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Abstract
Background In general surgery, minimally invasive

laparoscopic procedures have been steadily increasing over

the last decade. The application of advanced bipolar and

ultrasonic energy devices for sealing and cutting of blood

vessels plays a vital role in routine clinical procedures. The

advantages of energy-based instruments are enhanced

sealing capability combined with both fast sealing time and

minimal thermal injury. The purpose of this study was to

compare the safety and efficacy profiles of nine laparo-

scopic sealing and cutting devices in a porcine model, with

a new scoring system.

Methods Comparative studies in a porcine model were

performed to assess vessel sealing, burst pressure, thermal

spread, maximum heat, sealing/cooling time, and com-

pression strength over the full jaw. Nine different devices

from five manufacturers were tested in this study. The

sealing and cutting devices (SCD) score has been devel-

oped to enable standardized comparisons of various

devices. For this purpose, the most important parameters

were identified through a consensus approach.

Results All sealed vessels with different devices could

withstand a median pressure of more than 300 mmHg

(range 112–2046 mmHg). The time for the sealing proce-

dure was 7.705 s (range 5.305–18.38 s) for the ultrasonic

and 7.860 s (range 5.08–10.17 s) for the bipolar devices.

The ultrasonic instruments reached a median temperature

of 218.1 °C (range 81.3–349.75 °C) and the bipolar devices
a temperature of 125.5 °C (range 94.1–133.35 °C). The
tissue reached a median temperature of 61.9 (range 47.1–

80.6 °C) after ultrasonic sealing and 76.7 °C (range 63.1–

94.2 °C) after bipolar sealing. The median SCD score was

10.47 (range 7.16–13.72).

Conclusion All the instruments used seemed safe for use

on the patient. The SCD score allows an indirect compa-

rability of the instruments.

Keywords Endoscopy · Sealing and cutting devices · Burst

pressure · Sealing time · SCD score

In gynecological surgery, minimally invasive laparoscopic

procedures have been steadily increasing over the last

decade [1, 2]. The application of advanced bipolar and

ultrasonic energy devices for sealing and cutting of blood

vessels plays a vital role in routine clinical procedures

[3, 4]. The challenge lies in combining multiple functions

in the same instrument for coagulation and dissection

without worsening the handling. The underlying mecha-

nism is to achieve thermal hemostasis by protein

denaturation, which occurs at a temperature of 45 °C
onward [5]. The sealing with bipolar instruments can
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withstand high intraluminal pressures and is an alternative

to the classical vessel occlusions such as ligature or clips

[6–12]. The sealing takes place within the vessel wall

structure and cannot dislodge [8, 13]. The closure is not

always optimal and can be adversely affected for many

different reasons [2, 11, 14]. Advantages of state-of-the-art

energy-based instruments are enhanced sealing capability

combined with both fast sealing time and minimal thermal

injury [15]. The increasing popularity of these instruments

has led to a wide arsenal of devices with different energy

bases. Despite the safety- and efficacy-related aspects, the

likely disadvantages are mainly lateral thermal spread,

relatively high disposal cost, and variable burst pressures

[16]. Excessive energy delivery to the tissue may result in

larger necrosis and thus a higher risk of secondary bleeding

and more frequent damage to sensitive structures such as

the intestines or ureters [2, 17–19]. Previous studies iden-

tified homogeneous compression on the sealing area,

controlled energy on the vessel, and a strong vascular

sealing as important parameters to avoid collateral dam-

ages and comorbidity such as necrosis-associated

adhesions [20–23]. Based on the studies of Wallwiener

et al. and Soderstrom et al., we generated an easily

reproducible porcine model to assess the effects of sealing

and cutting devices [24, 25].

The purpose of this study was to compare the safety

and efficacy profiles of nine laparoscopic sealing and

cutting devices in a porcine model with the new sealing

and cutting devices (SCD) score, which was developed to

enable standardized comparisons of various devices.

Instruments were compared in regard to thermal spread,

burst and compression pressure, and sealing and cooling

time.

Materials and methods

Comparative studies were performed to assess vessel

sealing and burst pressure (BP), thermal spread (TS),

maximum heat, sealing/cooling time (ST/CT), and com-

pression strength over the full jaw. Nine different devices

from five manufacturers were tested in this study. During

these in vitro experimental procedures, some instruments

were either updated (Ethicon Harmonic ACE was updated

to Harmonic ACE + 7®) or withdrawn (Aesculap Caiman®

was withdrawn by the manufacturer from the study) and

were thus not taken into account in the further evaluation.

The energy-based devices used in this study are shown in

Table 1.

The tissues for TS and BP experiments were taken from

German domestic pigs weighing 40–60 kg. Immediately

after the slaughter of the pigs in a slaughterhouse, the

carotid arteries and small intestine were removed (OP

organization and animal welfare, the competence center

“MEDIZIN IM GRUNEN” in Wendisch Rietz, Germany).

After skeletonizing the vessels and bowels, both were

placed in normal saline (0.9%) and frozen at −20 °C.
Before the experiments were started, the tissue was thawed

to 4 °C and then warmed to body temperature (37 °C) in
heat baths. In a previous study, it was demonstrated that

freshly thawed frozen vessels reacted similar to fresh

vessels [26].

Sealing and burst pressure

Burst pressure measurements are important endpoints and

evaluation parameters, because they reflect the sealing

quality of the devices. The normal blood pressure is

140/90 mmHg and reaches values [160/100 mmHg in

hypertensive patients. In male athletes, the mean blood

pressure reaches 311/284 mmHg during double-leg press

sets at 85 and 100% of maximum with closed glottis

Valsalva. The highest measured blood pressure in an

individual during these tests was 370/360 mmHg [27].

During and after the exercises, values of more than

300 mmHg are not reached; since a safety distance must be

maintained to the limits actually attainable, in this work the

limit was set at 250 mmHg.

The sealing and BP experiments were conducted on

the carotid arteries (diameter: 4–7 mm). The vessel

diameter was measured with a digital caliper with a filled

vessel and a pressure of 100 mmHg. The burst pressure

measurements were carried out with a measuring device

from Medimotec, Germany, which was provided by

Ethicon, Germany. The experiments were controlled and

recorded by a computer program. At the beginning of

each day, the measuring instrument had to be rinsed with

a 70% solution of 2-propanol to dissolve any possible

gluing in the lines and check the continuity. The system

was then rinsed with a 0.9% sodium chloride solution so

that no propanol could subsequently come into contact

with the vessels and eventually damage them. The fol-

lowing steps had to be done with each measurement: (1)

Connecting vessel, (2) Vessel cleaning, (3) Leakage test,

(4) Sealing and cutting the vessel, (5) Placing cover, (6)

Cleaning the buffer, and (7) Activation. The bipolar

instruments gave a feedback to the point of completion

of the seal. For the ultrasonic instruments, the end of the

seal was equated with the time of the vessel dissec-

tion. After each test, the sealed zone was removed with a

surgical scissor while maintaining sufficient safety mar-

gins and the vessel was reused. In case of a defect on the

vessel or insufficient length, it was replaced by a new

carotid artery.
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At least six measurements per device were carried out;

in case of obvious failures such as leakage or slipping of

the vessel, the experiment was repeated.

Maximum heat and sealing and cooling time

For the measurement of maximum heat and cooling time,

the “testo 885” camera (Serial number: 02323152) from

Testo (Testo SE & Co. KGaA, Lenzkirch, Germany) was

used. The intestine was cleaned of residual fecal matter

with physiological sodium chloride solution at 37 °C. In
order to minimize unwanted reflections and thus inaccu-

rate measurements, all reflecting areas were covered. All

measurements were carried out uniformly with a camera

distance of 28 cm. The intestine was fixed to avoid ten-

sion during the sealing and cutting procedure. The

recording was stopped as soon as the tissue cooled down

to 38 °C. The tissue temperature was measured directly

on the dissection edge after removal of the device. The

devices were carefully cleaned after each measurement.

The scan area of the camera was in the range of 0–350 °
C. To evaluate video recordings, the Testo software IR

Soft 3.2 and 3.6 were used. Maximum heat, duration of

coagulation, and cooling to 38 °C were measured. We

defined 38 °C as nearly normal body temperature without

any further damage to the collateral tissue. In order to

determine the exact moment of the sealing and the time

course of the temperature, the respective video was

scanned in approximately 4-hundredths of a second step.

The sealing time was defined as the time between the start

ofsealing until the bipolar instruments gave a feedback or

the ultrasonic devices divided the vessels. In devices with

dissimilar jaws (ultrasonic devices), which have an active

blade and a passive jaw, both sides were separately

measured.

Compression strength

For the measurement of compression forces of the sealing

and cutting devices, a sensor (Tekscan 5027@500psi™,

Tekscan Inc., CMV Hoven GmbH, Germany) was placed

between two thin layers of a silicone membrane (each side:

0.8 mm). Closed-jaw pressures were recorded with

I-Scan™ software (Tekscan™ Inc., CMV Hoven GmbH,

Germany).

No unit was used to measure the compression strength;

the results represent the relative clamping pressure values

of the instruments (along the closed jaw, from the tip to

the base, Fig. 1). The compression pressure of the indi-

vidual instruments must be seen in relation to the other

instruments. Each device was measured with the maxi-

mum possible closing pressure, and this corresponded to

the clicked close of some instruments. Each device was

tested only once.

Necrosis zone

By measuring the necrosis zone, the cell damage can be

measured lateral to the branches. Coagulated and dissected

vessels were prepared for further histochemical hema-

toxylin and eosin staining. The necrosis zone was then

microscopically measured on the stump of the vessel. For

the two non-dissecting instruments BiClamp® fenestrated

and BiClamp® Maryland (ERBE Elektromedizin GmbH,

Germany), the measured necrosis zone was used to indicate

half the distance in order to be able to make a comparison

with the other instruments.

SCD score

The sealing and cutting devices (SCD) score was devel-

oped to enable standardized comparisons of various

devices. For this purpose, the most important parameters

ST, BP, and maximum temperature of the jaws of each

device (T) were identified through a consensus approach,

and the median value scaled. Next, the scaled values (Ts,
BPs, STs) were added and then divided by the number of

parameters. Because BP is the most important parameter

for clinical application, its value was doubled.

SCD score formula ¼ 20�Tsð Þþ 2 �BPsþ 20�STsð Þð Þ=4

The respective span width of the parameters was divided

by 20, and the values were converted into a score. For

BP, a higher score was assigned for a higher value,

whereas for ST and T a lower score was assigned for

higher values. Devices with a bursting force below

250 mmHg are not recommended for use owing to a

poor safety profile. The relevant parameters were scaled

as follows:

BPs ¼ median BP �250ð Þ =87:5 range 250�2000 mmHgð Þ

STs ¼ median ST =1 range 0�20 sð Þ
Ts ¼ median T =17:5� range 0�350�Cð Þ:

The range was determined for the possible measured

values of the respective measuring instruments. The min-

imum value of the score was 0, while the maximum value

was 20.

Statistical analysis

This is an explorative analysis and hence the analysis of

data was of a descriptive nature. Depending on the scale

level of the variable and with respect to the small number
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Table 1 Tested laparoscopic sealing and cutting devices

Manufacturer Product Energy Generator settings Dissection

function

Applicability

Covidien LigaSure™ Bipolar Level 2 Yes Single-use

Sonicision™ Ultrasonic Minimal, maximal Yes Single-use

ERBE BiCision® Bipolar Level 2 Yes Single-use

BiClamp® Fenestrated Bipolar Level 2 No Reusable

BiClamp Maryland® Bipolar Level 2 No Reusable

Ethicon Enseal® Bipolar Standard Yes Single-use

Harmonic ACE + 7®

(HARH36)

Ultrasonic Levels 3 and 5, Advanced

hemostasis

Yes Single-use

Gebrüder

Martin

MarSeal® Bipolar Level G3 Yes Reusable

Olympusa THUNDERBEAT Bipolar and

Ultrasonic

Standard Yes Single-use

a The Olympus THUNDERBEAT uses bipolar coagulation in the beginning and after a short period the ultrasonic mechanism starts. This

instrument is the only device using both energies and needs to be considered separately

Device Color Symbol Device Color Symbol

ERBE Biclamp Maryland® red Ethicon Enseal® dark green

Ethicon Harmonic ACE+7® blue Gebrüder Mar�n MarSeal® green brown

Covidien Ligasure™ purple ERBE Biclamp® pink

Olympus THUNDERBEAT mint ERBE Bicision® light green

Covidien Sonicision™ red brown

Fig. 1 Pressure versus distance. Covidien LigaSure™: purple;
Covidien Sonicision™: red brown; ERBE BiCision®: light green;
ERBE BiClamp® pink; ERBE BiClamp Maryland®: red; Ethicon

Enseal®: dark green; Ethicon Harmonic ACE + 7®: blue; Gebrüder
Martin marSeal®: green brown; Olympus THUNDERBEAT: mint
(Color figure online)
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of measurements, median and range or frequencies were

provided. Data were analyzed with the SPSS software

(IBM SPSS Statistics 24, Ehningen, Germany).

Results

The vessel caliber and anatomic origin of the vessel or the

intestine did not have any influence on the experimental

outcomes. The median vessel diameter was 5 mm (range

4–10 mm).

Sealing and burst pressure

A summary of the measured BP is shown in Table 2. All

devices were measured until at least six coagulations

were evaluable. The main reason for non-evaluable

measurements was errors in the measuring device and

individual vessel ramifications. We observed that all sealed

vessels with different devices could withstand a median BP

of more than 300 mmHg (range 112–2046 mmHg).

Maximum tissue temperature and cooling time

The time for the sealing procedure was 7.705 s (range

5.305–18.38 s) for the ultrasonic (including THUNDER-

BEAT) and 7.86 s (range 5.08–10.17 s) for the bipolar

devices. The ultrasonic instruments reached a median

temperature of 218.1 °C (range 81.3–349.75 °C) and the

bipolar devices a temperature of 125.5 °C (range 94.1–

133.35 °C). The tissue reached a median temperature of

61.9 °C (range 47.1–80.6 °C) after ultrasonic sealing and

76.7 °C (range 63.1–94.2 °C) after bipolar sealing. The

median time till the tissue cooled down to 38 °C was

Table 2 Burst pressure measurements

Product Generator

settings

Evaluable

coagulations

External median vessel diameter

in mm (range)

Median BP in mmHg

(SD; range)

Median length of necrosis

zone in µmb

Covidien Level 2 10 5.5 749 1054.4

LigaSure™ (5–6) (228; 460–1019)

Covidien Minimal 6 4 1187.5 3632.7

Sonicision™ 4 (416; 583–1702)

Maximal 10 4.5 680.5 320.3

(4–7) (264; 112–1015)

ERBE Level 2 6 6 916 1698.7

BiCision® 6 (459; 421–1691)

ERBE Level 2 10 5 303 2083.7

BiClamp®a

Fenestration

(5–9) (309; 168–1109)

ERBE Level 2 10 5 470 813.9

BiClamp

Maryland®a
(5–7) (579; 200–1924)

Ethicon Standard 9 5 465 547.4

Enseal® 5 (680; 228–2040)

Ethicon Level 3 6 6 1021.5 986.7

Harmonic

ACE + 7®
(5–10) (644; 394–2046)

Level 5 6 4 1147 5024.5

4 (418; 723–1945)

Advanced

hemostasis

6 6 2007.5 1666.7

(5–7) (532; 915–2046)

Gebrüder Martin Level G3 9 6 723 1570.9

marSeal® (5–6) (245; 413–1125)

Olympus Standard 11 5 1238 1357.74

THUNDERBEAT 5 (563; 209–1997)

SD standard deviation
a No dissection function
b As only one measurement was performed, no range can be shown
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14.50 s (range 4.445–31.025 s) for the ultrasonic and

38.27 s (range 30.35–82.15 s) for bipolar sealing. The

sealing and cooling down times and the temperature of the

tissue and the devices are shown in Table 3.

Compression strength

The median compression area for the ultrasonic devices

was 67 mm2 (range 50–63 mm2) and that for the bipolar

Table 3 Sealing time, maximum tissue temperature, and time for cooling down

Device Median sealing

time in s (range)

Median temperature of

device in °C (range)

Median temperature of the

tissue in °C (range)

Median time for tissue

cooling down in s (range)

Covidien 5.015 94.1 76.7 31.330

LigaSure™ 2 (4.19–6.5) (86.8–94.9) (64–81.6) (26.09–36.23)

Covidien 9.215 270 63.45 10.480

Sonicision™ half active side up (8.44–10.52) (256.6–293.8) (52.1–88.7) (5.51–14.77)

Covidien 8.755 136.150 71.35 12.775

Sonicision™ half passive side up (7.87–10.81) (119.6–191.8) (60.1–107.9) (11.82–23.48)

Covidien 6.925 350 60.35 13.500

Sonisicion™ full active side up (3.42–8.66) (281.5–350) (54.5–98.9) (7.8–22.38)

Covidien 5.955 168.35 58.65 9.250

Sonisicion™ full passive side up (5.28–6.6) (131.5–278.1) (46.8–64.4) (5.3–14.04)

ERBE 10.135 125.5 78.15 38.2

BiCision® 2 (9.21–11.14) (121.2–130.4) (65.9–86.1) (35.04–42)

ERBE 5.220 133.35 94.2 82.150

BiClamp® Fenestration (4.94–5.84) (111.9–182.4) (90–96.4) (42.33–85.32)

ERBE 5.080 125.55 87.4 70.966

BiClamp Maryland® (4.32–6.74) (120.4–136.8) (79–92.9) (42.33–85.32)

Ethicon 10.000 96.1 63.1 30.350

Enseal® G2 (9.23–11.73) (72.7–99) (45.3–70.1) (10.75–34.44)

Ethicon 13.505 233.5 51.15 15.490

Harmonic ACE + 7® Level 3,

active side up

(13.33–14.95) (205.5–242.1) (44–71.5) (11.27–24)

Ethicon 8.485 95.1 75.9 15.510

Harmonic ACE + 7® Level 3,

passive side up

(7.32–11.27) (77.8–132.4) (52.5–104.8) (9.0–21.79)

Ethicon 6.670 218.1 47.1 7.445

Harmonic ACE + 7® Level 5,

active side up

(5.65–7.58) (190.6–228) (39.9–52.8) (1.92–10.86)

Ethicon 5.070 81.3 50.8 4.445

Harmonic ACE + 7® Level 5,

passive side up

(4.63–7.19) (75.9–95.2) (47.7–65) (2.98–7.87)

Ethicon 17.695 233.25 64.65 28.480

Harmonic ACE + 7 ®advanced

hemostasis, active side up

(15.54–24.42) (198.5–350) (59.8–76.2) (24.56–35.31)

Ethicon 18.380 181.05 54 31.025

Harmonic ACE + 7® advanced

hemostasis, passive side up

(13.74–22.08) (141.4–243.7) (50.2–70) (23.65–33.35)

Gebrüder Martin 7.860 129.8 73.55 44.500

marSeal® G3 (6.8–8.63) (106.8–134.2) (66.1–85) (33.11–49.29)

Olympus 5.340 232.2 68.65 23.275

THUNDERBEAT, active side up (3.91–9.03) (219.9–280.1) (62.8–78.2) (14.58–26.63)

Olympus 5.305 129.55 80.6 22.520

THUNDERBEAT, passive side

up

(3.55–7.39) (100.9–268.7) (63.9–118.6) (20.02–36.14)
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devices was 98 mm2 (range 77–102 mm2). The com-

pression force decreased with the ultrasound devices by

50% in the median after a centimeter, and by 60% with

the bipolar devices (Table 4). Figure 1 demonstrates the

relation of the compression strength to distance of the

jaws.

Necrosis zone

The necrosis zone ranged from 320.30 µm (Sonicision

high) being the lowest to 5024.50 µm (Harmonic

ACE + 7® Level 5) being the highest (Table 2). Figure 2

shows the histological sections of Olympus

Table 4 Compression area and pressure strength

Devices Compression area

in mm2
Length of compression

zone in mm

Maximum

pressurea
Pressure strength after

5 mm in %

Pressure strength after

10 mm in %

Covidien LigaSure™ 98 16.15 94.57 66.67 29.89

Covidien

Sonicision™
50 12.31 57.61 62.26 24.53

ERBE BiCision® 98 18.08 70.65 80 38.46

ERBE BiClamp® 99 14.23 110.87 50.98 19.61

ERBE BiClamp

Maryland®
77 16.15 93.48 74.42 41.86

Ethicon Enseal®b 83 12.31 94.57 57.47 10.34

Ethicon Harmonic

ACE + 7®
53 11.67 67.39 59.68 14.52

Gebrüder Martin

marSeal®
102 14.87 86.96 96.25 50

Olympus

THUNDERBEAT

61 14.1 63.04 43.14 18.63

a No unit of measurement was assigned to the pressure strength during the evaluation
b Ethicon Enseal increases the pressure strength during the cutting process. Our experiment was performed without cutting and hence the values

are limited

Fig. 2 Histological images:

A Olympus THUNDERBEAT,

B ERBE BiClamp Maryland®,

C Covidien LigaSure™, and

D Ethicon Harmonic ACE + 7®

3
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THUNDERBEAT (ultrasonic and bipolar, A), ERBE

BiClamp® (bipolar without dissection function, B), Covi-

dien LigaSure™ (bipolar, C), and Ethicon Harmonic

ACE + 7® Level 3 (ultrasonic, D).

SCD Score

The median SCD score was 9.04 (range 5.73–12.24).

The values calculated for the score are shown in

Table 5.

Discussion

The number of sealing and cutting devices for laparoscopic

procedures is constantly increasing; however, in vitro

models for evaluation of efficacy and safety parameters are

scarce and only limited to individual parameters. More-

over, properties have been compared only in small groups.

In this study, we compared nine different laparoscopic

devices from four different categories. The aim of this

work was to compare the safety and efficacy profiles of

nine laparoscopic sealing and cutting devices in a porcine

model with a new scoring system. Each device was tested

for compressive pressure, thermal development and energy

release, BP after vessel sealing, and the resulting necrosis

zone.

The devices used in recent times undergo continuous

development, as surgeons demand these instruments for

more difficult and complex procedures [28, 29]. The por-

cine model is suitable as the calibers of the sealed porcine

vessels (carotid arteries [median: 5 mm]) were comparable

with the human uterine artery, which ranges from 3 to

5 mm in diameter [30]. The purified porcine small bowels

have a homogeneous and evenly thick tissue that is most

suitable for experiments on thermal measurement. Hence,

it can be concluded that all instruments evaluated in this

study safely sealed the vessel, as no median burst values

below 300 mmHg were recorded. In accordance to our

findings, the BP measurements showed reliable sealing

results on explanted porcine arteries. Our results are in the

range of reported values in the literature

[3, 4, 8, 21, 31–35]. An important clinical aspect is the

collagen–elastin ratio in vessels, which predicts the BP of

arteries using bipolar sealing [36].

In this work, the thermal behavior of the instruments and

the energy output to the tissue were measured. Even if one of

the instruments reached temperatures above 350 °C, the
temperature of the tissue did not exceed 94 °C. Sealed tissue
takes up to 80 s to reattain body temperature. The closing

pressures are higher than that on bipolar instruments.

Tissue necrosis due to thermal damage is an important

factor for vessel sealing. The detection and evaluation of

the thermal damage is reportedly difficult [37, 38].

Not only the maximum temperature but also the duration

of heat application is responsible for the extent of perma-

nent damage [39].

In literature, the process and quality of the sealing are

described as strongly dependent on the pressure distribu-

tion and the actual pressure between the jaws [21, 22].

Another issue worth mentioning is the closure pressure on

the instruments.

All instruments showed similar closing pressure and a

decrease of this pressure from the base to the tip. To our best

knowledge, this study evaluates the largest number of dif-

ferent instruments and measurements. We acknowledge that

the significance of this study is presently limited, as no sta-

tistical association could be derived owing to the low number

of cases. However, all properties were measured with high

reproducibility. Additionally, the aim of the study was to

Table 5 Calculation of the SCD score

Temperature of the device (scaled) Burst pressure (scaled) Sealing time (scaled) SCD score

Harmonic ACE + 7® advanced hemostasis 13.33 20 17.7 12.24

THUNDERBEAT 13.27 11.29 5.34 10.99

Harmonic ACE + 7® Level 5 12.46 10.25 6.67 10.34

LigaSure™ 5.38 5.7 5.02 10.25

BiCision® 7.17 7.61 10.14 9.48

Sonicision™ half 15.43 10.71 9.22 9.19

marSeal® 7.42 5.41 7.86 8.88

BiClamp Maryland® 7.17 2.51 5.08 8.19

Harmonic ACE + 7® Level 3 13.34 8.82 13.51 7.7

Enseal® 5.49 2.46 10 7.36

BiClamp® 7.62 0.61 5.22 7.09

Sonisicion™ full 20 4.92 6.93 5.73
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demonstrate that all the instruments could reach values that

are safe for everyday clinical practice. The choice of the

instrument depends on the user and convenience of handling.

The lateral thermal spread in the tissue remains a major issue

for clinical handling and shall be investigated in future

studies that address the impact of the devices’ proximity to

sensitive organs and structures. It is important to consider the

moisture levels in the tissue during these tests, because water

vapor, which is produced during the sealing, spreads later-

ally and can cause collateral damage.

This parameter could also be inserted into the SCD

score. Future studies should aim to perform more mea-

surements during the thermal imaging stage. Using the

SCD score described herein, instruments can be easily

compared with each other and their safety represented in a

comprehensible manner.

Conclusion

To our best knowledge, this is the largest comparison of

laparoscopic cutting and sealing devices that showed that

all the instruments used are safe for daily clinical routine.

The new SCD scoring system allows an indirect compar-

ison of the instruments.
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