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Abstract
Background Gastric cancer is a common kind of malignancies, with yearly occurrences exceeding one million worldwide in 
2017. Typically, ulcerous and cancerous tissues develop abnormal morphologies through courses of progression. Endoscopy 
is a routinely adopted means for examination of gastrointestinal tract for malignancy. Early and timely detection of malig-
nancy closely correlate with good prognosis. Repeated presentation of similar frames from gastrointestinal tract endoscopy 
often weakens attention for practitioners to result in true patients missed out to incur higher medical cost and unnecessary 
morbidity. Highly needed is an automatic means for spotting visual abnormality and prompts for attention for medical staff 
for more thorough examination.
Methods We conduct classification of benign ulcer and cancer for gastrointestinal endoscopic color images using deep neural 
network and transfer-learning approach. Using clinical data gathered from Gil Hospital, we built a dataset comprised of 200 
normal, 367 cancer, and 220 ulcer cases, and applied the inception, ResNet, and VGGNet models pretrained on ImageNet. 
Three classes were defined—normal, benign ulcer, and cancer, and three separate binary classifiers were built—those for 
normal vs cancer, normal vs ulcer, and cancer vs ulcer for the corresponding classification tasks. For each task, considering 
inherent randomness entailed in the deep learning process, we performed data partitioning and model building experiments 
100 times and averaged the performance values.
Results Areas under curves of respective receiver operating characteristics were 0.95, 0.97, and 0.85 for the three classifiers. 
The ResNet showed the highest level of performance. The cases involving normal, i.e., normal vs ulcer and normal vs cancer 
resulted in accuracies above 90%. The case of ulcer vs cancer classification resulted in a lower accuracy of 77.1%, possibly 
due to smaller difference in appearance than those cases involving normal.
Conclusions The overall level of performance of the proposed method was very promising to encourage applications in 
clinical environments. Automatic classification using deep learning technique as proposed can be used to complement 
manual inspection efforts for practitioners to minimize dangers of missed out positives resulting from repetitive sequence 
of endoscopic frames and weakening attentions.
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Gastric cancer is a common kind of malignancies, with 
yearly occurrences exceeding one million worldwide in 2017 
[1]. Almost one million new cases of stomach cancer were 
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estimated to have occurred in 2012 (952,000 cases, 6.8% 
of the total), making it the fifth most common malignancy 
in the world, after cancers of the lung, breast, colorectum, 
and prostate [2]. Stomach cancer is the third leading cause 
of cancer death in both sexes worldwide (723,000 deaths, 
8.8% of the total). For examination of gastrointestinal organs 
for cancer and other diseases, endoscopy is often the very 
first means employed. Manual examination for endoscopic 
data requires training for medical staff and tends to be time 
consuming with diagnosis results being subjective in nature, 
dependent on the level of expertise of person performing 
the procedure. Endoscopy for patients has to be performed 
over a sequence of seemingly similar frames of endoscopic 
data and typical clinical environments demand the same 
kinds of procedures be performed for multiple patients in 
series. Often reported are loss or weakening of attention for 
performing person resulting from the examination of long 
footage of endoscopy. They lower the quality of medical 
examination, falsely producing missed out negative cases for 
true patients and unnecessarily requiring re-examinations for 
healthy subjects [3].

In fact, ten studies involving 3,787 patients who were 
subjected to upper gastrointestinal endoscopy revealed that 
11.3% of upper gastrointestinal cancers are missed up to 
3 years before diagnosis [4]. Misses were dependent on the 
types and sites of gastric cancers and were more notable for 
examiners with fewer than 10 years of experience. Physical 
and mental conditions of endoscopists performing proce-
dures also strongly affected miss rates [5]. Machine learn-
ing is a practice of developing automatic cognitive models 
using computerized means. Various kinds of tasks may be 
assigned including classification, regression, and clustering. 
Many cognitive and inferential tasks can be formulated as 
classification as in the case of normal vs cancer and cancer 
vs ulcer classification. Repeated presentation of data coupled 
with correct labels to predict until proper training objective 
is met is the usual procedure for training models. Diverse 
kinds of machine learning model were proposed. They can 
be characterized and distinguished apart in terms of the 
nature of data, kinds of the units comprising models, how 
units are combined into model, ways of presenting training 
data, and formulation of training objectives. Deep learning 
allows computational models that are composed of multiple 
processing layers to learn representations of data with mul-
tiple levels of abstraction [6]. A computer system employing 
laser-based endoscopy was developed for quantitative diag-
nosis of early gastric cancer. It was tested on 100 consecu-
tive early gastric cancer in 95 patients to produce area under 
curve of 0.80 from sensitivity vs false positive rate plot [7].

Zhang et al. proposed a CNN-based gastric precancer-
ous disease network for classification of polyp, erosion, and 
ulcer. It utilized iterative reinforcement learning method and 
fire modules from SqueezeNet for reductions of network size 

and computation time. Reported accuracy value was 88.90% 
[8]. Zhu used support vector machine (SVM) together with 
CNN for detection of gastrointestinal diseases. In addition 
to the raw image data, local binary pattern representations 
were used. Overall accuracy obtained was 80.0% [9]. The 
use of color wavelet features together with CNN features 
was proposed by Billah et al. [10]. The extracted features 
were then fed to SVM-based classifier for final classification 
results. Results on data from a slightly different imaging 
modality of bandwidth-limited imaging was experimented 
by Byrne et al. [11]. Red channel was mostly retained and 
the rest channels were suppressed therein. Inception mod-
ule-based network was crafted to produce accuracy values 
ranging from 85 to 94%. An elaborate scheme of feature 
engineering involving color, texture, shape, and temporal 
information was experimented. Then separate classifiers for 
each of the features were trained and then combined [12]. 
Computer-based Automatic classification models can help 
the diagnosis efforts for gastrointestinal malignancy required 
of endoscopic examinations [13–18]. Alexnet revealed and 
demonstrated the potential of deep learning methods for 
the practical problem of automated image classification. 
Since then numerous architectures were introduced that fur-
ther improved performance level—they include VGGNet, 
residual network, and inception net. However, there are few 
reports that compared the accuracies of CNN models for 
gastric malignancy. Here, we tried to develop a model for 
differentiating gastric ulcer and cancer using deep learning 
model.

Materials and methods

Datasets

All cases appearing either ulcerous or cancerous from 
visual inspection were histologically examined. Study was 
approved by IRB (IRB Number 2018-052: Diagnosis and 
cure for digestive tract diseases using machine learning). 
Patients with biopsy-proven, cancer cell-free ulcer were 
treated via medical management such as proton pump inhibi-
tor. Follow-up examinations after treatments revealed all 
patients turned normal. These were defined as the benign 
ulcerative cases. Cases for negative histological examination 
results were labeled ulcer positive and cases with detected 
malignant cells were labeled cancer positive. We collected 
endoscopic data from Gil hospital which had 200 normal, 
220 benign ulcer, and 367 cancer images. For training and 
testing purposes, we partitioned the data into 180, 200, 
and 337 image train sets and 20, 30, and 20 image test sets 
(Table 1). Frames constituting endoscopic sequences were 
all resized to 224 × 224 width and height for conformance 
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to the common input dimension for ResNet, VGGNet, and 
inception network.

Image preprocessing

As a means to reduce image variations including bright-
ness and contrast that are irrelevant to classification task, 
histogram equalization was used, i.e., adaptive histogram 
equalization (AHE) [19]. It differs from ordinary histogram 
equalization in that it computes several histograms, each cor-
responding to a distinct section of the image, and uses them 
to redistribute the lightness values of the image. It is there-
fore suitable for improving the local contrast and enhancing 
the definitions of edges in each region of an image. For the 
method of contrast-limited adaptive histogram equalization 
(CLAHE) [20], contrast amplification in the vicinity of a 
given pixel value is specified by the slope of a transforma-
tion function. It is set to be proportional to the slope of the 
neighborhood cumulative distribution function (CDF) and 
therefore to the value of the histogram at that pixel value. 
CLAHE sets a limit on the amplification by clipping the 
histogram at a predefined value before computing the CDF. 
The value at which the histogram is clipped, the so-called 

clip limit, depends on the normalization of the histogram 
and on the size of the neighborhood region. Common values 
for limiting the resulting amplification range between 3 and 
4, and for our study, we used 3.5 for limit value (Fig. 1).

Differentiation utilizing deep neural networks

We used a number of architectures—inception network, 
ResNet, and VGGNet and fine tuned them using endos-
copy images [21]. Alexnet was one of the first to explore 
the application of convolutional deep learning network 
models towards image classification task [22]. Substantial 
performance improvement was shown to be achievable over 
existing state of art in ImageNet ILSVRC 2012 challenge. 
Since its introduction, numerous network architectures were 
introduced. Contrary to the prior Lenet network featuring a 
single convolution layer, Alexnet employed a longer cascade 
of convolutional layers interlaced by pooling layers (Sup-
plementary Material 1).

Three kinds of models were built for classification tasks—
normal vs cancer, normal vs benign ulcer, and cancer vs 
benign ulcer. The inception network [23] model comprises 
27 layers total including pooling layers; 22 of which are 
parameterized (Fig. 2). The inception module is an integral 
component for the model, which concatenates filters of dif-
ferent sizes and dimensions. Each “Inception” layer consists 
of six convolution layers and one pooling layer. The depth of 
representations is of importance for many visual recognition 
tasks. ResNet utilizes a building block of two convolutional 
layers featuring an identity connection skipping over them 
[24]. Particular ResNet network is instantiated by stacking 
such building blocks to a desired depth. Authors reported 

Table 1  Dataset sizes used for classification of gastrointestinal 
images

Ulcer Cancer Normal

Training data 200 337 180
Test data 20 30 20
Total 220 367 200

Fig. 1  Data resizing of colored endoscopy images into 227 × 227 pixel resolution
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results for networks of depths of 18, 34, 50, 101, and 152. 
Canziani et al. [25] performed a comprehensive study for 
the relative performances of a range of deep learning net-
works for object classification task. The difference in accu-
racy between the ResNet-18 and ResNet-50 was substantial. 
For ResNet networks of depths greater than 50, increase in 
performance was rather marginal. Hence we experimented 
with the ResNet-50 architecture in this study. For VGGNet, 
the 16 layer and 19 layer variants were shown to exhibit 
rather insignificant performance difference while the 16 
layer one entailed smaller amount of computational load, 
which consequently was our choice. The best performing 
network overall was found to be inception v4 with slight 
performance margin over those of ResNet network varieties.

Transfer learning

First, we utilized an inception v4 model pretrained on Ima-
geNet and fine tuned it towards training endoscopic data-
set. Transfer learning [26] refers to training a network on a 
base dataset and task and then fine tuning it towards a given 
task by allowing final layers to adjust. It has been applied 
in a variety of medical CAD cases including one performed 
by Andre Istiva team that used Imagenet-pretrained CNN 
architecture to classify skin cancers [27] (Supplementary 
Material 2).

Results

The accuracies of inception trained networks are as given in 
Tables 2 and 3. ResNet consistently showed the highest per-
formance across the three classification tasks. The p value of 
significance was 5.8e−3. Also the standard deviation values 
in performance for the ResNet was substantially lower than 
those of inception v4, except for the case of cancer vs ulcer. 
This implies the learning results for ResNet are more sta-
ble than the rest of networks, necessitating less number of 
experimental drafting trial runs, which is another merit from 
practical training perspectives. Normal vs cancer and normal 
vs ulcer classifications produced accuracies above 0.90. In 
the case of cancer vs ulcer classification, performances were 
lower than the normal vs cancer and normal vs ulcer cases. Fi
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Table 2  Accuracies of the CNN inference results on test data

Bold font indicate the performance values of the best performing 
deep learning network architecture

Normal vs cancer Normal vs ulcer Cancer vs ulcer

ResNet-50 0.9649 0.9262 0.7712
Inception v3 0.9123 0.8524 0.7373
VGG16 0.9561 0.9119 0.7373
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The foremost step in the gastric endoscopy diagnosis is to 
determine whether a subject being seen is normal or has 
a disease. Hence the classification tasks involving normal-
cancer and normal-ulcer have higher importance than the 
task of malignancy-only cancer vs ulcer cases. The nature 
of medical diagnosis typically demands high level of accura-
cies of computer-aided diagnosis systems. While the accura-
cies of 0.9649 and 0.9262 fall somewhat short of expected 

accuracies of CAD, overall the results show promise of deep 
learning-based models for automatic diagnosis based on gas-
tric endoscopy. In Fig. 3, we give plots of AUROC curves 
for the three classifiers.

Discussion

Previously, feature-based approaches were mainly developed 
and applied to endoscopic examinations. Deep learning tech-
nique is expanding the performance envelopes for automatic 
diagnosis models and is being applied in increasing number 
of disciplines including medical sciences. We showed in this 
article an application of a number of widely used network 
architectures for the task of endoscopic image classification 
for malignancy. We trained the model with 10 epochs of 
training using batches of size 50, 0.001 for learning rate and 
0.5 for dropout rate. Standard back-propagation algorithm 

Table 3  Stddev of CNN inference results on test data

Bold font indicate the performance values of the best performing 
deep learning network architecture

Normal vs cancer Normal vs ulcer Cancer vs ulcer

ResNet-50 0.0152 0.0229 0.0355
Inception v3 0.0328 0.0418 0.0287
VGG16 0.0139 0.0261 0.0208

Fig. 3  ROC plots of differentiation for test data
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was used. Data partitioning and model training were per-
formed 100 times and classification performance values 
were averaged in order to obtain objective assessments. 

Normal vs ulcer classifier produced the highest AUC of 
0.97, and the cancer vs ulcer classifier, the lowest 0.85. This 
high level of performance involving normal vs abnormal 
cases implies the promise of the proposed approach for clini-
cal application (Figs. 4, 5, 6).

The computational speed of the classification routine was 
sufficiently fast (data not shown). It is conceivable that the 
three classifiers are combined into a composite diagnostic 
model to answer medical queries of whether a patient has a 
gastric disease or not and specifically whether it is ulcer or 
cancer. In studies to follow, we will focus on more rigorous 
testing and validation of performance results using larger 
datasets obtained from multiple clinics to improve reproduc-
ibility and objectivity in addition to performance improve-
ment and network size reduction.

Differently from a previous study by Canziani et  al. 
comparing performances of deep learning architectures, 
the ResNet architecture produced highest accuracy classi-
fication results. It suggests rather small training data size 
combined with the low number of classes to be predicted 
for gastric endoscopy which favors the use of ResNet over Fig. 4  Response of filter 48, 985 of layer 5b of inception network

Fig. 5  Responses of filters of layer 3b of inception network
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other alternatives. It will be interesting to investigate the 
performances of different networks resulting from utilization 
of larger datasets such as [28] in the future. We conclude 
that, despite the disparity between the ImageNet dataset and 
gastrointestinal endoscopy images, deep learning via trans-
fer learning using well-known architectures is an efficient 
means for classifying such images. While rather small train-
ing dataset size used was a shortcoming of the present study, 
the test results obtained using the test dataset independent 
of the training set strongly implies overall soundness of our 
approach. Further cross and external validations are needed 
to strengthen the findings from our study.
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