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Abstract

Background The introduction of robotic technology has

revolutionized radical prostatectomy surgery. However, the

potential benefits of robotic techniques may have trade-offs

in increased mental demand for the surgeon and the

physical demand for the assisting surgeon. This study

employed an innovative motion tracking tool along with

validated workload questionnaire to assess the ergonomics

and workload for both assisting and console surgeons

intraoperatively.

Methods Fifteen RARP cases were collected in this study.

Cases were performed by 10 different participants, six

primarily performed console tasks and four primarily per-

formed assisting tasks. Participants had a median 12

(min—3, max—25) years of surgical experience. Both

console and assisting surgeons performed robotic prosta-

tectomy cases while wearing inertial measurement units

(IMUs) that continuously track neck, shoulder, and torso

motion without interfering with the sterile environment.

Postoperatively, participants completed a workload ques-

tionnaire (SURG-TLX) and a body part discomfort

questionnaire.

Results Twenty-six questionnaires were completed from

13 assisting and 13 console surgeons over the 15 cases.

Postoperative pain was reported highest for the right

shoulder and neck. Mental demands were 41 % higher for

surgeons at the console than assisting (p\ 0.05), while

physical demands were not significantly different. Assist-

ing surgeons worked in demanding neck postures for 58 %

of the procedure compared to 24 % for the console surgeon

(p\ 0.01). Surgeons at the console were primarily static

and showed 2–5 times fewer movements than assisting

surgeons (p\ 0.01).

Conclusions Postures were more ergonomic during con-

sole tasks than when assisting by the bedside; however, the

console may constrain postures leading to static loads that

have been associated with musculoskeletal symptoms for

the neck, torso, and shoulders. The IMU sensors were

effective at quantifying ergonomics in robotic prostatec-

tomies, and these methods and findings have broad appli-

cations to other robotic procedures.
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The introduction of robotic techniques has revolutionized

radical prostatectomy surgery service delivery. In the USA

between 2003 and 2010, robotic-assisted radical prostate-

ctomy (RARP) adoption increased from 0.7 to 42 % of

surgeons performing radical prostatectomy [1]. RARP

provides surgeons with improved anatomical vision and

more precise instrument control compared to open or

laparoscopic techniques [2–6]. Recent meta-analyses have
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concluded that a robotic approach results in improved

functional outcomes with better potency rates and urinary

continence at 12 months compared to open radical

prostatectomy (ORP) and laparoscopic radical prostatec-

tomy (LRP) [7, 8]. Blood loss and transfusion rates are also

reduced with RARP, although the impact of RARP on

overall oncological outcomes remains inconclusive [9, 10].

It is also recognized that RARP results in an increased

economic burden for prostate cancer surgery due to

increased technology and operative duration costs [1].

Despite additional costs of the surgery, investigators gen-

erally agree that robotic techniques improve surgeon

ergonomics by providing increased dexterity (e.g., 3 vs. 9

degrees of freedom) than standard laparoscopy, a seated

position, armrests, and stereoscopic vision [3, 11–14].

These improvements are a potential key innovation for

addressing the pressing issue of ergonomics and muscu-

loskeletal symptoms that impact surgeon health and oper-

ative performance that has been attributed to minimally

invasive surgeries performed with laparoscopy techniques

[15, 16].

Musculoskeletal symptoms have been widely reported

among surgeons in large survey studies conducted across

specialties. Many studies have suggested that the preva-

lence of musculoskeletal symptoms is as high as 87 % in

surgeons who perform minimally invasive procedures

[17, 18], with 40 % of surgeons experiencing at least one

work-related injury which have noticeable impact on sur-

gical performance [19]. Key contributors to muscu-

loskeletal symptoms in laparoscopy include tool and

equipment design, port placement, video monitor position,

and patient position [16, 20–22]. These detrimental effects

may be reduced with robotic technology; however, intra-

operative evidence measuring the ergonomics of robotic

techniques is currently limited.

A few studies comparing robotic with laparoscopic

techniques have found that robotic techniques lowered

mental and physical workload, reduced muscle activity,

and decreased awkward postures (e.g., shoulder abduction

that increases shoulder joint loads) [23–26]. However,

critical limitations to these findings are that they were

performed either by novices, on simulated skill tasks, or in

a controlled and timed animal laboratory setting. Intraop-

erative measurements by an observer using ergonomic

worksheets found robotic surgery was rated as hazardous to

the surgeon and called for interventions to address

observed ergonomic deficits in robotic console surgery

[27]. In addition, no previous study has examined the

impact of robotic techniques on the surgical assistant, who

in addition to performing laparoscopic surgery may need to

assume awkward positions to maneuver around the inter-

mittent movements of the robotic arms to perform the

required roles of the bedside surgeon (Fig. 1). These work

conditions have potential to transfer the ergonomic risks

and burden of musculoskeletal injuries from the primary

(console) surgeon to the bedside surgical assistant.

Quantifying the biomechanical and perceived workload

of robotic surgery will provide a foundation for identifying

intraoperative ergonomic risk factors and designing and

evaluating solutions to improve surgical techniques and the

associated patient outcomes. Toward this end, our objec-

tive is to (1) determine the feasibility of novel wearable

sensors for continuously assessing biomechanical expo-

sures and perceived workload during live surgery and (2)

quantify and compare ergonomic strain of console surgeon

and surgeon assistant roles during RARP.

Materials and methods

Participants

This study was approved by the institution’s ethics review

board (dnr: 2014/1120-31) and urology surgeons perform-

ing RARP from a large academic hospital provided written

consent to participate in this study. All RARP procedures

were performed using the Karolinska technique, which is

an established approach and has been previously described

[28]. During this procedure, two surgeons perform parallel

tasks at the robotic console or assist at the patient bedside.

In this study, their role is classified according to the task

they spent the majority of the case on.

Subjective and objective measures

Two questionnaires were used to measure self-reported

musculoskeletal symptoms and perceived intraoperative

workload. The first questionnaire was adapted from pre-

vious works [29, 30] and measured body part-specific

musculoskeletal symptoms on mutually exclusive 3-point

categorical scales, i.e., ‘‘No,’’ ‘‘Slight,’’ and ‘‘Substantial.’’

The second questionnaire included the validated surgery

task load index (SURG-TLX), which measures six subdi-

mensions of workload, i.e., mental demand, physical

demand, temporal demand, task complexity, situational

awareness, and distractions, using 20-point visual analogue

scales (VAS) anchored by very low and very high [31]. In

addition, surgeons self-reported the degree of difficulty of

each procedure on a similar 20-point VAS adapted from

previous work [32, 33]. Participants completed the mus-

culoskeletal symptom questionnaire before and after each

procedure. The SURG-TLX workload questionnaire was

only completed postoperatively.

State-of-the-art wireless and wearable motion tracking

devices were used to objectively quantify surgeon postures

throughout the procedure. The OpalTM system (APDM,
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Inc., Portland, OR, USA) consists of six inertial measure-

ment units (IMUs), each sensor containing accelerometer,

gyroscope, and magnetometer. These sensors have previ-

ously been validated [34] and used for motion tracking in

sports, space suits, and improving patient health [35–38].

Prior to the surgical procedure, IMUs were worn on the

surgeon’s head, sternum, upper arms, and pelvis without

interfering with surgeons’ performance and the sterile field

(Fig. 2). The sixth sensor was used by a study team

member to time stamp procedure start and stop times of

procedures and roles. After donning the sensors and before

starting each procedure, sensors were calibrated using a

static I-pose as described by the software vendor (NexGen

Ergonomics, Montreal, Quebec). The units logged data at

64 Hz onto onboard memory cards that were downloaded

and processed after the full surgical day.

Data analysis

Body regions with no musculoskeletal symptom responses

(i.e., no indication of ‘‘No,’’ ‘‘Slight,’’ or ‘‘Substantial’’)

were conservatively assumed to be ‘‘No’’ symptoms.

‘‘Slight’’ and ‘‘Substantial’’ musculoskeletal symptom

responses were collapsed into a single category (i.e., ‘‘Yes’’

musculoskeletal symptoms) and compared with ‘‘No’’

musculoskeletal symptoms for each body region. Workload

data were analyzed and summarized for each subdimension

of workload, and total workload was calculated as both the

overall sum and the weighted sum of the six SURG-TLX

scales as described in previous works [31, 39].

Sensor data were collected throughout the entire pro-

cedure, and procedure time was defined as incision to skin

closure for the assisting surgeon and console start to con-

sole stop for the surgeon at the robotic console.

Accelerometer, gyroscope, and magnetometer data from

the IMU sensors were processed into postural angles using

scripts programmed in MATLAB� (R2015b, Mathworks

Inc., Natick, MA, USA). Specifically, these low-pass-fil-

tered (fourth-order Butterworth filter set at 32 Hz) data

streams were used to calculate neck flexion, torso flexion,

and left/right shoulder elevation over time throughout the

Fig. 1 Surgeons during a

robotic procedure at the console

(left) and at the patient bedside

(right)

Fig. 2 Wearable wireless motion tracking sensors placed on the

surgeon before the surgery
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entire procedure with reference to the static I-pose. Neck

flexion was defined as the head motion relative to the torso

in the sagittal plane, torso flexion was defined relative to

vertical, and shoulder elevation was defined as the upper

arm motion relative to vertical [40]. These continuous

computed postures were summarized for each procedure

into (1) mean posture angles, (2) range of motion, defined

as the difference between 95th percentile and 5th percentile

posture angles, (3) percent time in demanding postures, (4)

percent time in static postures, and (5) number of posture

changes per minute. Demanding postures were based on

previous commonly used definitions, [10� neck flexion,

[20� torso flexion, and[45� shoulder elevation [22, 41].

Time in static posture was defined based on previously

published surgical ergonomics literature as duration the

flexion (neck and torso) or elevation (shoulders) angular

velocities are\1�/s normalized by procedure time [42, 43].

Posture changes were defined as movements [10� with

angular velocity faster than 1�/s.
Statistical analyses were performed using SPSS (v22,

IBM, Inc.). Equal variance, two-tailed t tests were used to

compare the demographics between participants perform-

ing console and assisting tasks. Analysis of variance was

performed on all response variables that did not violate the

assumption of normality, to identify the impact of surgeon

role (console vs. assist). Nonparametric Mann–Whitney

U tests were performed to identify differences between

surgeon roles when response variables violated normality.

Additionally paired t tests were performed for cases where

data both console and assisting surgeons are available, i.e.,

same case.

Results

Fifteen RARP cases were collected in this study. Eight

cases were first case of the day, six cases were second case

of the day, and one was third case of the day. Due to

surgeon and equipment availability (three sets of sensors),

only 11 of the cases captured both assisting and console

roles, i.e., same cases. Cases were performed by 10 dif-

ferent participants, six primarily performed console tasks

and four primarily performed assisting tasks (Table 1).

Eight participants were males, and two were females. Nine

participants were right-handed, and one was completely

ambidextrous. Five surgeons reported extensive robotic

surgery experience, and five reported having some robotic

surgery experience. Operative duration was longer assist-

ing than for those performing the console role (142 ± 52

vs. 129 ± 37 min, p = 0.38); this was due to the different

definitions of procedure time for the assistant and console

surgeons (see ‘‘Materials and methods’’ section).

Self-reported metrics

Musculoskeletal pain was present across all measured

regions except for left finger and wrist (Table 2). Surgeons

performing assisting tasks only reported experiencing left

shoulder and neck pain. Postoperative pain was reported in

46 % of the cases in the right shoulder and neck among

surgeons performing console tasks. Musculoskeletal pain

and numbness were more frequently reported after per-

forming console than assisting cases; however, half of all

participants (two out of the four assisting and three out of

six console surgeons) experienced postoperative muscu-

loskeletal pain for at least one or more cases.

The SURG-TLX questionnaire mean rated workload

scores were significantly higher (p = 0.004–0.04) for

console compared to assisting tasks for mental demand,

temporal demand, task complexity, and situational aware-

ness (Fig. 3). Findings from paired analysis on the subset

of matched cases (n = 11) were similar, and workload was

statistically different between roles for temporal demand,

task complexity, and situational awareness. Rated overall

workload was 22 % higher (p = 0.01) during console tasks

than assisting tasks. Overall workload exceeded 50 (out of

100) for 62 and 23 % of the cases for console and assisting

surgeons, respectively. Comparison between overall

workload and weighted overall workload, as defined Wil-

son et al. [31], showed that the measures were highly

correlated (Adj. R2 = 0.92, p\ 0.001). Thus, discussion

will focus on the overall workload metric.

Table 1 Participant

demographics summarized as

mean, standard deviation,

minimum, and maximum

Console (n = 6) Assist (n = 4)

Mean ± SD Min. Max. Mean ± SD Min. Max.

Height (cm) 179 ± 7 168 190 175 ± 13 158 189

Weight (kg) 81 ± 11 59 89 79 ± 6 70 85

Age (years) 48 ± 7 37 57 40 ± 2 38 43

Overall surgery experience (years) 15 ± 8 3 25 7 ± 5 3 14

Glove size 7.5 ± 0.7 6.5 8.5 7.4 ± 0.6 6.5 8
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Posture and movement metrics

To illustrate postural patterns, an example of neck, chest,

and left/right shoulder posture angles for one participant

during an entire case is shown in Fig. 4, which shows two

distinct patterns. The first pattern was observed from the

start of the procedure to the 65th-min mark, where (1) neck

flexion was high and the amplitude of the movements was

large, and (2) shoulder elevation was low and amplitude of

movements was small. Second pattern was observed from

the 65th-min mark to the end of procedure, where (1) neck

flexion was near zero and movements were small in

amplitude, and (2) shoulders were elevated and had larger

amplitude of movements (Fig. 4). These distinct patterns

represented the rotation of roles by this participant, where

he first assisted in the procedure by the patient bedside and

then finished the procedure at the console. At the partici-

pating university teaching hospital, this rotation between

assisting and console tasks during the same procedure was

frequently used and was observed for two cases.

A summary of the biomechanical posture measurements

across all participants is shown in Tables 3 and 4. In

comparison with surgeons at the console, assisting sur-

geons exhibited 9� more flexed neck posture (p\ 0.05)

and 14�–41� larger (p\ 0.05) neck, torso, and right

shoulder range of motion (Table 3). Time in demanding

neck postures was over twice as high (p\ 0.001) for

assisting than console (Table 3). Measures of posture over

time (Table 4) differed significantly between console and

Table 2 Self-reported musculoskeletal pain and numbness experienced pre- and postsurgery by surgeons performing console (n = 13 cases) and

assisting (n = 13 cases) tasks

Preoperative Postoperative Frequency pain increased after surgery

Console (%) Assist (%) Console (%) Assist (%) Console (%) Assist (%)

L. finger numbness 0 0 0 0 0 0

R. finger numbness 23 0 31 0 8 0

L. wrist pain 0 0 0 0 0 0

R. wrist pain 23 0 31 0 8 0

L. shoulder pain 0 0 15 8 15 8

R. shoulder pain 23 0 46 0 23 0

Neck pain 23 8 46 15 23 8

Back pain 15 0 23 0 8 0

Note that for two cases, musculoskeletal pain in the R. shoulder was present postsurgery, but pain actually decreased from substantial to slight,

indicating pain in R. shoulder decreased between pre- and postsurgery

Fig. 3 Workload between console and assisting tasks (asterisk

indicates p\ 0.05) for mental demand (MD), physical demand

(PD), temporal demand (TD), task complexity (TC), situational

awareness (SA), distractions (D), and degree of difficulty (DoD)

Fig. 4 Example plot of participant postures over the entire procedure,

where negative posture angles indicate neck or torso extension

Surg Endosc (2017) 31:877–886 881
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assisting roles for every metric. Specifically, assisting

surgeons had 5.0 times more (p\ 0.001) neck and torso

movements and 1.6 times more (p\ 0.01) shoulder

movements than console (Table 4). In addition, console

surgeons were observed to have more (p\ 0.05) static

neck, torso, and left shoulder postures than assisting sur-

geons. Right shoulder postures were more (p\ 0.01) static

for assisting than console surgeons (Table 4). These pos-

tures are shown in Fig. 5A which demonstrate elevated and

unsupported right shoulder postures for the surgeon at the

console (shoulders should be lower and ideally resting on

elbow rests as shown in Fig. 1). Non-upright neck postures

are shown for the assistant in Fig. 5B.

Discussion

Surgical ergonomics and musculoskeletal injuries are rec-

ognized and significant issues in both laparoscopic and

robotic surgeries [17, 21, 27, 44]. Suboptimal robotic

operating room techniques may be detrimental to both

patient outcomes and the occupational health of the sur-

gical team [17, 21, 27, 44]. Results of the present study

provide support and quantitative intraoperative data that

can be used to help address the identified issues which

require intervention. Similar to studies in laparoscopic

surgery reporting prevalence of musculoskeletal symptoms

as high as 87 % among surveyed surgeons [17, 18], our

study in robotic surgery found that 50 % of participating

surgeons experienced postoperative pain for one or more

cases over the observed procedures (Table 2). Although

these numbers are lower than previously reported preva-

lence, key differences include (1) musculoskeletal symp-

toms were measured prospectively after each case instead

of retrospective surveys performed by previous works

[17, 18], and (2) surgeon population in this study per-

formed robotic surgeries which may overall improve sur-

geon ergonomics [3, 6].

Contrary to the conclusions reached in previous publi-

cations [3, 6], we found that the ergonomic benefits of

robotic surgery did not eliminate musculoskeletal pain

among console surgeons. Half of the participants on the

console experienced pain (three of six), and pain occurred

postoperatively in one or more body regions for 62 % of

the cases (8 out of 13 cases). These findings are similar to

Plerhoples et al.’s [44] survey study indicating that over

half of robotic surgeons believed robotic surgery led to

musculoskeletal symptoms and called for studies that

quantify ergonomic benefits and risk factors for robotic

surgeries.

The novel motion tracking sensors and methodology

used in the present study can identify potential causal

factors for the musculoskeletal pain and high physical

workload. Continuous tracking of postures facilitates (1)

quantifying of posture angles outside the range of recom-

mended safe posture angles [41], (2) as a proxy for the

Table 3 Mean and standard deviation (SD) of observed posture

angles among console (n = 12) and assisting (n = 13) surgeons

Console (n = 12)a Assist (n = 13)

Mean ± SD Mean ± SD

Mean angle (�)
Neck flexion/extension* 4 ± 9 13 ± 12

Torso flexion/extension 0 ± 8 -1 ± 3

L. shoulder elevation 24 ± 7 23 ± 8

R. shoulder elevation 26 ± 10 22 ± 8

Range of motion(�)
Neck flexion/extension* 24 ± 16 52 ± 13

Torso flexion/extension* 16 ± 10 30 ± 14

L. shoulder elevation 73 ± 39 98 ± 39

R. shoulder elevation* 59 ± 28 99 ± 40

% Time at demand angles

Neck flexion/extension* 24 ± 25 % 58 ± 31 %

Torso flexion/extension* 1 ± 1 % 4 ± 6 %

L. shoulder elevation 6 ± 7 % 9 ± 13 %

R. shoulder elevation 10 ± 17 % 8 ± 12 %

* Significant differences (p\ 0.05) between console and assisting

surgeons
a Although 13 cases were collected for console surgeons, motion

tracking data are missing for one case due to malfunctioning event

marker resulting in n = 12

Table 4 Mean and standard deviation of posture movements and

durations of static postures among console (n = 12) and assisting

(n = 13) surgeons

Console (n = 12)a Assist (n = 13)

Mean ± SD Mean ± SD

No. of movements per minute

Neck flexion* 1.0 ± 1.1 4.6 ± 1.6

Torso flexion* 0.3 ± 0.4 1.7 ± 0.7

L. shoulder elevation* 2.4 ± 0.9 3.7 ± 1.1

R. shoulder elevation* 2.1 ± 0.9 3.4 ± 1.1

Neck flexion* 1.0 ± 1.1 4.6 ± 1.6

% Time in static postures

Neck flexion* 63 ±7 % 38 ± 12 %

Torso flexion* 75 ± 7 % 55 ± 10 %

L. shoulder elevation* 52 ± 6 % 47 ± 6 %

R. shoulder elevation* 42 ± 10 % 54 ± 7 %

* Significant differences (p\ 0.05) between console and assisting

surgeons
a Motion tracking data are missing for one case resulting in n = 12
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frequency of prolonged muscle exertions due to static

postures, and (3) identify areas needing ergonomic inter-

ventions. For example, right shoulder pain during console

tasks occurred at an alarming rate of 46 % of cases and

motion tracking data found that shoulders were elevated

away from neutral at 24�–26� and were static for

42–52 % of the procedure. Elevated shoulders (Fig. 5A)

have been shown to lead to fatigue and injuries [45],

especially if sustained/static for extended periods of time

without sufficient rest or recovery time. Although

observed postures are less extreme than other similarly

high-risk occupations [46–48], it is important to note

physical symptoms may be exacerbated by the high

mental workload. Specific, perceived workload was high

(Fig. 3) and exceeded 50 % for 62 % of the observed

cases, a threshold that has been suggested to increase

errors in clinical tasks [49, 50]. This suggests either

operative posture or surgeon technique requires address-

ing or that current console designs are insufficient. The

robotic console allows adjustment of four different

parameters, namely raising or lowering the armrests and

headrest, the headrest can also be tilted to alter the flexion

of the neck, and the footswitch panel can be moved closer

to the body of further away. Although the console can be

repositioned to improve posture for individual surgeons,

suboptimal positioning may also constrain the surgeon’s

dexterity, and Craven et al. [27] observed that console

surgeons were not using armrests for 37 % of the robotic

procedures. These issues can be improved, but require the

surgeons to be aware of them and to be given suit-

able feedback (e.g., from motion tracking), education on

the significance of ergonomics, and appropriate training.

Although preliminary, comparison of postures between

console surgeons who did not report musculoskeletal pain

and those who did indicated that surgeons who do not

report pain had:

• Mean postures closer to neutral (neck: -2� vs. 6�, L.
shoulder: 24� vs. 29�, and R. shoulder: 21� vs. 26�),

• Spent less time in postures that increase ergonomic risk

(neck: 10 vs. 26 %, L. shoulder: 6 vs. 7 %, and R.

shoulder: 5 vs. 12 %), and

• Spent less time in static postures (neck: 61 vs. 64 %, L.

shoulder: 50 vs. 54 %, and R. shoulder: 43 vs. 44 %).

Although only based on six console surgeons, these

preliminary data suggest that novel intraoperative motion

tracking has potential to be translated into practice for

providing relevant feedback on surgeon ergonomics and

identifying surgeons who may be at risk of musculoskeletal

fatigue and injuries. Additionally, these data also have

potential to guide corrections to poor body posture and

reduce the risks.

The increasing adoption of robotic techniques for

prostatectomies [1] was hypothesized in this study to

adversely impact ergonomics for the assisting surgeon who

now must maneuver around the sometimes unpre-

dictable and bulky arms of the robot (Fig. 1). Motion

tracking findings showed that assisting surgeons spend

more time in demanding neck and torso postures than

console surgeons (Table 3); however, musculoskeletal pain

was reported less frequently by assisting than console

surgeons at 15 % of observed cases (Table 2). Although

this may be partially due to the younger age of assisting

surgeons, the time-based motion tracking highlights addi-

tional factors in work constraints that are reducing the

assisting surgeon’s risk of musculoskeletal pain during

RARP. Specifically, assisting surgeons were observed to

have higher range of motion (Table 3), more frequent

posture movements (Table 4), and generally spend less

time in static postures (Table 4). In addition, workload was

significantly less (Fig. 3) for assisting than console sur-

geons, e.g., overall workload was 22 % lower. These

Fig. 5 Photographs of console

(A) and assistant (B) surgeon
positions that increase

musculoskeletal loads and may

be associated with

musculoskeletal symptoms
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findings suggest that the ergonomic risk factors, static

postures and perceived workload, have an important impact

of the reported musculoskeletal fatigue and pain, more so

than other factors (e.g., forceful exertion, duty cycle) in

other industries. However, it is important to note assisting

tasks were observed to require neck postures that increase

injury risks (Table 3) for 58 % of the procedure which may

be associated with the prevalence of reported neck pain

among assisting surgeons. Non-upright neck postures can

be observed in Fig. 5B, where both patient and monitor

positioning constrain the assistant’s neck and upper-body

positioning.

Wearable intraoperative motion tracking has potential

for identifying ergonomic risks in the operating room (OR)

and can be used to assess the impact of new interventions,

workplace layout, and surgical techniques. However, sev-

eral limitations in the current technology warrant further

examination. Specifically, motion tracking data are (1)

collected prospectively and require a trained researcher,

and (2) do not differentiate whether the musculoskeletal

efforts of static postures were demanding or not. However,

the present study demonstrates that this technology is

feasible and provides actionable data and feedback to

surgeons, e.g., degree of static postures or arm elevation.

Findings in this study focus on RARP; however, this

technology and similar ergonomic concerns have wider

implications for other surgical specialties performing

complex robotic procedures. Finally, predictors for mus-

culoskeletal fatigue and injuries are multifactorial and are

influenced by individual, environmental, and psychosocial

factors. Due to the limited sample size and the duration of

the study, only trends between measured ergonomics and

postoperative musculoskeletal symptoms are identified.

However, strong evidence exists linking workplace ergo-

nomics and work duration with musculoskeletal injuries

[45, 51, 52] and this technology can be used to identify and

address these risk factors.

In conclusion, robotic surgery currently lacks objective

research data assessing the important ergonomic issues of

musculoskeletal fatigue and injuries in the operating room.

Current ergonomic recommendations require further anal-

ysis of the unique work exposures in robotic surgery

including the static work constraints, awkward postures,

and high workload. Novel intraoperative motion wearables

can quantify ergonomic deficiencies in the operating room

and provide relevant personalized feedback (Fig. 5). Future

application of this technology includes workplace inter-

ventions and identifying surgeons who are at risk. This will

enable corrections to suboptimal ergonomic posture that

aims to reduce these prevalent occupational health risks.
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30. Beurskens AJ, Bültmann U, Kant I, Vercoulen JH, Bleijenberg G,

Swaen GM (2000) Fatigue among working people: validity of a

questionnaire measure. Occup Environ Med 57(5):353–357

31. Wilson MR, Poolton JM, Malhotra N, Ngo K, Bright E, Masters

RS (2011) Development and validation of a surgical workload

measure: the surgery task load index (SURG-TLX). World J Surg

35(9):1961–1969

32. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré
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