / 110 0.361 0.231 0.566 0.000 152 / 387 58 / 387 0.273 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.318 2.411 0.796 41 / 76 36 / 70 0.904 0.472 1.732 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.899 0.679	Events / Total Statistics for each study Odds ratio and 95% OLR LLR ratio Lower Upper 152 / 330 57 / 110 0.361 0.231 0.566 0.000 152 / 387 58 / 387 0.273 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.318 2.411 0.796 41 / 76 36 / 70 0.904 0.472 1.732 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.899 0.679	Events / Total Statistics for each study Odds ratio and 95% CI 0LR LLR ratio limit pper 152 / 330 57 / 110 0.361 0.231 0.566 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.271 1.732 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.899 0.679 0.1 0.2 0.5 1 2 60 / 555 1.321 0.482 0.507 1 2 5 / 43 11 / 43	Events / Total Statistics for each study Odds ratio and 95% CI 0LR LLR ratio limit p-Value 247 / 330 57 / 110 0.361 0.231 0.566 0.000 152 / 387 58 / 387 0.273 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.213 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.889 0.679 0.1 0.2 0.5 1 2 5 0.	Events / Total Statistics for each study Odds ratio and 95% CI 0LR LLR 0dds ratio 0.566 0.000 152 / 387 58 / 387 0.271 0.193 0.385 0.000 36 / 88 37 / 88 1.048 0.575 1.909 0.878 50 / 86 23 / 43 0.828 0.396 1.730 0.616 28 / 51 35 / 51 1.797 0.800 4.034 0.156 10 / 45 9 / 45 0.875 0.318 2.411 0.796 41 / 76 36 / 70 0.904 0.472 1.732 0.761 28 / 50 15 / 33 0.655 0.271 1.585 0.348 16 / 42 19 / 42 1.342 0.562 3.204 0.507 5 / 43 11 / 43 2.613 0.821 8.309 0.104 44 / 59 42 / 59 0.842 0.374 1.899 0.679 0.1 0.2 0.5 1 2 5 10 <t< td=""></t<>

Fig. 11 Forest plot showing: A 1-year disease-free survival rate in propensity score matched studies, B 3-years disease-free survival rate in propensity score-matched studies

Fig. 12 Forest plot showing: A The mean difference of operative time in minutes in laparoscopic liver resection (LLR) in comparison with open liver resection (OLR) in right hepatectomy, B The mean difference of blood loss in ML in LLR in comparison with OLR in right hepatectomy, C The mean difference of hospital stay in days in LLR in comparison with OLR in right hepatectomy, \mathbf{D} The morbidity rate in LLR comparing with OLR in right hepatectomy, and \mathbf{E} the mean difference of resection margin in CM in LLR in comparison with OLR in right hepatectomy

Table 3 Egger's test to assess for potential publication bias

Outcome	Egger's regression intercept	95% CI	P value
Operative time in minutes	0.65	-2.81 to 4.11	0.7
Blood loss in ML	-1.9	- 5.6 to 1.7	0.27
Blood transfusion rate	-0.64	-2.1 to 0.81	0.37
Hospital stay in days	-0.54	-2.64 to 1.55	0.59
30-days mortality	-2.2	-6.3 to 1.94	0.27
Morbidity	-1.37	-2.06 to -0.68	0.001
Resection margin	-0.25	-1.7 to 1.20	0.71
R0 resection	0.88	0.18 to 1.57	0.015
Recurrence rate	0.38	-0.91 to 1.688	0.54
1-year overall survival	0.51	-0.7 to 1.7	0.39
3-years overall survival	-1.0	-2.9 to 0.86	0.25
5-years overall survival	-0.19	-1.7 to 1.3	0.78
1-year disease-free survival	0.71	- 1.12 to 2.5	0.42
3-years disease-free survival	-0.3	-2.9 to 2.3	0.8
5-years disease- free survival	5.56	3.38 to 7.74	0.001

might be compensated by the relatively large number of events over at 5 years follow-up.

Our meta-analysis has several limitations; (1) none of the included studies were a randomized controlled trial which makes our study has a risk of confounding and selection bias, however we run a subgroup analysis focused on propensity score-matched studies to mitigate the inherent risk of confounding bias associated with observational studies. RCTs comparing between both resection approaches are needed to accurately identify the superiority of either strategy. (2) there was an inherent heterogeneity regarding the definition of clinical outcomes across the included studies. (3) Despite our extensive literature search, we found a limited number of studies recruited patients with right hepatectomy, therefore, the results of our study should be interpreted carefully regarding the safety and efficacy of LLR in comparison with OLR in right hepatectomy. Further studies investigating the clinical outcomes of both approaches in right hepatectomy are still needed. (4) We could not run a subgroup analysis based on tumor classification since most of the studies did not stratify the HCC into stages or based on Endmondson classification and report clinical outcomes accordingly. (5) Our results regarding morbidity, R0 resection, and 5-DFS should be interpreted with caution since our analysis found a potential publication bias with these outcomes. The potential publication bias might have arisen from that tertiary care centers, that are well equipped, are more likely to publish data about LLR than community hospitals.

In conclusion, LLR was significantly associated with shorter operative time, less blood loss, less blood transfusion

rate, shorter hospital stay in days, lower 30-days mortality rate, and lower morbidity. There was no significant difference between LLR and OLR regarding resection margin. There was no significant difference between both groups in terms of 3-DFS, 5-DFS, 3-OS, nevertheless LLR was associated with a significantly higher 1-OS, 5-OS and 1-DFS rates. RCTs are needed to identify the efficacy and safety of LLR in comparison with OLR in patients with HCC. Further studies investigating LLR in right hepatectomy are needed.

Acknowledgements We thank all members of the Hepatobiliary Surgery Department for valuable comments on this study and helpful suggestions.

Compliance with ethical standard

Disclosures Drs. Meng Xiangfei, Xu Yinzhe, Pan Yingwei, Lu Shichun and Duan Weidong have no conflicts of interest or financial ties to disclose.

References

- 1. Mittal S, El-Serag HB (2013) Epidemiology of HCC: consider the Population. J Clin Gastroenterol 47:S2–6
- Ryder S (2003) Guidelines for the diagnosis and treatment of hepatocellular carcinoma (HCC) in adults. Gut 52:1-8
- Reich H, McGlynn F, DeCaprio J, Budin R (1991) Laparoscopic excision of benign liver lesions. Obstet Gynecol 78:956–958
- Parks KR, Kuo YH, Davis JM, OB B, Hagopian EJ (2014) Laparoscopic versus open liver resection: a meta-analysis of long-term outcome. HPB (Oxford) 16:109–118
- Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917
- Ziogas IA, Tsoulfas G (2017) Advances and challenges in laparoscopic surgery in the management of hepatocellular carcinoma. World J Gastrointest Surg 9:233–245
- Goumard C, Farges O, Laurent A, Cherqui D, Soubrane O, Gayet B, Pessaux P, Pruvot FR, Scatton O, French Association for Hepatobiliary and Pancreatic Surgery (2015) An update on laparoscopic liver resection: the French Hepato-Bilio-Pancreatic Surgery Association statement. J Visc Surg 152:107–112
- 8. Wakabayashi G, Cherqui D, Geller DA, Buell JF, Kaneko H, Han HS, Asbun H, O'Rourke N, Tanabe M, Koffron AJ, Tsung A, Soubrane O, Machado MA, Gayet B, Troisi RI, Pessaux P, Van Dam RM, Scatton O, Abu Hilal M, Belli G, Kwon CH, Edwin B, Choi GH, Aldrighetti LA, Cai X, Cleary S, Chen KH, Schön MR, Sugioka A, Tang CN, Herman P, Pekolj J, Chen XP, Dagher I, Jarnagin W, Yamamoto M, Strong R, Jagannath P, Lo CM, Clavien PA, Kokudo N, Barkun J, Strasberg SM (2015) Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 261:619–6
- McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J, Collaboration Balliol, Aronson JK, Barkun JS, Blazeby JM, Boutron IC, Campbell WB, Clavien PA, Cook JA, Ergina PL, Feldman LS, Flum DR, Maddern GJ, Nicholl J, Reeves BC, Seiler CM, Strasberg SM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Ergina PL, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Meakins

J, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374:1105–1112

- Amato B, Aprea G, De Rosa D, Milone M, di Domenico L, Amato M, Compagna R, Santoro M, Johnson LB, Sanguinetti A, Polistena A, Avenia N (2017) Laparoscopic hepatectomy for HCC in elderly patients: risks and feasibility. Aging Clin Exp Res 29:179–183
- 11. Landi F, De' Angelis N, Scatton O, Vidal X, Ayav A, Muscari F, Dokmak S, Torzilli G, Demartines N, Soubrane O, Cherqui D, Hardwigsen J, Laurent A (2017) Short-term outcomes of laparoscopic vs. open liver resection for hepatocellular adenoma: a multicenter propensity score adjustment analysis by the AFC-HCA-2013 study group. Surg Endosc 31:4136–4144
- 12. Li W, Zhou X, Huang Z, Zhang K, Luo X, Zhong J, Chen Y (2017) Short-term and long-term outcomes of laparoscopic hepatectomy, microwave ablation, and open hepatectomy for small hepatocellular carcinoma: a 5-year experience in a single center. Hepatol Res 47:650–657
- Chen J, Li H, Liu F, Li B, Wei Y (2017) Surgical outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma for various resection extent. Medicine (Baltimore) 96:e6460
- Xiang L, Li J, Chen J, Wang X, Guo P, Fan Y, Zheng S (2016) Prospective cohort study of laparoscopic and open hepatectomy for hepatocellular carcinoma. Br J Surg 103:1895–1901
- Cheung TT, Poon RT, Dai WC, Chok KS, Chan SC, Lo CM (2016) Pure laparoscopic versus open left lateral sectionectomy for hepatocellular carcinoma: a single-center experience. World J Surg 40:198–205
- Tanaka S, Takemura S, Shinkawa H, Nishioka T, Hamano G, Kinoshita M, Ito T, Kubo S (2015) Outcomes of Pure laparoscopic versus open hepatic resection for hepatocellular carcinoma in cirrhotic patients: a case-control study with propensity score matching. Eur Surg Res 55:291–301
- Jiang B, Yan XF, Zhang JH (2018) Meta-analysis of laparoscopic versus open liver resection for hepatocellular carcinoma. Hepatol Res 48:635–663
- Sotiropoulos GC, Prodromidou A, Kostakis ID, Machairas N (2017) Meta-analysis of laparoscopic vs open liver resection for hepatocellular carcinoma. Updates Surg 69:291–311
- 19. Yoon YI, Kim KH, Kang SH, Kim WJ, Shin MH, Lee SK, Jung DH, Park GC, Ahn CS, Moon DB, Ha TY, Song GW, Hwang S, Lee SG (2017) Pure laparoscopic versus open right hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a propensity score matched analysis. Ann Surg 265:856–863
- Tarantino G, Magistri P, Serra V, Berardi G, Assirati G, Ballarin R, Di Benedetto F (2017) Laparoscopic liver resection of right posterior segments for hepatocellular carcinoma on cirrhosis. J Laparoendosc Adv Surg Tech A 27:559–563
- 21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100
- 22. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 1986:177–188
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Bmj 327:557–560
- Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634
- Jiang B, Yan XF, Zhang JH (2018) Meta-analysis of laparoscopic versus open liver resection for hepatocellular carcinoma. Hepatol Res 48:635–663
- Jaskille A, Schechner A, Park K, Williams M, Wang D, Sava J (2005) Abdominal insufflation decreases blood loss and mortality after porcine liver injury. J Trauma 2005:1305–1308

- 27. Katz SC, Shia J, Liau KH, Gonen M, Ruo L, Jarnagin WR, Fong Y, D'Angelica MI, Blumgart LH, Dematteo RP (2009) Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann Surg 249(4):617–623
- Ker CG, Chen JS, Kuo KK, Chuang SC, Wang SJ, Chang WC, Lee KT, Chen HY, Juan CC (2011) Liver surgery for hepatocellular carcinoma: laparoscopic versus open approach. Int J Hepatol 2011:596792
- Ahn S, Cho A, Kim EK, Paik KY (2016) Favorable long-term oncologic outcomes of hepatocellular carcinoma following laparoscopic liver resection. J Laparoendosc Adv Surg Tech A 26:447–452
- Lai C, Jin R, Liang X, Cai X (2016) Comparison of laparoscopic hepatectomy, percutaneous radiofrequency ablation and open hepatectomy in the treatment of small hepatocellular carcinoma. J Zhejiang Univ Sci B 17:236–246
- 31. Yamashita Y, Ikeda T, Kurihara T, Yoshida Y, Takeishi K, Itoh S, Harimoto N, Kawanaka H, Shirabe K, Maehara Y (2014) Longterm favorable surgical results of laparoscopic hepatic resection for hepatocellular carcinoma in patients with cirrhosis: a single-center experience over a 10-year period. J Am Coll Surg 219:1117–1123
- Nguyen KT, Gamblin TC, Geller DA (2009) World review of laparoscopic liver resection-2,804 patients. Ann Surg 250:831–841
- Lin NC, Nitta H, Wakabayashi G (2013) Laparoscopic major hepatectomy: a systematic literature review and comparison of 3 techniques. Ann Surg 257:205–213
- Hu W, Pang X, Guo W, Wu L, Zhang B (2015) Relationship of different surgical margins with recurrence-free survival in patients with hepatocellular carcinoma. Int J Clin Exp Pathol 8:3404–3409
- Zhong FP, Zhang YJ, Liu Y, Zou SB (2017) Prognostic impact of surgical margin in patients with hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 96:e8043
- Hayashi N, Egami H, Kai M, Kurusu Y, Takano S, Ogawa M (1999) No-touch isolation technique reduces intraoperative shedding of tumor cells into the portal vein during resection of colorectal cancer. Surgery 125:369–374
- Poon RT, Fan ST, Ng IO, Wong J (2000) Significance of resection margin in hepatectomy for hepatocellular carcinoma: a critical reappraisal. Ann Surg 231:544–551
- 38. Takahara T, Wakabayashi G, Beppu T, Aihara A, Hasegawa K, Gotohda N, Hatano E, Tanahashi Y, Mizuguchi T, Kamiyama T, Ikeda T, Tanaka S, Taniai N, Baba H, Tanabe M, Kokudo N, Konishi M, Uemoto S, Sugioka A, Hirata K, Taketomi A, Maehara Y, Kubo S, Uchida E, Miyata H, Nakamura M, Kaneko H, Yamaue H, Miyazaki M, Takada T (2015) Long-term and perioperative outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma with propensity score matching: a multi-institutional Japanese study. J Hepatobiliary Pancreat Sci 22:721–727
- Cheung TT, Dai WC, Tsang SH, Chan AC, Chok KS, Chan SC, Lo CM (2016) Pure Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma in 110 patients with liver cirrhosis: a propensity analysis at a single center. Ann Surg 264:612–620
- Jiang H, Cao J (2015) Impact of laparoscopic versus open hepatectomy on perioperative clinical outcomes of patients with primary hepatic carcinoma. Chin Med Sci J 30:80–83
- Luo L, Zou H, Yao Y, Huang X (2015) Laparoscopic versus open hepatectomy for hepatocellular carcinoma: short- and long-term outcomes comparison. Int J Clin Exp Med 8:18772–18778
- Han HS, Shehta A, Ahn S, Yoon YS, Cho JY, Choi Y (2015) Laparoscopic versus open liver resection for hepatocellular carcinoma: case-matched study with propensity score matching. J Hepatol 63:643–650
- Komatsu S, Brustia R, Goumard C, Perdigao F, Soubrane O, Scatton O (2016) Laparoscopic versus open major hepatectomy for

hepatocellular carcinoma: a matched pair analysis. Surg Endosc 30:1965–1974

- Xiao L, Xiang LJ, Li JW, Chen J, Fan YD, Zheng SG (2015) Laparoscopic versus open liver resection for hepatocellular carcinoma in posterosuperior segments. Surg Endosc 29:2994–3001
- Cho JY, Han HS, Yoon YS, Choi Y, Lee W (2015) Outcomes of laparoscopic right posterior sectionectomy in patients with hepatocellular carcinoma in the era of laparoscopic surgery. Surgery 158:135–141
- Lee JJ, Conneely JB, Smoot RL, Gallinger S, Greig PD, Moulton CA, Wei A, McGilvray I, Cleary SP (2015) Laparoscopic versus open liver resection for hepatocellular carcinoma at a North-American Centre: a 2-to-1 matched pair analysis. HPB (Oxford) 17:304–310
- Yoon SY, Kim KH, Jung DH, Yu A, Lee SG (2015) Oncological and surgical results of laparoscopic versus open liver resection for HCC less than 5 cm: case-matched analysis. Surg Endosc 29:2628–2634
- 48. Siniscalchi A, Ercolani G, Tarozzi G, Gamberini L, Cipolat L, Pinna AD, Faenza S (2014) Laparoscopic versus open liver resection: differences in intraoperative and early postoperative outcome among cirrhotic patients with hepatocellular carcinoma-a retrospective observational study. HPB Surg 2014:871251
- 49. Ahn KS, Kang KJ, Kim YH, Kim TS, Lim TJ (2014) A propensity score-matched case-control comparative study of laparoscopic and open liver resection for hepatocellular carcinoma. J Laparoendosc Adv Surg Tech A 24:872–877
- Memeo R, de'Angelis N, Compagnon P, Salloum C, Cherqui D, Laurent A, Azoulay D (2014) Laparoscopic vs. open liver resection for hepatocellular carcinoma of cirrhotic liver: a case-control study. World J Surg 38:2919-2926
- Kim SJ, Jung HK, Lee DS, Yun SS, Kim HJ (2014) The comparison of oncologic and clinical outcomes of laparoscopic liver resection for hepatocellular carcinoma. Ann Surg Treat Res 86:61–67
- 52. Cheung TT, Poon RT, Yuen WK, Chok KS, Jenkins CR, Chan SC, Fan ST, Lo CM (2013) Long-term survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience. Ann Surg 257:506–511
- 53. Ai JH, Li JW, Chen J, Bie P, Wang SG, Zheng SG (2013) Feasibility and safety of laparoscopic liver resection for hepatocellular carcinoma with a tumor size of 5-10 cm. PLoS ONE 8:e72328
- 54. Kobayashi S, Nagano H, Marubashi S, Kawamoto K, Wada H, Eguchi H, Tanemura M, Umeshita K, Doki Y, Mori M (2013) Hepatectomy based on the tumor hemodynamics for hepatocellular carcinoma: a comparison among the hybrid and pure laparoscopic procedures and open surgery. Surg Endosc 27:610–617
- Hu BS, Chen K, Tan HM, Ding XM, Tan JW (2011) Comparison of laparoscopic vs open liver lobectomy (segmentectomy) for hepatocellular carcinoma. World J Gastroenterol 17:4725–4728
- Lee KF, Chong CN, Wong J, Cheung YS, Lai P (2011) Long-term results of laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. World J Surg 35:2268–2274
- Kim HH, Park EK, Seoung JS, Hur YH, Koh YS, Kim JC, Cho CK, Kim HJ (2011) Liver resection for hepatocellular carcinoma: casematched analysis of laparoscopic versus open resection. J Korean Surg Soc 80:412–419
- Truant S, Bouras AF, Hebbar M, Boleslawski E, Fromont G, Dharancy S, Leteurtre E, Zerbib P, Pruvot FR (2011) Laparoscopic resection vs. open liver resection for peripheral hepatocellular carcinoma in patients with chronic liver disease: a case-matched study. Surg Endosc 25:3668–3677
- Aldrighetti L, Guzzetti E, Pulitano C, Cipriani F, Catena M, Paganelli M, Ferla G (2010) Case-matched analysis of totally laparoscopic versus open liver resection for HCC: short and middle term results. J Surg Oncol 102:82–86

- Tranchart H, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, Dagher I (2010) Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. Surg Endosc 24:1170–1176
- Alemi F, Kwon E, Freise C, Kang SM, Hirose R, Stewart L, Corvera CU (2010) Hepatic surgery at a VA tertiary medical center: lessons learned. Am J Surg 200:591–595
- Sarpel U, Hefti MM, Wisnievsky JP, Roayaie S, Schwartz ME, Labow DM (2009) Outcome for patients treated with laparoscopic versus open resection of hepatocellular carcinoma: case-matched analysis. Ann Surg Oncol 16:1572–1577
- Lai EC, Tang CN, Ha JP, Li MK (2009) Laparoscopic liver resection for hepatocellular carcinoma: ten-year experience in a single center. Arch Surg 144:143–147
- Cai XJ, Yang J, Yu H, Liang X, Wang YF, Zhu ZY, Peng SY (2008) Clinical study of laparoscopic versus open hepatectomy for malignant liver tumors. Surg Endosc 22:2350–2356
- Laurent A, Cherqui D, Lesurtel M, Brunetti F, Tayar C, Fagniez PL (2003) Laparoscopic liver resection for subcapsular hepatocellular carcinoma complicating chronic liver disease. Arch Surg 138:763–769
- Shimada M, Hashizume M, Maehara S, Tsujita E, Rikimaru T, Yamashita Y, Tanaka S, Adachi E, Sugimachi K (2001) Laparoscopic hepatectomy for hepatocellular carcinoma. Surg Endosc 15:541–544
- 67. Cheung TT, Ma KW, She WH, Dai WC, Tsang SHY, Chan ACY, Chok KSH, Lo CM (2018) Pure laparoscopic hepatectomy with augmented reality-assisted indocyanine green fluorescence versus open hepatectomy for hepatocellular carcinoma with liver cirrhosis: a propensity analysis at a single center. Asian J Endosc Surg 11:104–111
- Xu X, Chen J, Wang F, Ni Q, Naimat U, Chen Z (2017) Recurrence of hepatocellular carcinoma after laparoscopic hepatectomy: risk factors and treatment strategies. J Laparoendosc Adv Surg Tech A 27:676–684
- Xu HW, Liu F, Li HY, Wei YG, Li B (2018) Outcomes following laparoscopic versus open major hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a propensity score-matched analysis. Surg Endosc 32:712–719
- Ryu T, Honda G, Kurata M, Kobayashi S, Sakamoto K, Honjo M (2018) Perioperative and oncological outcomes of laparoscopic anatomical hepatectomy for hepatocellular carcinoma introduced gradually in a single center. Surg Endosc 32:790–798
- Zhang Y, Chen XM, Sun DL (2016) Short-term outcomes of laparoscopic versus open right hemihepatectomy for hepatocellular carcinoma. Surg Laparosc Endosc Percutan Tech 26:e157–e160
- Zhang Y, Huang J, Chen XM, Sun DL (2016) A comparison of laparoscopic versus open left hemihepatectomy for hepatocellular carcinoma. Surg Laparosc Endosc Percutan Tech 26:146–149
- Sposito C, Battiston C, Facciorusso A, Mazzola M, Muscarà C, Scotti M, Romito R, Mariani L, Mazzaferro V (2016) Propensity score analysis of outcomes following laparoscopic or open liver resection for hepatocellular carcinoma. Br J Surg 103:871–880
- Sotiropoulos GC, Machairas N, Stamopoulos P, Kostakis ID, Dimitroulis D, Mantas D, Kouraklis G (2016) Laparoscopic versus open liver resection for hepatocellular carcinoma: initial experience in Greece. Ann Gastroenterol 29:521–529
- Jiang X, Liu L, Zhang Q, Jiang Y, Huang J, Zhou H, Zeng L (2016) Laparoscopic versus open hepatectomy for hepatocellular carcinoma: long-term outcomes. J buon 21:135–141

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.