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prospects for research exist including, inter alia, shot bound-
ary detection, keyframe extraction, video summarization, 
pattern discovery, and video annotation. The development 
of publicly available benchmark datasets to evaluate and 
compare task-specific algorithms is essential.
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It is well documented that minimally invasive surgery 
(MIS) offers important therapeutic benefits for the patient 
such as easier rehabilitation, shorter recovery and less pain. 
In addition, the endoscopic camera used for visualiza-
tion of the patient’s anatomy allows for effortless record-
ing of video and images during the operation, an impor-
tant feature for improving quality, efficiency, and safety of 
care. The recorded videos may be used for reasons such as 
analysis of the operational steps, review of the techniques 
employed, and evaluation of instrument usage. The stored 
digital media may also be employed for patient’s briefing, 
or as educational material for cognitive training of junior 
surgeons. Another application is the assessment of surgeon’s 
performance during the operation. Moreover, recording and 
archival of digital media from MIS operations is considered 
mandatory in some countries to provide evidence for law-
suits in case of malpractice [1]. Due to the sensitivity of the 
patient’s personal data, guidelines for recording and archival 
of surgical videos are currently under development [2].

Taking into account the significance of surgical video 
recording, a fundamental issue is how these data could be 
managed and analyzed efficiently to help surgeons find-
ing the visual information sought. Over the last few years, 
the videos uploaded on video-sharing websites (e.g., You-
Tube), or dedicated web-based resources (e.g., WebSurg), 
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are constantly increasing. Moreover, hospitals are being 
equipped with mass storage servers for the archival of the 
videos recorded in the operating room (OR). However, soft-
ware tools and techniques dedicated to the management of 
surgical video databases are still limited. Surgical content 
representation and indexing are mostly performed manually 
via keywords, tags, and short descriptions added into titles, 
metadata, etc. The inverse process of retrieval is performed 
in a similar manner, via text queries. Manual annotation is 
time consuming and provides a limited way to describe the 
surgical video content. Moreover, the content representa-
tion is restricted to predefined keywords/tags, and the same 
applies to the user’s query. Hence, if, for example, one seeks 
for a certain surgical task that was not initially annotated, 
then one has to re-annotate the entire video database for 
this task. Therefore, indexing and retrieval of higher level 
concepts becomes inefficient. Moreover, recent studies have 
shown evidence that video analysis can improve surgeons’ 
performance, highlighting the educational importance of 
video content analysis [3, 4].

Visual content representation and retrieval constitutes a 
major field of research that aims to support efficient image 
and video understanding. The main goal is to develop com-
putational techniques able to extract higher level semantics 
by analyzing the video content, rather than searching for pre-
defined keywords. Based on this idea, a plethora of applica-
tions has emerged across several domains, such as in sports 
video analysis, TV news analysis, intelligent management 
of movies, and video surveillance [5]. A major challenge is 
to bridge the semantic gap, the linking between low-level 
visual features and high-level concepts representing the 
visual content. In the multimedia domain, the generic frame-
work for video content analysis includes: structure analysis 
(segmentation into structural units), feature extraction (for 
object/activity representation), data mining (using the fea-
tures extracted), and classification/annotation (for building a 
semantic video index). The video database is then searched 
using the constructed index in conjunction with a distance 
similarity measure. To date, several techniques have been 
developed under this framework [6]. Recently, visual classi-
fication has moved from local features and standard machine 
learning tools, to the employment of deep convolutional neu-
ral networks (CNNs) for semantic concept detection [7].

The advances in multimedia content analysis have also 
inspired researchers from the field of surgical content rep-
resentation. Initial works employed instrument signal data 
for reasons such as skills assessment [8], task recognition 
[9], and workflow analysis [10]. However, these approaches 
require the employment of specialized sensors, usually 
attached to the surgical instruments or surgeon’s hands, 
which is cumbersome and may interfere with the operational 
process. Over the last few years, the advancement of efficient 
cost-effective imaging technologies, video storage hardware, 

and most importantly video analysis algorithms, has paved 
the way for developing more intriguing applications in MIS, 
using only the video signal from the endoscopic camera. 
This is a significant progress in the field of surgical technol-
ogy considering that kinematic sensors provide only rough 
information about ‘how a task is performed’, rather than 
‘what is actually performed’, which is an additional piece of 
information included in the visual data. Hence, by analyz-
ing the video of a surgical procedure/task, one may develop 
applications which were otherwise impossible using only 
sensor signals, such as video annotation, task retrieval, con-
cept detection, video summarization, and workflow analysis. 
For example, consider a surgeon that seeks to detect certain 
operational tasks or phases from a database of surgical vid-
eos, or to retrieve video segments similar to a video task 
query. As another case, a trainee desires to retrieve images 
with semantic concepts (e.g., tools, anatomy, etc.), similar to 
those included in a query image submitted to the database. 
In a more advanced level, an intelligent image analysis soft-
ware able to recognize key-objects included in a surgical 
image/video, provides the trainee with contextual informa-
tion about the depicted tissue organs or surgical tools. These 
are only a few hypothetical scenarios from an expanding list 
of applications that are currently under active investigation. 
It is believed that after systematic validation, research out-
comes from the aforementioned application domains will 
constitute a significant part of the technological framework 
of the OR of the future [11].

Hence, prompted by the growing research activity in sur-
gical video content analysis, in this paper we review recent 
developments and analyze future directions in this field. In 
particular, we include published research works that exploit 
video data for extracting higher level semantics about the 
surgical content of operations. The word ‘content’ here is 
used to describe semantic concepts such as activity, gesture, 
task, skill, event, and phase. To our knowledge, this is the 
first time that a structured literature survey in surgical video 
content analysis and representation is performed.

Methodology and outline

The articles included in this paper were collected from Pub-
Med and Google Scholar using combinations of the follow-
ing keywords: (surgery) AND (video) AND (phase OR task 
OR skills OR event OR shot) AND (analysis OR retrieval 
OR detection OR classification OR recognition), resulting 
in 25 queries. The literature search was finalized in January 
2017. The keywords were selected to describe the nature of 
the data employed and the technical goal sought. Each query 
returned a variable number of records; for example, ‘surgery 
video phase analysis’ returned 247 articles, whereas ‘sur-
gery video task detection’ returned 28 articles, in PubMed. 
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References not indexed in these databases were followed to 
obtain a complete record of published data. The inclusion 
criterion was articles that described computational tech-
niques for video-based content analysis and representation 
of surgical procedures. Articles on video-based 3D tissue 
reconstruction [12], instrument segmentation/tracking [13], 
or manual evaluation of operational videos [14, 15], were 
excluded. However, methods on instrument type recognition 
were included as the latter is closely related to surgical phase 
recognition. Moreover, we have excluded articles in which 
the surgical content representation/analysis was based on 
non-visual information. The primary information source for 
inclusion/rejection was the title and abstract, followed by the 
main body of the article in case the decision was ambiguous.

A total of 81 articles were found to satisfy the inclu-
sion and exclusion criteria, with the majority of them being 
presented in international conferences. Figure 1 shows the 
yearly distribution of the articles, where it is clear that the 
publication activity is increasing, especially over the last 
3 years. From the analysis it was found that most stud-
ies employ videos from two surgical specialties: surgical 

endoscopy and eye surgery. Table 1 presents a structured 
analysis of the articles collected. In the first category (‘oper-
ation decomposition’), the operation is considered to follow 
the hierarchical decomposition: phases, steps, tasks/events, 
and gestures [8]. Eye surgery articles mostly fall under this 
category and hence are reviewed in a separate subsection. 
The second category (‘content decomposition’), assumes 
that the video content is structured according to the descend-
ing hierarchy: shots, keyframes, and frames, similarly to that 
followed in multimedia content analysis [6]. For both cat-
egories the goal is to detect/classify video segments corre-
sponding to a particular level of granularity. The third cat-
egory includes works on the detection of operational tasks 
based on visual instrument recognition. The fourth category 

focuses on video-based assessment of surgical skills. The 
fifth category summarizes approaches towards the develop-
ment of software tools for surgical video database manage-
ment. Each section/subsection of this survey first provides 
a brief introduction about the main purpose of the papers 
included in the corresponding category/subcategory, fol-
lowed by paper review and summary of the reported accu-
racy results. The final section discusses the main findings 
and analyzes possible directions for future research.

Operation decomposition

As described earlier, surgical operations are considered to 
follow a descending order of granularity. This decomposi-
tion though is defined rather loosely since some levels may 
coincide or be further decomposed into additional sublev-
els. Most works on surgical video structure analysis aim 
at either segmenting a video into its top hierarchy levels 
(i.e., phases), or recognizing lower levels, such as tasks and 

Fig. 1   Yearly number of publications in surgical video content analy-
sis based on 81 articles retrieved from PubMed and Google Scholar

Table 1   Research articles 
categorization

Numbers in parenthesis denote percentage of articles in each category

Category Sub-category Articles

Operation decomposition (55%) Phase recognition (11%)  [10, 18–25]
Task, activity, gesture recognition (10%)  [28–32, 

34–36]
Surgery-event detection (9%)  [37–43]
External camera views (10%)  [44–51]
Eye surgery (phase, task, gesture detection) (16%)  [52–64]

Content decomposition (16%) Shot detection (6%)  [65–69]
Keyframe extraction (3%)  [70, 71, 73]
Image, task, surgery retrieval (6%)  [74–78]

Instrument recognition (9%) Instrument recognition (9%)  [79–85]
Skills assessment (15%) Skills assessment (15%)  [86–97]
Software tools (5%) Software tools (5%)  [72, 98–100]
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gestures. Apart from the aforementioned decomposition 
scheme, various research efforts have also been placed on 
the detection and classification of surgical episodes, activi-
ties and events. These semantic elements may be considered 
sublevels of the aforementioned hierarchy, although a formal 
definition is still missing from the literature.

The related literature in this category is mostly divided 
into techniques for video analysis of endoscopic and eye 
surgeries. The visual content between these procedures is 
significantly different and each one has its own characteris-
tics. For example, in eye surgery, compared to endoscopic 
surgery, there is small tissue deformation, constant illumi-
nation, fixed camera view, and almost co-planar anatomy. 
Hence, although the research aim of some studies is similar, 
we review them separately due to the different purpose and 
technical challenges addressed.

Surgical phase detection

Detecting the main phases of an operation is usually defined 
as ‘surgical workflow analysis’ (SWA), an important topic of 
research with various applications such as skills assessment, 
automatic selection of teaching scenarios, and real-time 
workflow recognition. Especially the later would potentially 
offer the OR team members the opportunity to better prepare 
for the next case. Moreover, it could provide information 
about the progress of the operation to the clinical staff out-
side the OR, something that currently is performed manually 
and is prone to errors and delays.

Many techniques on SWA employ data indicating the 
tools used at each time step. These data may be extracted 
via manual annotation of videos acquired from the endo-
scopic camera and/or external cameras [11], RFID tags and 
electromagnetic (EM) sensors [16], or combinations among 
them [17]. Content-based video analysis for phase recog-
nition is currently attracting growing interest. In [18], one 
of the first works on SWA, a feature extraction mechanism 
based on evolutionary reinforcement learning was presented. 
Endoscopic images were classified into the coarse surgical 
phases (6 out of 14) of laparoscopic cholecystectomy (LC) 
via support vector machines (SVMs). The recognition accu-
racy was about 50%, but the proposed features performed 
better than classic features such as color histograms and edge 
patterns. Around the same time, surgical phase recognition 
was approached by combining various data sources, such 
as instrument trajectories (obtained via infrared markers), 
audio signals (for detection of coagulation), as well as visual 
cues [10]. The purpose of visual processing was to detect the 
type of the instruments present at each step of the operation. 
The visual cues were extracted via the bag of words (BoW) 
model, which was applied on the SIFT features extracted 
from the endoscopic image. The reported accuracy for rec-
ognition of four instruments varied between 58 and 93%, 

whereas for phase recognition (based on all data sources) 
the accuracy was close to 93%. No results were provided for 
the visual cues alone.

A few years later, Blum et al. [19] investigated the poten-
tial of detecting all phases of a laparoscopic operation using 
endoscopic video data. The experiments targeted the recog-
nition of 14 phases of LC, although the technique could be 
applicable to other surgeries. Simple features such as gradi-
ent magnitudes, histograms and color values were extracted, 
resulting in high-dimensional feature vectors. Dimension-
ality reduction was performed with canonical correlation 
analysis (CCA), or principal component analysis (PCA), 
using manually annotated signals of the type of instrument 
used at each time step (17 signals were extracted from an 
external camera). For phase segmentation, four different 
methods were compared, based on combinations of hidden 
Markov models (HMMs), dynamic time warping (DTW), 
PCA and CCA. DTW with CCA yielded the best perfor-
mance (76.8%).

Dergachyova et al. proposed a method for surgical phase 
segmentation and recognition evaluated on a dataset from 
the MICCAI 2015 EndoVis challenge [20]. The dataset 
included videos and instrument usage annotations from 7 
laparoscopic cholecystectomies. The method first employed 
a surgical process model (SPM), second a feature extrac-
tion process (using visual cues and instrument usage infor-
mation), third an AdaBoost phase classifier, and finally a 
hidden semi-Markov model to generate the final decision. 
The visual descriptor vector (252 values) included color, 
shape, and texture information. Using only visual cues, the 
achieved accuracy was close to 68%, whereas a combination 
of visual and instrument information yielded an accuracy 
close to 90%.

In another study, phase border detection in LC videos 
was performed via instrument recognition. First, the video 
frames were split into instrument and non-instrument 
regions via color image analysis and binary image process-
ing. After feature extraction, instrument type classification 
was performed via BoW and SVMs. Finally, the LC phases 
were recognized based on a set of rules with regard to the 
presence/absence of certain tools. Six different phase transi-
tions were detected in a dataset of six LC videos [21].

Apart from the common feature extraction techniques, 
some researchers have recently started utilizing more 
advanced computational architectures for SWA. For exam-
ple, Twinanda et al. proposed the EndoNet architecture, a 
CNN based on the AlexNet architecture, which was fine-
tuned for online and offline tool and phase recognition 
tasks [22]. The method was validated on two main data-
sets of LC videos (Cholec80 and EndoVis), and also was 
compared with state-of-the-art methods, showing superior 
performance. The highest average accuracy was achieved 
for offline analysis: 92.2% (Cholec80) and 86% (EndoVis), 
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for phase and tool recognition, respectively. Lea et al. also 
employed a CNN, which captures object motion over short 
intervals, for offline surgical phase recognition [23]. Three 
different classifiers that take the learnt spatiotemporal fea-
tures as input were compared with one another and also with 
two other methods. The validation was performed on two 
video datasets. In one of them (EndoVis), DTW provided the 
best accuracy: 91% when training was done using video and 
tools or only tools information, and 85% using only video 
information.

Research efforts for surgical phase detection have also 
been applied in neurosurgical interventions, where a surgi-
cal microscope is used to visualize the anatomical area [24, 
25]. A dataset of 500 frames was selected from 16 pituitary 
surgeries. Feature vectors included information about: color 
(RGB and HSV histograms), texture (Haralick descriptors), 
and shape (spatial moments and discrete cosine transform 
(DCT), coefficients). After feature selection, multiclass 
SVMs and left–right HMMs were combined for recognizing 
the six phases of the procedure. Accuracy varied between 
75 and 95%.

Task, activity and gesture recognition

For task, activity and gesture recognition, a lot of research 
has been based on modeling signals acquired from EM and 
optical sensors, usually attached to the surgeon’s hands or 
instruments [9, 26, 27]. Video recognition of endoscopic 
surgical tasks has also received some attention. In the pio-
neering work of Zapella et al. [28, 29], several methods for 
gesture classification were proposed. Three robotic surgery 
(RS) tasks were pre-segmented into video clips of individual 
gestures (defined as surgemes). Among others, the authors 
proposed the use of: space–time interest points (STIPs), 
encoding techniques based on BoW, temporal modeling 
based on linear dynamical systems (LDSs), and classifica-
tion schemes based on SVMs and multiple kernel learning 
(MKL). Using exclusively video data, the accuracy varied 
between 68 and 90%, depending on the combination of the 
techniques employed and the task examined.

With regard to video-based task segmentation and recog-
nition in robotic surgery (RS), recent techniques showed that 
employing the video signal from the robot can be effective. 
In [30], a combined Markov/semi-Markov conditional ran-
dom field (MsM-CRF) model for joint segmentation and rec-
ognition of gestures from kinematic and video data was pro-
posed. The method was able to capture both local and global 
cues. The authors applied the technique on kinematic and 
video data on the same dataset used in [29]. The results were 
almost comparable in some tasks, although the technique 
in [30] did not assume known segmentation of the surgical 
tasks. In another related work [31], the authors proposed 
a Deformable Part Model to capture high-level features 

relating the robot and object parts in an image. Using a set 
of both kinematic and video features, an improved accu-
racy was achieved in extracting semantically meaningful 
features, as opposed to other techniques based on abstract 
features [30]. Recently, the same group proposed a model 
for RS action segmentation that combines a spatiotemporal 
CNN, which encodes low- and mid-level visual information, 
and a semi-Markov model that models high-level temporal 
information [32]. After evaluation on a dataset developed for 
RS training and assessment (JIGSAWS) [33], the proposed 
method yielded substantially improved performance (≈ 74% 
accuracy), as compared to other recent baseline methods.

A method for unsupervised task segmentation in RS 
training tasks based on milestone learning was proposed in 
[34]. The goal was to identify milestones, regions in the 
state-space that denote transitions in task demonstrations, 
without knowledge of the labeled surgemes or a motion 
vocabulary. The data included kinematic features (robot 
pose) and two visual features (object grasp and surface pen-
etration) extracted manually. Results showed that the iden-
tified milestones contained exactly one subtask transition 
in 74 and 66% of total milestones for the needle passing 
and suturing tasks, respectively. This method has recently 
been extended with automatically constructed visual features 
using deep CNNs [35]. In particular, the authors propose an 
unsupervised algorithm that leverages video and kinematic 
data for RS task segmentation. The algorithm finds regions 
of the visual feature space that mark transition events using 
features constructed from layers of pre-trained image clas-
sification CNNs. Using both kinematics and visual data, the 
algorithm matches manual annotations with up to ≈ 0.73 
normalized mutual information for suturing and needle 
passing.

In another recent study, a CNN was trained to learn a 
model for the 3D position of the end effectors of the surgical 
robot, from video footage [36]. The video-predicted sensor 
values were further processed for surgical action recognition 
using the JIGSAWS dataset [33]. The recognition accuracy 
for three different training tasks was 60–77%, which was 
comparable to that obtained using the kinematic signals 
from the robot, and superior to the state-of-the-art video-
based results.

Event and surgery classification

Compared to SWA, methods on video event detection and 
classification are limited. An early work by Lo et al. [37] 
investigated the detection of major events encountered in 
MIS. Cauterization was the event with the lowest recogni-
tion performance (< 60%), whereas the experiments were 
performed on limited number of short segments (1–2 min). 
A method that analyzes laparoscopic images and indicates 
the possibility of an injury to the cystic artery was proposed 
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in [38], although no information was given about how depth 
data were extracted from the endoscopic camera.

In a more advanced work, Giannarou and Yang proposed 
a novel framework for content-based surgical scene repre-
sentation by detecting key surgical episodes via probabilistic 
motion modeling [39]. An extended Kalman filter (EKF) 
was employed for tracking salient features detected by an 
affine-invariant anisotropic region detector. Episode bor-
ders were defined when feature tracking failed, signifying 
the appearance of a contrastingly different visual content. 
In addition, probabilistic motion modeling, via a Gaussian-
like distribution, was employed for representing the motion 
of tracked features. Due to the lack of accepted benchmark-
ing for video segmentation, the evaluation was focused on 
the motion pattern of the detected episodes. The proposed 
technique yielded statistically significant similarity with 
data of manually identified features, for surgical episodes 
detected in four RS videos: respiratory and camera motion, 
as well instrument–tissue interaction. The need for develop-
ment of techniques for event-based annotation of endoscopic 
surgery videos was also highlighted in a recent study [40]. 
As a first attempt at retrieval of surgical events, a method 
for detecting the smoke produced by electrosurgery tasks 
was presented. Using ad hoc spatio-temporal features and 
one-class SVMs, the method was able to generate about 85% 
recognition accuracy.

In addition to surgical events, detecting irrelevant video 
frames plays an important role in terms of limiting the 
dataset only to those video sections that are relevant to the 
interval view of the patient. An unsupervised frame rejec-
tion technique was presented in [41], using a set of hard-
thresholding color evaluation conditions. In another work, 
Munzer et al. proposed a supervised method based on color 
features processing, edge detection and fuzzy classification 
[42]. The preprocessing step included a series of steps to 
determine the relevant pixels that contribute to the differ-
entiation between relevant and irrelevant frames. Based on 
a definition of three types of irrelevant frames (dark, blurry 
and out-of-patient), the method yielded an accuracy > 95% 
in a frame-based evaluation scheme.

A few research efforts have also targeted the automated 
classification of laparoscopic videos into surgery types. The 
works of Twinanda et al. were the first ones that addressed 
this problem [41, 43]. The proposed framework included 
a series of steps. After rejecting irrelevant frames using a 
color-based technique, feature vectors were extracted using 
various information sources such as color, saliency and gra-
dients. After feature encoding based on vector quantization, 
a series of classifiers were compared (e.g., SVM, MKL), on 
a dataset of eight classes of abdominal surgery operations. 
An accuracy close to 90% was achieved, using a combina-
tion of the best: features, vector quantization techniques, and 
classification algorithms.

External camera views

The aforementioned works target video content analysis 
based on visual data obtained from the camera of the surgi-
cal endoscope to detect, segment or classify certain events, 
activities and tasks. Due to the complexity and variabil-
ity of the surgical visual content, some researchers have 
employed external camera views. For example, Padoy et al. 
explored the potential of online recognition of the surgi-
cal phases based on information fusion: external video (for 
manual extraction of the instruments used at each time 
step), and endoscopic camera signal [44]. The latter was 
used to extract visual features based on color histograms. 
After PCA, Gaussian mixture models (GMMs) were used 
to model the color spaces of endoscopic images and outside 
images (when camera was temporarily removed), using an 
appropriate training set. The final outcome of this process 
was the extraction of a binary signal indicating the presence 
of clips, based on the analysis of the recognized internal 
camera frames. This signal was then fused with the instru-
ment signals, which formed the input of an online HMM 
designed for phase segmentation. The error classification 
varied from 1 to 50%, depending on the surgical phase (14 
in total).

Other research works were based on the use of video data 
from external cameras for recognizing events with different 
semantic content. For example, a system for determining the 
state (patient present or not, patient covered with a drape or 
not, etc.), of an ongoing operation was presented in [45]. 
Color features were combined with SVMs and HMMs to 
compute a sequence of OR states. In [46] a method was 
described for the detection of anomalous motion occurred in 
the OR. It adopted cubic higher order local auto-correlation 
(CHLAC) features, extracted from inter-frame differentials 
of the video data. The results were limited to examples of 
anomalous motion detection in one surgery. A multichannel 
audio-visual recording system for the (manual) identification 
of potential risks in surgical workflow was presented in [47]. 
The visual information was obtained from cameras views 
of the patient, surgical navigation console, anesthetist and 
scrub nurse, as well as bird-eye views of the OR from two 
different angles. The aim was rather to develop an integrated 
system synchronizing multiple signal sources.

In [48] a multi-view RGB-depth (RGBD) camera system 
was mounted on the ceiling of an OR. After visual feature 
extraction, from the recorded videos, and feature encoding-
clustering, up to 15 actions were recognized with variable 
accuracy (24–93%). The RGBD camera setup has recently 
been used by the same group for surgical phase recognition 
(8 phases), in verteroblasty procedures [49]. Visual features 
were extracted using a CNN architecture similar to that in 
[22], and then passed to a recognition pipeline that con-
sisted of SVMs and hierarchical HMMs (HHMMs). Based 
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on 37 surgeries, the recognition accuracy (offline and online) 
achieved was about 95%.

In another study, a multiple-camera setup composed of 
five cameras was used to capture seven phases of cholecys-
tectomy in a surgical simulation environment [50]. Four 
cameras captured the surgical room, the rack, the trays, and 
the operation field, and the remaining one was the lapa-
roscope. After optical flow extraction from labeled clips, 
HMM and latent Dirichlet allocation (LDA) algorithms were 
employed for training and classification.

In addition to color cameras, the potential for activity 
recognition from other camera systems has also been inves-
tigated. For example, Unger et al. employed an infrared 
thermal camera for recognizing surgical activities in endo-
scopic sinus surgery [51]. The acquired data included spatial 
information for hand temperatures. This datum was analyzed 
to perform recognition of 12 gestures, based on heat dif-
ferences between the surgeon’s warm hands and the colder 
background of the environment. The system achieved preci-
sion and recall rates of about 60%.

Eye surgery

In ophthalmologic surgery an increasing number of research 
methods on content-based video analysis has been presented, 
mostly by French research groups. These works may be cat-
egorized into two main groups: step/task retrieval and phase 
recognition, although the distinction between tasks and 
phases is not always clear. Usually the first group refers to 
low-level tasks (motion activities, etc.), whereas the second 
one refers to higher level tasks (surgical phases). However, 
as described earlier, the visual content and workflow of eye 
surgery is largely different and consequently the proposed 
methods are based on different conditions and constraints.

In many works, the challenge of video-based task retrieval 
is based on the assumption that the dataset has been in some 
way segmented (usually by a surgeon) into surgical steps/
tasks and the goal is to retrieve those ones that match the 
query task. Initial works proposed motion tracking for gen-
erating visual features [52, 53]. Motion vectors from the 
MPEG-4 codec and Kalman filtering were employed for this 
purpose. Using a database of 20 videos annotated for three 
steps of epiretinal membrane surgeries (injection, coat and 
vitrectomy), a comparison between the query video and the 
video database was performed with DTW. The precision 
achieved was about 62%.

Using a similar dataset, Quellec et al. proposed a video 
retrieval technique using color–texture, optical flow, and 
corner-motion features [54]. The similarity of the target 
sequence with those included in the database was evaluated 
via the computation of a fast low-level squared Euclidian 
distance. Areas under the receiver operating characteristic 
(ROC) curves (Az), ranged from 0.81 to 0.99. This work 

was later extended to combine instant feature vectors into 
a new vector that is unchanged by variations in duration 
and temporal structure among key subsequences of surgical 
tasks [55]. A novel algorithm to learn this mapping offline 
was described. This mapping allowed for real-time searches. 
The overall system was evaluated in the detection of three 
tasks in retinal surgery (Az > 0.91), and nine tasks in cataract 
surgery (Az = 0.73–0.98, depending on the task).

Quellec et al. have also proposed an approach to real-
time task recognition in cataract surgery, based on the mod-
eling of the motion content [56, 57]. The videos were first 
normalized for eye motion and zoom variations using pupil 
and scale factor tracking techniques. After feature extrac-
tion based on optical flow, spatiotemporal polynomials 
were employed for multiscale characterization of the fea-
tures motion. Given a surgical task, the system was trained 
to recognize the spatiotemporal polynomials corresponding 
to this task. Using a supervised multiple-instance learning 
approach, the key polynomials were then used for recogniz-
ing the desired task. The method was tested for both task 
recognition and joint segmentation–recognition of tasks, 
resulting in an improved accuracy compared to that in [55].

Recently, the same group proposed a method for joint rec-
ognition of surgical tasks and phases [58, 59]. Two observa-
tion sources extracted from subsequences were investigated: 
manual annotations of tools, and image motion features 
(motion-based histograms analyzed with BoW). Various 
multilevel statistical models (based on combinations of 
Bayesian Networks (BN), HMMs, CRFs, and HHMMs) 
were tested on a dataset of 30 cataract surgeries. The best 
results were obtained for the combination BN + CRF, using 
as input the manual tool annotations (Az > 0.98), whereas 
for the motion features the results were inferior (Az ≈ 0.76).

In another work, the same group studied the impact of 
eye motion and zoom scale variations in the extraction of 
motion features for task recognition in cataract surgery vid-
eos [60]. Video frames were normalized (i.e., refined) in 
various ways via some preprocessing steps presented in [61]. 
Using a similarity measure adapted from the field of video 
surveillance, the proposed refinement method was compared 
with other retrieval methods for two types of features (STIPs 
and motion histograms). After preprocessing, the retrieval 
performance was improved for most surgical tasks examined 
(nine in total).

A number of techniques have also been presented for 
the recognition of high-level surgical tasks. Lalys et al. 
presented a framework based on the extraction of semantic 
visual features with regard to the shape of the pupil and 
the identification of the instruments [62]. Problem-specific 
segmentation and classification algorithms were applied for 
this purpose. In addition, some global features related to 
the texture and color content of the video frame were used. 
After feature encoding with a BoW model, HMMs and DTW 



560	 Surg Endosc (2018) 32:553–568

1 3

were employed for phase recognition in cataract surgery. The 
framework was evaluated on test images (for pupil segmen-
tation and instrument classification) and videos (for phase 
recognition). An overall 94% accuracy was achieved.

The same group also combined the aforementioned work 
with SPMs, for recognizing low-level tasks in cataract 
surgery [63, 64]. SPMs were defined as a set of activities 
towards the achievement of a surgical objective. The activi-
ties were defined by the triplet: (action, tool, and structure). 
Because the actions were very hard to identify, the focus was 
placed on the other two. The authors applied image analysis 
algorithms for tool detection and anatomical structure seg-
mentation based on various visual features (color, SURF, 
etc.). Twelve actions, 13 surgical tools, and 6 structures were 
identified, the combination of which resulted in 18 possible 
activities. Based on the hypothesis that most activities occur 
in 1–2 phases (out of 8 in total), 25 possible pairs of activi-
ties were identified with a recognition rate of 65%.

Content decomposition

Instead of the decomposition scheme based on phases, tasks, 
etc., other researchers consider the hierarchy: scenes, shots, 
keyframes and frames. The central task is to segment the 
video into individual units with semantic content, leading to 
techniques such as shot boundary detection, scene segmenta-
tion and keyframe extraction. Additional applications may 
then be explored such as summarization, browsing, annota-
tion and retrieval. For surgical videos, the aforementioned 
hierarchy has only recently been adopted by some works, 
which are reviewed below.

Shot detection

Video segmentation into structural units constitutes a funda-
mental task in video content analysis. The segmented shots 
may then be used for representation, indexing and retrieval 
of the visual information. An early effort on surgical video 
segmentation was presented in [65], which describes the 
architecture of such a system. Key components include: seg-
mentation engine, retrieval engine, and assessment module. 
Shots are segmented by detecting the boundaries via color 
histogram differences and self-similarity matrix analysis, 
described in [66]. The authors also proposed key frame 
extraction (from the shots), based on standard techniques 
such as k-means clustering and salient region detection. Key 
frames of neurosurgical video sequences were presented. 
However, the system was evaluated for its retrieval perfor-
mance in a non-surgical image database.

In endoscopic surgery, techniques on video shot detection 
are still limited. As a first attempt, Primus et al. proposed 
a method based on differences of motion [67]. Using the 

well-known Kanade–Lucas–Tomasi tracker, an aggregate 
movement vector was extracted separately for nine areas in 
each frame. Using a sliding temporal window, the border 
was detected by analyzing the spatiotemporal deviation of 
the length of these vectors. The performance of the algo-
rithm was tested on 20 video segments (≈ 3 min long) of 
laparoscopic thyroid surgeries. Mean precision and recall 
was 86%. The authors also measured coverage (79%) and 
overflow (57%), where the former reflected the percentage 
of a truly detected shot, and the later denoted the percent-
age of a detected segment that falsely exceeds the length of 
a true segment.

Recently, Loukas et al. proposed a spatiotemporal track-
ing technique for shot border detection [68]. The video 
sequence was first decomposed into consecutive clips. 
Color-motion feature vectors extracted from each clip were 
modeled with GMMs using a variational Bayesian (VB) 
methodology. The estimated components were then matched 
along the clip sequence via the Kullback–Leibler distance. 
Shot borders were defined when component tracking failed, 
signifying a different visual appearance of the surgical scene. 
Using a dataset of 53 laparoscopic cholecystectomy videos, 
the method was compared with that in [67] and GMMs, 
resulting in higher performance in most assessment metrics 
(precision/recall > 80% and coverage = 84%).

In another recent paper, Varytimidis et al. described a 
novel approach to surgical video retrieval using deep CNNs 
[69]. Laparoscopic cholecystectomy videos were split into 
shots when the region changed significantly, which was 
determined by the variation of an objectness model. Deep 
CNNs were used as global frame descriptors, which were 
aggregated into a single shot descriptor to allow for fast 
retrieval of similar videos. The authors also proposed novel 
criteria for method evaluation and provided statistical results 
on a retrieval framework. Evaluating the performance of dif-
ferent network topologies and layers, the method exceeded 
the state-of-the-art using local features and temporal trajec-
tories. The reported shot retrieval accuracy, based on a tool 
type recognition criterion, was > 80%.

Keyframe extraction

Keyframe extraction usually follows shot segmentation. 
Given the redundancies existing among the frames of the 
same shot, the main goal is to extract a small number of 
frames that best represent the shot content. Indicative fea-
tures used for keyframe extraction include: color, texture, 
edges, and motion information. In MIS, where videos con-
tain quite irregular movements, noise, and blurred frames, 
keyframe extraction has been explored by a limited number 
of works. An effort for video summarization of arthroscopic 
procedures was presented in [70]. The proposed tool gen-
erated a keyframe-based summary by clustering similar 
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frames. Five different combinations of features and dissimi-
larity metrics were employed.

Schoeffmann et  al. proposed a keyframe extraction 
method for endoscopic surgery videos [71]. The video was 
first divided into a fixed number of clips, and then key-
frames were extracted from each clip. Using ORB (Oriented 
FAST and Rotated BRIEF) descriptors, nearby frames were 
matched to determine frames of significant content change 
(candidate keyframes). These keyframes were inspected fur-
ther, and blurry frames as well as frames that were similar 
to already selected keyframes, were removed. Using a data-
set of ten segments, the method was evaluated by external 
observers, based on the ‘appropriateness’ of the extracted 
keyframes, using a three-point Likert-scale. The average 
rating of the method was higher than that of other standard 
methods as well as a prior technique based on color histo-
gram similarity [72].

The problem of selecting too few or too many keyframes 
was addressed in another recent study from the same group 
[73]. Using a set of keyframes extracted when motion track-
ing failed, hierarchical clustering was performed resulting in 
a dendrogram, which was used to assign a priority to each 
keyframe. The result was a binary dendrogram for a set of 
representatives. A browser was proposed that employed 
timestamps for timeline-based visualization of the repre-
sentatives. The keyframes are pinned to the timeline based 
on their temporal position. Dynamic browsing may be per-
formed with the aid of the mouse.

Video retrieval

Previously, it was shown that most works in video analysis 
of eye surgeries are concerned with the retrieval of surgical 
tasks and activities. For endoscopic surgery, the papers in 
this area are still limited, and most of them have been pub-
lished recently. A few studies have addressed the problem of 
linking an image (acquired during the operation), with the 
video segment that it was captured from. This problem was 
first addressed by Roldan-Carlos et al. in [74]. Three differ-
ent methods for video retrieval were implemented based on 
global features (color, edges, etc.) and the local SIMPLE 
descriptor. The methods were tested on > 1200 video shots 
and 600 query images, and the resulting accuracy in image 
linking was close to 80%. However, significant processing 
was required for creating ranked lists for each separate fea-
ture, which were then fused into a unified similarity metric. 
Beecks et al. proposed another method for endoscopic sur-
gery video retrieval using a signature-based approach for 
linking query images with video segments [75, 76]. The 
method was based on an adaptive-binning feature signature 
model, for feature selection, and a variant of the signature 
matching distance, for image-video linking. The method 
required the creation of a database of features extracted from 

the target pool of video segments. The features of the query 
image were then compared to each one from the database. 
On average the recall performance was about 80%.

Twinanda et al. tackled the problem of retrieving the 
time boundaries of a task in a laparoscopic video [77]. After 
rejection of irrelevant frames (based on color histogram 
thresholding), feature descriptors based on histogram of 
gradients (HOG) were encoded via Fisher Kernel (FK). The 
query feature representations were compared with those in 
the target video using a novel coarse-to-fine temporal search 
to find the time boundaries. The underlying assumption was 
that the task was present in every target video. Using a data-
set of 79 surgeries, the lowest–highest precision and recall 
achieved among four query tasks was: 23–79% and 26–78%, 
respectively. Several other configurations based on BoW and 
DTW were also performed, but with lower accuracy.

A novel approach to instructive video retrieval from a 
database of laparoscopic training tasks (peg transfer) was 
proposed in [78]. The idea was based on the selection of 
those videos that are ‘educationally similar’ to the query 
video. Three primitive query actions were defined for this 
task (lift, transfer, and place). The first step was to evalu-
ate the ‘instructiveness’ of the action video based on rela-
tive attribute learning (three skill attributes were proposed). 
Then, a hybrid ranking SVM method was presented for 
video retrieval. The retrieval accuracy, in terms of selecting 
videos with higher instructiveness, across the three actions 
varied from 75 to 90%.

Instrument type recognition

As shown in the previous sections, a significant number of 
papers focused on applications related to video structure 
analysis of surgeries. Given that in many operations the rec-
ognition of a surgical phase/task is largely related to the type 
of the instrument used, some research efforts have focused 
on image-based tool type recognition.

An early study presented a method based on template 
matching of the tip using pre-constructed 3D virtual models 
[79]. The 3D pose of the tool was obtained using color seg-
mentation of images obtained from a stereo endoscope. A 
3D optical tracking device was also used. The experimental 
system was evaluated on single images in a simulation train-
ing environment. In RS, a multiple tool detection framework 
was presented in [80]. Different detectors for each tool were 
learnt using a novel object detector. The detector captured 
the object shape via deformable part model (DPM), which 
consists of a pictorial model that links root of the model 
to its parts using deformable springs. The model captured 
articulation and allowed for learning a detector for different 
configurations. HOG features and latent SVMs were used 
for tool classification in a simulation training environment. 
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Results on tool recognition were not reported though as the 
primary aim was to identify tool attributes such as open/
close.

Clinical data for instrument classification in laparoscopic 
surgery were used in [81, 82]. The authors proposed the use 
of instrument classification to enable semantic segmentation 
of laparoscopic videos. The technique was based on stand-
ard algorithms for feature extraction (SURF, SIFT, ORB), 
encoding (BoW) and classification (SVMs), using a training 
set of images with six different instruments. For the best 
combination, the average accuracy achieved was 80–90%.

In eye surgery, a three-step method for surgical tool detec-
tion was presented in [83]. In the first step, standard image 
analysis algorithms (smoothing, thresholding, dilation) were 
used for color segmentation of the tool. Next, various fea-
ture descriptors (SURF, SIFT, etc.), were extracted from the 
segmented areas. After creating a global descriptor for each 
image using BoW, the final step was classification, which 
was based on a k-nearest neighbor algorithm. The SURF/
SIFT combination generated an accuracy of 84%. In a recent 
study [84], a deep conventional neural network was learned 
offline using training patches from four eye surgery tools. 
The overall accuracy for tool recognition was 94% in eye 
phantom images, and 87% in real microsurgery datasets.

In the field of neurosurgery, a method for joint tool 
detection and pose estimation from microscope images was 
proposed in [85]. The first step aimed to label each pixel 
into ‘tool’ and ‘background’ using gradient, color, texture 
and position features. The training set included about 3000 
images of 8 different tools. The second step aimed to derive 
the global shape of the tool present in the image by evaluat-
ing a tool-specific template on top of the labeling results. An 
overall tool labeling accuracy close to 86% was achieved.

Skill assessment

Objective evaluation of surgical skills has been a major 
topic of research for many years. Among standard param-
eters such time and errors, surgical performance may also 
be assessed using instrument/hand motion. Many stud-
ies have showed an inverse correlation between expertise 
level and motion parameters such as instrument pathlength 
and number of movements [8]. However, to generate these 
metrics one needs to employ specialized sensors, which is 
not always possible because of modification of the training 
setup, sterilization issues, and potential interference in task 
performance.

Video-based assessment of surgical skills has been intro-
duced as an alternative with significant advantages, since 
video recording of an MIS task is straightforward and does 
not require employment of additional sensors. Significant 
research efforts, such as the observational clinical human 

reliability analysis (OCHRA) tool, have been performed 
recently, highlighting the importance of video-based skills 
assessment [14, 15]. However, these tools require an expert 
to review and analyze the entire video of the operation, 
which is labor intensive and time consuming. Skills assess-
ment based on computational video analysis provides signifi-
cant advantages over manual evaluation, although it requires 
the resolve of several technical challenges and the extraction 
of high-level semantic information. One basic hypothesis is 
that the tool shaft/tip movement may reveal salient features 
that can be extracted by the endoscopic camera. Hence, by 
detecting these image features one may indirectly assess the 
tool movement inside the box trainer [86].

In laparoscopic surgical training, initial research focused 
on detecting salient features (STIPs) from the endoscopic 
video, feature encoding with BoW, and temporal modeling 
with a hidden Markov process [87]. The classification of 
the motion expertise level for a testing sequence was based 
on choosing a model that maximized the likelihood of the 
given sequence. Subjects performed the ‘peg transfer’ task 
in an FLS-specific training environment. The total accuracy 
achieved was 86–89%. The model also provided meaningful 
insights about the motion patterns of experts and novices. 
The same group also proposed a novel formulation (termed 
Relative HMMs), for video-based evaluation of motion skills 
in laparoscopic training [88]. The method makes the reason-
able assumption that the trainees improve their skills over 
time, so the video sequences are relatively ranked based on 
the time performance. Using the feature extraction method 
described in [87], the proposed algorithm learns a model 
from the training data so that the attribute under considera-
tion is linked to the likelihood of the input, hence supporting 
comparison of new sequences.

Other researchers have considered external cameras to 
monitor the trainee’s movements during task performance, 
such as in [89–92]. In [89], the feature extraction/encoding 
process was similar to that in [87]. The learning algorithm 
utilized CCA to discover the latent relationship between dif-
ferent video streams that captures different scenes and move-
ments arising from the same physical process. Classification 
was based on SVMs. Using video data from performances 
of the peg transfer task, the accuracy in recognizing experts 
from novices was > 90%. The same task was also used in 
[90], where video data from two external cameras were ana-
lyzed using optical flow algorithms. A ‘hand movement’ 
parameter, representing the smoothness of optical flow, was 
extracted with a custom software, but no further details were 
provided about its computation. A commercial video analy-
sis software was used in [91], allowing the computation of 
parameters, such as angles and distances, directly from the 
video of the training task. However, neither results from the 
extracted measurements nor analysis about how these meas-
urements were computed are provided. A compact surgical 
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skill training and evaluation tool based on video analysis 
from three camera sources was recently presented in [92]. 
Two webcams recorded hand movement, and a third one 
the tool movement. Color segmentation and motion history 
image (MHI) were used to compute various parameters 
(smoothness, acceleration, etc.) of the movement pattern 
of the tool and the hands. The system was validated for its 
educational value on three FLS tasks.

Instead of the common classification task into experts 
and novices, some studies have investigated automated 
assessment of the OSATS (objective structured assessment 
technical skills) criteria used in surgical training. An aug-
mented BoW technique was introduced in [93], where time 
and motion were modeled as short sequences of events. The 
underlying local and global structural information was then 
encoded into BoW models, resulting in an accuracy 65–75% 
across the seven OSATS criteria. Sharma et al. proposed a 
novel framework based on sequential motion texture analysis 
[94]. The technique involved: (a) STIP detection and HOG 
extraction, (b) motion class learning and classification, (c) 
data-driven time window computation, and (d) sequential 
motion texture feature extraction. To encode the qualitative 
motion dynamics in each time window, gray-level co-occur-
rence matrices (GLCM) texture analysis was applied. The 
percentage of correctly classified videos with respect to the 
OSATS criteria ranged from 83 to 96%. The same group 
later presented another technique for representing peri-
odic motion elements inherent in basic surgical tasks. Fre-
quency coefficients (DFT and DCT) extracted from the time 
series analysis of the video-extracted visual features were 
employed [95]. The technique increased the classification 
accuracy to 91–100%. The same group recently compared 
different video-based OSATS assessment techniques for 
surgical skill evaluation [96]. These techniques capture the 
motion information at a coarser granularity using symbols 
or words, extract motion dynamics using textural patterns 
in a frame kernel matrix, and analyze fine-grained motion 
information using frequency analysis. Results showed that 
frequency features outperform other feature types previously 
reported in the literature.

In another recent study, Loukas et al. studied the applica-
tion of four feature detector descriptors and two temporal 
models for laparoscopic skills assessment [86]. Two differ-
ent setups were designed: static and dynamic video-histo-
gram analysis. STIP-HOG yielded the best performance in 
classifying expert’s and novice’s performance, independent 
to the employed temporal model. Important differences were 
found between the two groups with respect to the underlying 
dynamics of the video-histogram sequences.

In the field of eye surgery, Zhu et al. have proposed a 
vision-based approach to evaluate cataract surgery videos, 
in specific the capsulorhexis step, performed on a simulator 
[97]. First, computer vision algorithms were used to obtain 

keyframes, spatial measures, and optical flow magnitude 
curves for each surgery. Based on these measurements, three 
metrics were defined (spatiality, duration, and motion), and 
applied in linear regression and linear SVM models to assign 
grades. The results showed that the method was in reason-
able agreement with the experts’ opinion.

Software applications

A few research efforts have been placed towards the develop-
ment of software tools and small-scale applications to aid 
visualization and analysis of the surgical video content. One 
of the first studies towards this direction focused on the bind-
ing of MeSH (Medical Subject Headings) terms into the 
structure description of surgical videos [98]. The authors 
described the development of an annotation tool that cre-
ates descriptions in the MPEG-7 metadata standard using 
the MeSH classification. MPEG-7 metadata classes were 
mapped to MeSH sub-categories (e.g., Why to F3: Mental 
Disorders, WhatAction to E1–E6: General techniques, How 
to: E7-Equipment and supplies). Using the software devel-
oped, an example describing the annotation process for a 
video from a thoracoscopy procedure was presented.

A content-based surgical video analysis and management 
system that provides convenience in accessing the relevant 
content was presented in [72]. The system has two main 
components: temporal video segmentation into shots and 
content-based retrieval. Video analysis techniques included 
color histogram analysis, clustering, and Euclidian distance 
comparison. The system was implemented as a web-based 
application and may be used in mobile devices.

An Austrian group has recently presented its efforts 
towards the development of novel tools for event under-
standing, annotation and learning of semantically relevant 
segments from surgical endoscopy videos [99, 100]. In 
[99], the authors described a visual–vocal annotation tool 
with various editing functionalities such as hand drawing of 
annotations in anatomic areas of interest, recording spoken 
audio notes, bookmark setting, and annotation visualization 
in the video timeline. The tool was evaluated by an expert 
surgeon and a general event model of surgery was derived by 
identifying relationships between the granularity of an event 
and the type of its annotation. Further efforts on the recog-
nition of relevant segments from endoscopic surgery vid-
eos were presented in [100]. The author provided prospects 
about the development of a social network-based platform 
that integrates relevant experts’ knowledge. The platform 
will have video editing capabilities to allow experts to col-
laboratively edit endoscopic video contents and share them 
among each other. The interaction with the video editing tool 
will be monitored in the background, and then interpreted 
so that relevant information could be derived. The author 
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also suggested ways for data interpretation, learning of user 
interaction patterns, and evaluation of results.

Discussion and future directions

In this paper, we have presented recent developments in 
surgical video content analysis and representation. The arti-
cles that matched the inclusion criteria were categorized 
into theme groups and subgroups based on their technical 
focus. In most articles the surgical operation was assumed 
to follow the ‘operation decomposition’ scheme; eye surgery 
papers were the majority in this category. The main goal 
was the detection and retrieval of surgical phases and tasks. 
For endoscopic surgery, the data originated from various 
sources, such as simulation training tasks, actual operations, 
and external camera views. The employment of different 
data sources was mainly due to the greater technical chal-
lenges encountered, such as the frequent camera movement, 
the variable illumination, and the significant deformation 
and transition of tissue structures.

Another notable remark is that the different granularity 
levels (phases, tasks, etc.), were not defined consistently. 
For example, there is no general consensus on what defines/
differentiates a surgical task, or which ones constitute the 
phase of an operation. These semantic concepts are closely 
related to the type of a surgical operation, and the same task 
may be met in more than one operations. Hence, ontologies 
and tools to describe the structure elements of a surgery are 
important. Important steps have already been made towards 
this direction [101]. The development of a formal framework 
of ontological definitions would signify a key step towards 
this direction. In addition, there is a great need for a gen-
erally acceptable benchmark dataset to allow researchers 
compare and evaluate their techniques. To date, JIGSAWS1 
is the only publicly available working set for gesture and 
skills assessment [33]. Among others, it includes video data 
and gesture annotations for three RS tasks performed by 
surgeons on a bench-top model: suturing (SU), knot-tying 
(KT), and needle-passing (NP). All three tasks are typically 
part of surgical skills training curricula. In overall, the JIG-
SAWS dataset consists of 39 trials of SU, 36 trials of KT, 
and 28 trials of NP. The video part of the dataset includes 
stereo video data captured from both endoscopic cameras of 
the da-Vinci surgical system.

The availability of a similar dataset from real surgical 
operations would be of significant value for the evaluation 
of techniques targeting other surgical video content analy-
sis applications. Hence, a bold step towards this direction 
was performed last year, with the release of a phase- and 

instrument-annotated video dataset of seven laparoscopic 
cholecystectomies (EndoVis). This dataset was employed 
in the MICCAI 2015 challenge for surgical phase detec-
tion.2 Recently, in the 2016 M2CAI workshop, further data 
were included for two separate challenges: surgical phase 
(m2cai16-workflow dataset) and instrument detection 
(m2cai16-tool dataset).3 In overall, the dataset includes 41 
cholecystectomy videos with ground truth annotations of the 
phases, and 15 cholecystectomy videos with ground truth 
binary annotations of the present tools. All videos are anno-
tated on a ‘per-frame’ basis. The phase annotation includes: 
trocar placement, preparation, calot triangle dissection, clip-
ping and cutting, gallbladder dissection, gallbladder pack-
aging, cleaning and coagulation and gallbladder retraction 
(eight phases). The tool annotation includes: grasper, hook, 
clipper, bipolar, irrigator, scissors and specimen bag (seven 
tools). The same group has also released a similarly anno-
tated, but bigger, dataset containing 80 videos of cholecys-
tectomy surgeries performed by 13 surgeons (Cholec80).4 
To date, these are the most comprehensive annotated video 
datasets of surgical operations, which are publicly available 
for academic research. Due to their superior quality and res-
olution, the videos may also be used for other video content 
analysis applications (e.g., retrieval, recognition, summa-
rization etc.), from researchers that have no access to such 
a specialized dataset. Development of similarly annotated 
MIS datasets for other levels of video granularity (e.g., tasks, 
shots, keyframes, etc.) would be of significant value.

In the ‘content decomposition’ category, most research 
papers have been published within the last 2–3  years. 
This is a new area of research that has great potentialities, 
considering the already extensive research in multimedia 
content analysis (e.g., news, sports, movies, etc.). Hence, 
techniques and ideas already proposed for video segmenta-
tion and database management may well be adapted in the 
surgical domain. An apparent issue is that a surgical video is 
composed of a single shot, since the captured area does not 
change. Nevertheless, important changes may be detected, 
such as the insertion or removal of a surgical tool, manipu-
lation of an organ, or the viewpoint change. Moreover, one 
may combine techniques from both categories (task and shot 
detection), to explore other intriguing applications, such as 
automated video summarization of surgical operations, mod-
eling of user’s preferences during video browsing, sugges-
tions for video tasks with similar content and presentation 
of information related to objects recognized in the video.

In the area of visual instrument recognition, the num-
ber of published papers is limited, especially in terms of 

1  https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/

2  http://grand-challenge.org/site/endovissub-workflow/data/
3  http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/
4  http://camma.u-strasbg.fr/datasets

https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
http://grand-challenge.org/site/endovissub-workflow/data/
http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/
http://camma.u-strasbg.fr/datasets
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employing data from real surgical operations. Most works 
employ visual features and a classifier trained on labeled 
images. The number of papers that combine in vivo endo-
scopic views with virtual models of instruments is lim-
ited. Moreover, although the instruments used are closely 
related to the phases of a surgical operation [11], few 
papers have exploited video data for this purpose. These 
research directions certainly deserve further attention in 
the future.

For video-based assessment of surgical skills, endoscopic 
as well as external cameras have been employed. The general 
framework that is followed includes visual feature extraction, 
encoding, and classification based on a training set of dif-
ferent skill levels. A disadvantage of this approach is that it 
does not provide information about certain errors committed 
by the trainee, but it rather generates abstract performance 
parameters correlated to those extracted from a predefined 
skills group. Very few studies so far have attempted to cor-
relate visual features with absolute measures of performance 
[94]. A potential extension to this approach would be the 
employment of additional cameras and pre-constructed 3D 
models of the training setup. Hence, using instrument track-
ing, image registration, and object recognition algorithms, 
one would be able to derive absolute performance param-
eters, such as for example unsuccessful attempts for cut-
ting/peg placement, and number of times that a needle came 
in contact with the wall. In addition to skills recognition, 
assessment of the trainee’s learning curve is also important. 
Thus, given that trainees perform a training task several 
times before reaching a plateau, a video-based framework 
that provides information about the performance level with 
respect to the learning curve would be of great educational 
value. Other ideas for potential research include visual rec-
ognition of erroneous actions and video-based image-guided 
surgical training.

With regard to software application development, a few 
sporadic approaches have been proposed for surgical video 
database management. Most of them described small-scale 
systems designed as research tools for visual evaluation of 
video analysis algorithms. An interesting system was pro-
posed in [98], which describes an interface for surgical video 
organization based on terms derived from a medical lexicon. 
Future research efforts could be placed in the development 
of semi-automated video management systems that combine 
similar approaches with automated video content analysis 
algorithms. Due to the tedious process of manual annota-
tion, the development of a private social network, such as 
the one proposed in [100], with global, timeline-based, and 
image-based editing and annotation capabilities would be 
an important milestone. For general purpose images, online 
annotation tools for building image databases for computer 
vision research are already in use (e.g., LabelMe), so the 
surgical community may be inspired by these efforts.

A potential limitation of the present survey is that it does 
not include a comparison among the various methods used 
in each research subtopic (e.g., phase recognition, skills 
assessment, etc.). As described in the Introduction, the pri-
mary goals were to present, for the first time, a structured 
literature survey of the published research activity, and to 
identify the various research trends, in the field of surgi-
cal video content analysis. Given the great diversity of the 
video analysis algorithms, research goals and experimental 
datasets, a direct correlation among the various methods 
employed could not be performed under the structure of the 
present survey. In the future we aim to perform a critical 
review of the most active research subtopics, such as surgical 
phase recognition, task recognition, and skills assessment. 
Given the growing research interest, it is expected that in 
the near future the publication capacity in these subtopics 
will be sufficient enough to perform an authoritative critical 
review. Currently, the broad field of surgical video content 
analysis is still in its infancy, but with great potential for 
exploration of its various research directions.

In conclusion, content-based video analysis of surgical 
tasks and procedures constitutes a rapidly expanding scien-
tific field. Several future prospects for research exist, such as 
shot boundary detection, keyframe extraction, video summa-
rization, pattern discovery, and video annotation. Software 
applications for efficient management and organization of 
surgical video databases would be a useful tool for surgeons 
and clinical educators. Moreover, the public availability of 
benchmark datasets for evaluation and comparison of the 
implemented algorithms is essential. We hope that the find-
ings of this survey will be inspiring not only for the advance-
ment of the current techniques but also for the discovery of 
additional novel applications.
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