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Abstract

Background The loss of haptic information that results

from the reduced-access conditions present in minimally

invasive surgery (MIS) may compromise the safety of the

procedures. This limitation must be overcome through

training. However, current methods for determining the

skill level of trainees do not measure critical elements of

skill attainment. This study aimed to evaluate the useful-

ness of force information for the assessment of skill during

MIS.

Methods To achieve the study goal, experiments were

performed using a set of sensorized instruments capable of

measuring instrument position and tissue interaction forces.

Several force-based metrics were developed as well as

metrics that combine force and position information.

Results The results show that experience level has a

strong correlation with the new force-based metrics pre-

sented in this article. In particular, the integral and the

derivative of the forces or the metrics that combine force

and position provide the strongest correlations.

Conclusions This study showed that force-based metrics

are better indications of performance than metrics based on

task completion time or position information alone. The

proposed metrics can be automatically computed, are

completely objective, and measure important aspects of

performance.

Keywords Force sensing � Skills assessment �
Performance metrics � Minimally invasive surgery �
Sensorized instruments

The acquisition of technical skill in performing a difficult

task is a complex phenomenon in which the time it takes to

become proficient is a function of many variables,

including the amount of practice, the kind of practice, and

the type of feedback provided [1]. This is especially true

for the surgical skills required to perform minimally

invasive surgery (MIS), a type of procedure in which the

surgery is performed through small incisions using long,

slender instruments that pivot about the incision point.

With the introduction of MIS, the rise in the number of

surgery-related injuries created an awareness of the need to

measure technical competence properly [2] and to develop

better training methods. Achieving technical competence

in MIS procedures is not easy. The learning process is

affected by many perceptual and motor limitations that

steepen the learning curve [3–5]. This has led to the

introduction of new requirements for training, in which all

residents need to achieve certain competency levels before

operating on humans [5].

Thanks to new technologies that allow for the recording

of activities during training, it currently is possible to
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develop metrics and quantitative descriptors that charac-

terize technical performance. However, identifying how

best to quantify technical performance is the subject of

extensive research, and no ideal solution has been found.

To understand how motor skills are acquired, Fitts and

Posner proposed three stages of motor skill development

[6]: the cognitive phase, which is what students do in class

(read, watch, and listen); the integrative phase, in which

students start to apply the knowledge with some guidance

but with a lack of fluidity; and finally, the automatous

phase, in which fully independent learning occurs with no

supervision or guidance.

Recent studies investigating goal-directed aiming pro-

vide deeper insight into how motor skills are developed and

how they are affected by extended practice schedules.

Woodworth’s two-component model shows that goal-

directed aiming is composed of two phases: the prepro-

grammed phase (initial adjustment to bring the limb into

the vicinity of the target) and the homing phase (small

adjustments required to reach the target accurately) [7].

Many variations on this model have been proposed to

reflect more accurately the intricacies of skilled limb

control and the effects of practice [7, 8]. In particular, it has

been shown that practice has two effects: (1) trainees learn

to adapt the initial impulse by accelerating sooner and

more aggressively in order to position the limb closer to the

target faster, and (2) trainees are able to correct aiming

errors faster during the homing phase [7]. Limb motion is

controlled directly by adjusting muscular forces. Variabil-

ity in the muscular forces increases proportionally with the

muscular forces required to move the limb [8].

Based on the aforementioned factors, a multiple-process

model of limb control is presented by Elliott et al. [8], which

builds on Woodworth’s two-component model and its vari-

ants. In this model, the first component refers to a planning

phase that requires the person to optimize the speed and

acceleration of the limb (by adjusting muscular forces) in

order to place the limb near the target and a corrective

component activated late in the movement to correct for

differences between the limb and the target position. As

trainees learn to control muscular forces better through

practice, spatial variability decreases, resulting in greater

accuracy at faster speeds. However, the learning process

requires trainees to try various things and sense what it feels

like to achieve different outcomes at each attempt [9].

As learning occurs by doing, the most important vari-

able for skill acquisition is for how long the trainee prac-

tices [10]. However, trainees learn at different rates,

highlighting the need to identify objectively the level of a

trainee’s acquired technical competence. Unfortunately,

motor skills are not easy to measure [6, 11], and consid-

erable controversy exists regarding the best method for

assessing motor skills.

Validated assessment methods

The standard method of assessing motor skills in health

education is through the use of checklists or standard rating

scales. Global rating scales (GRS) in general have been

proposed for use in many areas [12, 13]. A more standard-

ized method of laboratory training is called the objective

structured assessment of technical skill (OSATS), which

combines checklists and GRS to provide a structured eval-

uation that attempts to be objective and readily accessible

and allows the measurement of a proper learning curve [6,

12]. These performance metrics have the following limita-

tions: they are subjective [11, 14, 15]; they provide no

feedback during the learning of complex skills [16]; they are

not trainee or procedure specific [13]; and they require extra

cost and time due to the need for an evaluator [11].

The global operative assessment of laparoscopic skills

(GOALS) has been accepted and validated as a training

method for MIS [17]. With the use of GOALS, a trained

expert assesses performance by watching a video of the

task and provides a score on five elements: depth percep-

tion, bimanual dexterity, efficiency, tissue handling, and

autonomy. Although the results are no longer biased

because it is possible to perform a blind assessment, the

evaluation still is subjective and requires a significant

amount of time on the evaluator’s part.

Another validated training method is the McGill Inani-

mate System for Training and Evaluation in Laparoscopic

Surgery (MISTELS) [18], which has been incorporated

into the fundamentals of laparoscopic surgery (FLS) cur-

riculum as the manual skills component. The MISTELS

method requires trainees to achieve proficiency for five

basic tasks performed inside a physical simulator. A per-

formance metric is calculated based mostly on the task

completion time together with an evaluation of the final

outcome of the task. Unfortunately, the evaluation of a final

outcome still is a subjective measure that requires an expert

evaluator, and it has been criticized because beginner

trainees have not reached the automatous phase and should

not be judged based on task completion time [17].

To address some limitations of the FLS curriculum,

research has focused on the development of metrics that

automatically assess performance during the entire task.

The imperial college surgical assessment device (ICSAD)

was developed for this purpose. It uses position sensors

attached to the hands of the trainee and computes perfor-

mance based on task completion time, number of move-

ments, and total path length [19]. The ICSAD system still

is limited in that it can evaluate only elements of perfor-

mance related to motion and time and in that trainees must

wear large sensors. However, a significant advantage of

ICSAD is that it can be used in any training environment,

including that of simulators.
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Simulator-based training

Simulator-based training has been proposed as a means of

developing surgical skills in MIS because the type of skills

that need to be learned for MIS are easily trained with

simulators [5]. Three different types of simulators are used:

training boxes or physical simulators, virtual reality (VR)

simulators, and augmented reality (AR) simulators. An

excellent review of simulators is presented by Schreuder

et al. [5].

Physical simulators consist of a training box that mimics

the patient’s body, with instruments entering through small

openings (e.g., Simulab LapTrainer, Simulab Corporation,

Seattle, WA [4]). These simulators have the advantage of

being low cost, portable, adaptable, simple [4], and capable

of providing realistic haptic feedback [20]. The main lim-

itation of physical simulators is that they do not provide a

measure of performance other than task completion time.

Virtual reality simulators are those that use a computer

program to create a model of the surgical environment and

the instruments. These types of simulators address the

problem of lack of feedback by computing performance

metrics based on movement of the instruments or the

trainee’s hands and their interactions with the virtual

environment [21]. However, these simulators usually are

costly and lack realistic haptic feedback [5].

Augmented reality simulators solve many of the afore-

mentioned limitations by combining real environments

with realistic haptic feedback and software programs that

can enhance the surgical view, track instrument motion,

provide performance metrics, and track trainee progress

(e.g., the ProMIS system, CAE, Saint-Laurent, Quebec).

In general, for simulators to be effective, they must

provide feedback during learning, allow trainees to repeat

each skill, adapt progressively to more difficult tasks,

provide individualized learning in a controlled environ-

ment, and provide well-defined outcomes [13]. However,

this requires the availability of performance metrics that

truly reflect performance.

Background on performance metrics

A significant amount of work has focused on finding per-

formance metrics, which are required to determine the level

of experience that surgeons and trainees demonstrate when

performing specific tasks. The most commonly used per-

formance metrics are presented in the following sections.

Temporal

Measurement of task completion time is a common way of

assessing performance. Most currently used simulators and

metrics use time in one way or another to measure skill.

Task completion time has been used for skills assessment

in many studies [3, 16, 19, 20, 22–24] and may provide an

indication of trainee skill levels when combined with other

performance metrics. Looking at the time between subtasks

[14] gives a measure of hesitation.

Outcome metrics

Outcome or qualitative metrics are those that assess the

final outcome of each task or the procedure as a whole.

These metrics do not analyze how the procedure was per-

formed but instead are concerned only with the end result.

Examples of this type of metric include the number of

errors [22, 25], the number of attempts required to achieve

the desired outcome, the quality of the outcome [14], and

the specific criteria defined for each specific task [15].

Although the implementation of outcome metrics

requires less time commitment on the part of the evaluator

than that of the metrics based on checklists or standard

rating scales, the process is still time consuming and sub-

jective. Furthermore, the type of assessment must be very

specific to the task being performed.

Motion-based metrics

Motion-based metrics are the metrics most commonly used

for objective measurement of performance. The two most

commonly used motion-based metrics are the number of

movements [15, 19, 23] and the distance traveled (path

length) [3, 20, 23, 25, 26]. The path length may be com-

puted as follows [20]:

P ¼
ZD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

� �2

þ dy

dt

� �2

þ dz

dt

� �2
s

dt; ð1Þ

where D is the task duration and the variables in the

brackets correspond to the first derivative of the motion in

the three Cartesian directions: x, y, and z.

Analysis of surgical gestures using hidden Markov

models [24, 27] and multivariate autoregressive models

[28] has been implemented to measure skill levels

throughout a task. However, creating these models requires

each step of the procedure to be categorized during the

analysis. Other metrics that can be computed from position

data are presented in the following sections.

Velocity and speed

Many performance metrics currently used are based on

velocity and speed values. Velocity often is computed as

the first derivative of the motion profile, whereas speed

considers only the magnitude of the velocity vector. The
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metrics proposed in the literature include a normalized

speed metric (computed as the mean speed divided by the

maximum speed) [29], the mean speed [3], the peak speed

[3, 16], the instantaneous speed vector [26], the three-

dimensional instrument tip velocity [30], the number of

changes in velocity over time, and the number of peaks in

speed [29]. The movement arrest period ratio (MAPR),

used in Rohrer et al. [29] as a measure of how often the

speed is near zero (measurement of hesitation), is defined

as the proportion of time that the movement speed exceeds

a given percentage of the peak speed.

Acceleration

Another metric commonly used is acceleration, computed

as the second derivative of the motion profile. The metrics

based on acceleration include the number of accelerations

and decelerations [25], the mean acceleration [3], and the

maximum acceleration [3]. Another metric is the integral

of the acceleration vector (IAV), which measures the

energy expenditure and is defined by Cavallo et al. [3] as

follows:

IAV ¼
ZD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x

dt2

� �
þ d2y

dt2

� �
þ d2z

dt2

� �s
dt: ð2Þ

Jerk

The third derivative of the motion profile, known as jerk,

used by several researchers as a measure of motor skills,

usually is applied for assessing the progress of certain

diseases such as neurodegenerative diseases, injuries to the

jaw [26], or the effects of experiencing a stroke [29]. Jerk

has been shown to discriminate between healthy patients

and those with motor dysfunctions and can be used to

identify progress during learning [26]. It was proposed as a

means of assessing MIS skill development by Cotin et al.

[20] and by Hwang et al. [31]. Unfortunately, the latter

study had insufficient power and failed to determine whe-

ther the jerk exhibited by novices differed from that

exhibited by experts.

A limitation of the jerk metric is that it is inversely

dependent on the second power of task completion time.

Hence, it is not completely independent of task duration.

Several different ways of normalizing jerk have been

proposed by Hogan and Sternad [32], and they show that a

dimensionless metric remains constant as the amplitude of

the motion (Am) and that the duration varies. Jerk is sen-

sitive to increases in the number of peaks, the amplitude of

the peaks, and the periods of arrest, providing a real

measure of smoothness. Based on this, a three-dimensional

jerk metric is presented by Cavallo et al. [3]:

Jerknorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D5

2A2
m

D

0

d3x

dt3

� �2

þ d3y

dt3

� �2

þ d3z

dt3

� �2
 !

dt

vuut :

ð3Þ

Care still must be taken when the jerk metric is used to

assess performance. It is important to note that smoothness

will be measured as high if large pauses exist between

movements, which makes jerk counterintuitive as a per-

formance measure [29]. Therefore if a novice predomi-

nantly uses the dominant hand, the motion profile will

show higher jerk than for the other hand.

Force-based metrics

Similar to position data, force data can be analyzed in

many ways. New instruments and devices that allow force

information to be measured during training have initiated

the development of performance metrics that reflect the

ability to be gentle or to apply sufficient force when

required. Very little work has been done on the use of

force information for skills assessment and training in

MIS, limited by the capability to measure force in real

surgery.

Applied forces may be an important measure to consider

in characterizing trainee skill level, but this approach is not

straightforward in determining what distinguishes an expert

from a novice because ideal applied forces are task

dependent [14]. Some VR simulators have been developed

with objective assessment metrics based on the maximum

forces applied [14] or on grasping with excessive pressure

[21]. A study by Hwang et al. [31] presented a laparoscopic

grasper instrumented with a force/torque sensor and strain

gauges on the handle of the instrument to measure the

applied forces during real surgical procedures. Unfortu-

nately, apart from its ability to measure only the forces

applied from outside the patient’s body, this study was

underpowered, and no significant differences were found

between the forces applied by novices and experts.

An interesting study by Tang et al. [33] showed that

trainees found it difficult to be gentle with tissue, a phe-

nomenon often called ‘‘the heavy hands’’ of the beginner.

This study found that force-related errors (too much or too

little) dominated 58 % of consequential errors and 31 % of

inconsequential errors.

Some of the force-based metrics proposed in the liter-

ature for skills assessment in MIS include the average force

[16] and the maximum or peak force. The latter value is

affected by outliers, so care must be taken when the

information is interpreted. This metric did not show a

difference between experience levels in the study of Du-

browski et al. [16].
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Combination of metrics

Because performance is not affected by one factor alone,

combining different performance metrics might provide a

better way of measuring outcome. To compare various

performance metrics, the metrics need to be within the

same range and ideally unitless.

Different ways of normalizing performance data have

been proposed in the literature. The method presented in

Cotin et al. [20] and Stylopoulos and Vosburgh [34]

compares each individual parameter with those obtained

from a group of experts. This method provides a way of

generating a combined performance metric from individual

metrics, and an analysis using this method is presented by

Trejos et al. [35]. This method for combining metrics is

limited by its use of data from the expert group as part of

the equation for determining the overall metric, which

significantly impairs the objectivity of the metric.

Materials and methods

The aforementioned review shows a very clear need for the

development of performance metrics that are automatically

computed based on motion or force data, that are objective

and do not rely on the user’s input for assessment, that

provide a measure of the performance throughout the task

and not only the final outcome, and that provide a measure

of aspects important to consider during surgery such as

safety and dexterity. The following section describes an

experimental evaluation that aimed to identify new per-

formance metrics that meet these requirements and to

establish how well they correlate with trainee experience

level.

Experimental setup and methods

The sensorized instrument-based minimally invasive sur-

gery (SIMIS) system [36] used in these experiments is

composed of two sensorized laparoscopic instruments

capable of measuring tool–tissue interaction forces and the

position of the instrument tip. The system includes cus-

tomized software that allows the following data to be

recorded for each instrument: grasping force, torsion about

the instrument axis, Cartesian forces, and position data in

all six degrees of freedom. It also can record a video of the

entire trial synchronized with the force and position data.

Because a large number of subjects were needed to

complete these trials, a more robust version of the sensorized

instruments was used in these experiments [37]. The increase

in robustness reduced the sensitivity for sensing axial forces.

Because the instruments enter the training box through side

ports, the maximum forces are applied perpendicular to the

instrument shaft and not in the axial direction. Due to the

small magnitude of the axial forces and the increased noise

level present in the instruments used, it was decided to

consider only the forces acting perpendicular to the shaft

(i.e., in the x and y directions). These two forces were com-

bined into one force value for the analysis.

To perform the experiments, it was first necessary to

develop an appropriate experimental setup. Many simple tasks

can be performed easily in a minimally invasive manner

without force feedback. These tasks were not adequate to

achieve the objectives of this work because they are too

simple.

A complex procedure that required completion of both

technical and cognitive skills and that was composed of

tasks shown to require some form of force information was

developed. The procedure involved five tasks: palpation of

tissue to locate a lesion or tumor, intracorporeal suturing

and knot tying, and cutting near a critical anatomic feature.

The setup comprised foam and silicone of different

compositions. A 1-cm cylinder made of silicone rubber

(Sorta-Clear 18, Shore hardness 18A; Sculpture Supply,

Etobicoke, ON, Canada) was embedded in a tissue phan-

tom (from the Chamberlain Group, Great Barrington, MA)

to mimic soft tissue with an embedded tumor. A replace-

able top skin surface made of soft rubber (EcoFlex, Shore

hardness OO-30; Sculpture Supply Canada) was used to

hide the lump visually. A plastic frame, designed and built

from ABS plastic, was used to attach the model to the

laparoscopic box and hold it in place. The locations of the

tumors were varied randomly, and the subjects were blin-

ded to the locations. This setup allowed participants to

perform a complex procedure composed of the five fol-

lowing tasks:

Task 1: Palpation The SIMIS instruments were used to

palpate the tissue to locate the tumor. This task usually was

completed when they could see a lump (Fig. 1A).

Task 2: Cutting The instrument in the dominant hand was

replaced by a set of standard laparoscopic scissors, which

were used to cut the thin skin covering the tumor (Fig. 1B).

Task 3: Tissue-handling The SIMIS instruments were

used to remove the tumor (Fig. 1C).

Task 4: Suturing The instruments were used to drive a

needle through the tissue (Fig. 1D).

Task 5: Knot-tying An intracorporeal surgeon’s knot

composed of one double knot and two single knots was tied

(Fig. 1E, F).

Institutional review board approval was obtained from

Western University before the trials began. A total of 30

subjects (7 women and 23 men) performed the complex

procedure four times. All the subjects were right-handed.

As described in Table 1, the experience of the subjects

varied based on background, postgraduate year (PGY)

level, and years of practice.
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Data processing

The videos of all 120 trials were observed and analyzed

as follows. The start and end times of each task were

identified and recorded. Time frames were recorded for

any events that were out of the ordinary (e.g., if the

needle was dropped and no longer visible, the subject

took a break, the instruments needed fixing, or the skin

lifted off of the setup and needed to be replaced). The

time frames corresponding to actions between the tasks

were identified. This process was followed to reduce

variability in the data because the subjects all were unique

in their way of removing the instruments from the setup

or dropping the tumor to the side. Tasks 4 and 5 had no

dead time between them.

As described later, some of the metrics proposed in

this article rely on computation of the first, second, and

third derivatives of the force and position data.

Although the data were low-pass filtered at 10 Hz when

recorded by the SIMIS software, this filtering was

observed to be insufficient when the data needed to be

differentiated (no additional filtering was implemented

between derivatives). Therefore, a second-order Butter-

worth filter with a cutoff frequency of 1.25 Hz was

applied to the data before computation of the first

derivative. The MATLAB (The Mathworks, Inc.,

Natick, MA) filtfilt function was used, which filters data

in the forward direction and then refilters the output in

the reverse direction so that phase distortion is elimi-

nated. A MATLAB script was run to separate the data

into the different tasks, compute the total range of

forces applied in each direction, and create individual

plots for evaluation. The plots then were reviewed to

identify any discrepancies in the data. The data then

were processed to compute the performance metrics for

the Cartesian force and the grasping force, as detailed

in the following sections.

Position-based metrics

The position-based metrics proposed in the literature were

computed as follows:

1. Total volume was computed by calculating the

maximum and minimum positions in each direction

and then multiplying the resulting three ranges of

motion.

2. Interquartile volume was calculated by multiplying the

interquartile ranges (IQRs) in each direction (using the

iqr function from the MATLAB Statistics Toolbox).

3. Velocity was computed by calculating the first deriv-

ative of the motion profile for x, y, and z (using the

Fig. 1 Steps in a complex procedure composed of five tasks. A Palpate tissue to identify tumor location. B Cut top surface to expose the tumor.

C Remove tumor. D Pass a suture. E, F Tie and tighten an intracorporeal surgeon’s knot

Table 1 Categorization of subject experience levels

Basic

experience

level

Detailed

experience level

Description

Novice

(n = 17)

1 (n = 6) No medical background (e.g.,

engineers)

2 (n = 6) Medical students

3 (n = 5) PGY 2–3 and surgeons with no

MIS training

Expert

(n = 13)

4 (n = 2) PGY 4–5 with training

5 (n = 5) Fellows with training

6 (n = 6) Expert surgeons

PGY postgraduate year; MIS minimally invasive surgery

Surg Endosc (2014) 28:2106–2119 2111
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MATLAB diff function with a sampling time of

0.02 s). The three velocity components then were

combined into a single speed magnitude through the

Euclidean norm of each data point. The tip speed

profile then was used to compute the following

metrics:

(a) The consistency of the speed was calculated as

the standard deviation of the tip-speed profile.

(b) The number of peaks in the speed was calcu-

lated using the MATLAB findpeaks function to

find the number of local peaks in the tip-speed

profile.

(c) The peak speed was calculated as the maximum

of the tip-speed profile.

(d) The average speed was calculated as the mean of

the tip-speed profile.

(e) The MAPR was calculated as the proportion of

time that the movement speed exceeded 25 % of

the maximum speed.

(f) The path length was approximated by following

Equation 1 and using the MATLAB trapz

function.

4. Acceleration was computed by differentiating the

velocity profiles in each direction and then combining

the components using the Euclidean norm. This value

was used to calculate the following metrics:

(a) The acceleration consistency was calculated as

the standard deviation of the acceleration profile.

(b) The peak acceleration was calculated as the

maximum of the acceleration profile.

(c) The average acceleration was calculated as the

mean of the acceleration profile.

(d) The IAV was computed as the integral of the

acceleration profile as defined in Equation 2.

5. Normalized jerk was calculated by differentiating the

acceleration profile in each direction and then com-

bining the components using Equation 3.

Force-based metrics

The average and peak forces for both the Cartesian and the

grasping forces were computed in this analysis. Other

performance metrics that have not been used for skills

assessment and training in MIS also were implemented as

follows:

1. Force range The difference between the minimum and

the maximum forces applied during a task is important

because it encompasses the magnitude of the forces in

both directions. The force range for the Cartesian and

the grasping forces was computed.

2. Interquartile range This metric takes into account the

50 % of the data closest to the median so that outliers

do not have an effect on the overall metric.

3. Integral of the force This value provides a measure of

high forces and the amount of time that forces are high.

The integrals of the grasping and the Cartesian force

profiles also were approximated using the MATLAB

trapz function with a sampling time of 0.002 s.

4. Force derivatives The first and second derivatives of

the force could indicate consistency of force applica-

tion. The vector of force derivatives was computed

using the diff function. The derivative metric (dFmetric)

then was calculated using the following equation:

dFmetric ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2F2
iqr

D

0

dF

dt

� �2

dt

s
; ð4Þ

where Fiqr is the IQR of the force profile. Similarly, the

vector of the second derivative of the force was computed

by differentiating the first derivative, and the second

derivative metric (d2Fmetric) was computed using the

following equation:

d2Fmetric ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3

2F2
iqr

D

0

d2F

dt2

� �2

dt

vuut : ð5Þ

5. Smoothness of the applied forces The third derivative

of the force provides a measure for the regularity and

uniformity of the contact forces. The third derivative

metric (d3Fmetric) was calculated using the following

equation:

d3Fmetric ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D5

2F2
iqr

D

0

d3F

dt3

� �2

dt

vuut : ð6Þ

Combined metrics

Combined force and position metrics were implemented to

account for various important skills that need to be

developed together. In the study of Beyer et al. [17], the

GOALS score is computed as a combination of several

different metrics. Following those same metrics and con-

sidering what could be measured with the SIMIS system,

the following metrics were considered to be important:

1. Depth perception As a measure of depth perception,

the GOALS score looks at overshooting targets. This

can be related to motion smoothness (i.e., the jerk

metric).

2. Bimanual dexterity Because the MAPR calculates the

percentage of time that the instrument is being used, a

measure of bimanual dexterity was developed by

subtracting the MAPR value for the nondominant hand

from the MAPR value for the dominant hand.
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3. Efficiency As a measure of efficiency, the total volume

used for each task and the number of peaks in speed

were considered important.

4. Tissue handling This is a measure of how roughly the

tissue is handled or whether any tissue damage occurs.

The metrics considered for tissue handling included

the integral and the derivative of the grasping and the

Cartesian forces for both instruments.

Considering the metrics for the left and right hands, this

resulted in a total of 15 metrics that needed to be combined.

Because all the metrics have different units and different

ranges, to combine them properly, the first step requires a

normalization of each metric so that those metrics with

higher values do not dominate over the remainder. To

achieve this normalization, the following equation was

implemented:

zi ¼
Pi

2Pi
zi\5

5 zi� 5

�
; ð7Þ

where zi is the normalized version of the ith metric, Pi is

the value obtained by each trainee for that particular

metric, and Pi is the trimmed mean of the data set (i.e., the

mean of the values without the top three maximum and

minimum values). This equation ensures that the closer the

value is to 1, the closer it is to the mean of the entire group

without consideration of the outliers. Furthermore, each

metric is capped at 5 to ensure that the outlier data do not

dominate. A total metric for each trainee then is computed

as follows:

z ¼
XN

i¼1

aizi; ð8Þ

where N is the total number of metrics being combined

and ai represents the scaling coefficients that may be used

to balance the influence of each parameter. By adjusting

the value of ai, it is possible to modify the weight or

importance of each individual metric in the total com-

bined metric. These equations allow the metrics to be

combined such that one metric does not dominate over the

others and such that they can be adapted to the task being

performed.

To determine the scaling factors, an optimized scaling

vector was calculated with the goal of maximizing

Spearman’s rho correlation with the experience level.

The MATLAB fmincon function was used to find opti-

mal parameters constrained between a lower and an

upper bound (set at 0 and 1, respectively). It was used to

find the set of scaling values that generated the mini-

mum correlation (maximum negative correlation)

between the metric and the experience level for each of

the tasks.

Data analysis

The Statistical Package for the Social Sciences, version 19

(SPSS, Chicago, IL, USA) was used to perform statistical

analysis of the data. An initial analysis was performed by

comparing the metrics for the expert and the novices using

an analysis of variance. The results, presented in [37], show

that most metrics were able to show a statistically signifi-

cant difference at the novice versus expert levels. The

results presented in this article are aimed at measuring the

correlation between the metrics and the six detailed levels

of experience (Table 1). To measure this dependency,

Spearman’s rho correlation was computed to determine

how well each of the different metrics correlated with the

six experience levels. The results are presented in the fol-

lowing sections.

Results

The first analysis of the results showed that one of the

experienced subjects created outlier data during the pal-

pation task (task 1). This subject had difficulty locating the

tumor at every try and needed to make as many as five

incisions to locate the tumor. Because this was a statisti-

cally significant outlier confirmed using DesignExpert

(based on the externally studentized residuals), it was

removed from the data for the analysis of task 1 only.

The results of the Spearman’s rho correlations between

the metrics evaluated and the experience level are shown in

Table 2. The average task completion time results also are

presented in Fig. 2. The following sections highlight the

results in more detail.

Time

Time showed a significant correlation with experience

level in all tasks, decreasing as experience increased.

The correlations were weak for the simpler tasks (-0.242

to -0.336 for tasks 1 to 3; p \ 0.05) and became stronger

as the task complexity increased (-0.437 for task 4 and

-0.769 for task 5; p \ 0.05). As shown in Fig. 2, a con-

sistently decreasing trend could not be observed for any of

the tasks. The suturing and knot-tying tasks (tasks 4 and 5)

showed a plateau after experience level 4, which is the

point at which students are considered trained in basic MIS

tasks (Table 1).

Position

Not all of the position metrics showed significant correla-

tions. Table 2 shows that the number of peaks in speed and
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the normalized jerk exhibited significant correlations for all

of the tasks with a p value lower than 0.05. Correlations

between experience level and speed peaks were weak for

the simpler tasks (-0.237 to -0.345 for tasks 1 to 3),

intermediate for task 4 (-0.445 for the left hand and

-0.434 for the right hand), and strong for task 5 (-0.767

for the left hand and -0.772 for the right hand). Similarly,

the correlations between the experience level and the jerk

were weak for the simpler tasks (-0.243 to -0.341 for

tasks 1 to 3), intermediate for task 4 (-0.409 for the left

hand and -0.406 for the right hand), and strong for task 5

(-0.750 for the left hand and -0.736 for the right hand).

A closer look at the speed peaks showed that they were

directly coupled with the task completion time, as evi-

denced by the same shaped graphs for all the tasks. The

average normalized jerk provided a better measure of

performance, as shown in Fig. 3. It can be observed in this

graph that most of the tasks had a decrease in the jerk as the

experience level increased. However, this decrease also

tended to plateau after experience level 4. Some of the

correlations found with the position metrics were slightly

stronger than the correlations found with task completion

time.

Force

Compared with time and position, stronger correlations

were observed in some of the force-based metrics, as

shown in Table 2. The correlations between the force-

based metrics and the experience levels for tasks 1–3 were

weak, with significant correlations of -0.18 to -0.42. The

correlations were significant for most of the metrics during

Table 2 Spearman’s rho correlation between the six levels of experience and each metric evaluateda

Metric Task 1: Palpation

(LH, RH)

Task 2: Cutting

(LH only)

Task 3: Handling

(LH, RH)

Task 4: Suturing

(LH, RH)

Task 5: Tying

(LH, RH)

Task completion time 20.336 20.242 20.297 20.437 20.769

Total volume 20.182, 20.197 0.020 -0.054, -0.122 20.331, 20.223 20.541, 20.528

Speed consistency 20.220, 20.202 -0.114 -0.132, -0.116 20.250, -0.177 20.465, 20.357

Speed peaks 20.338, 20.345 20.237, 20.330, 20.302 20.445, 20.434 20.767, 20.772

Maximum velocity 20.062, -0.058 0.121 0.010, 0.150 20.206, 0.006 20.230, 0.024

Mean velocity 0.175, 0.291 0.117 0.171, 0.260 0.207, 0.546 0.270, 0.562

MAPR 0.151, 0.211 -0.092 0.095, -0.018 0.334, 0.262 0.481, 0.436

Path length 20.305, 20.276 -0.154 -0.188, -0.195 20.348, 20.316 20.725, 20.680

Acceleration consistency 20.235, 20.216 -0.138 -0.148, -0.127 20.233, -0.173 20.465, 20.340

Maximum acceleration 20.102, -0.075 0.120 -0.005, 0.104 -0.142, -0.027 20.196, 0.079

Mean acceleration 0.096, 0.255 0.204 0.151, 0.253 0.214, 0.555 0.252, 0.525

IAV 20.319, 20.283 -0.155 20.199, 20.180 20.342, 20.316 20.725, 20.671

Jerk 20.341, 20.333 20.243 20.296, 20.268 20.409, 20.406 20.750, 20.736

IQR volume 2.0153, -0.065 0.156 0.081, -0.031 20.319, -0.149 20.285, 20.269

Grasp mean 20.251, -0.038 0.039 -0.034, -0.112 20.352, 20.290 20.238, 20.191

Grasp maximum 20.336, -0.107 0.024 0.034, 20.322 20.388, 20.349 20.369, 20.337

Grasp IQR 20.181, 0.096 0.106 0.029, -0.045 -0.164, 20.234 -0.142, -0.179

Grasp integral 20.320, 20.190 -0.082 -0.178, 20.386 20.520, 20.523 20.678, 20.666

Grasp first derivative 20.386, 20.418 -0.053 -0.130, 20.363 20.393, 20.524 20.695, 20.721

Grasp second derivative 20.330, 20.374 -0.139 20.193, 20.384 20.411, 20.514 20.748, 20.769

Grasp third derivative 20.306, 20.352 -0.179 20.227, 20.357 20.408, 20.505 20.763, 20.782

Cartesian forces mean 20.137, -0.142 20.257 -0.109, -0.054 -0.159, 20.418 20.406, 20.397

Cartesian forces maximum 20.284, 20.356 -0.080 -0.059, -0.170 20.304, 20.439 20.371, 20.402

Cartesian forces IQR 0.044, 0.025 -0.029 0.011, -0.050 -0.109, 20.278 20.488, 20.378

Cartesian forces integral 20.293, 20.313 20.376 20.311, 20.339 20.454, 20.567 20.755, 20.780

Cartesian forces first derivative 20.355, 20.381 -0.129 20.203, 20.256 20.459, 20.437 20.729, 20.652

Cartesian forces second derivative 20.322, 20.315 20.228 20.260, 20.290 20.470, 20.460 20.769, 20.729

Cartesian forces third derivative 20.303, 20.291 20.247 20.283, 20.302 20.465, 20.450 20.776, 20.748

Correlations in bold type are significant with p \ 0.5

MAPR movement arrest period ratio; IQR interquartile range; LH left hand; RH right hand
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tasks 4 and 5, ranging from -0.23 to -0.57 for task 4 and

from -0.20 to -0.78 for task 5, with the strongest corre-

lations present in the second and third derivatives of the

applied forces during task 5 (-0.73 to -0.78). More

important, however, is the fact that some of the metrics

showed a trend toward a consistently decreasing slope for

the palpation task, as well as during suturing and knot tying

(tasks 1, 4, and 5). Some examples of these metrics are

shown in Fig. 4.

Combined metrics

The combined metric was implemented and evaluated.

Figure 5 shows a comparison between the correlations

found with the task completion time, the peaks in speed,

jerk, the integral of the force, and the optimized combined

metric. This combined metric combined the jerk metric, the

difference in the MAPR value between the two hands, the

total volume, the number of peaks in speed, and the inte-

grals and derivatives of the grasping and Cartesian forces.

The values of this combined metric were -0.50 for task 1,

-0.37 for task 2, -0.43 for task 3, -0.61 for task 4, and

-0.85 for task 5. The scaling factors were determined

through an optimization strategy that aimed to find the

strongest correlations with experience level. This figure

shows that the force-based metrics and the combined

metric exhibited stronger correlations with experience level

than the task completion time or the position-based metrics

alone.

The results of the optimization for the combined metric

are shown in Table 3. Interestingly, the metrics that dom-

inated the combined metric were force-based, with the

exception of volume, which was important during the

suturing task (task 5).

Discussion

Spearman’s rho correlation was chosen in the aforemen-

tioned analysis as a way to quantify the relationship

between each metric and subject experience levels. The

study presented in this article was aimed at observing the

correlation between the proposed metrics and the known

levels of experience of the subjects.

Interestingly, for experience level 4 (subjects at the PGY

4–5 levels, see Table 1), the task completion times for

tasks 2–4 were shorter than those for all the other groups.

Other studies have shown similar results, for example, the

study by Stefanidis et al. [38]. This can be explained by the

fact that these trainees had recently completed their MIS

training, in which time was the main measure of perfor-

mance. In fact, Stefanidis et al. [38] showed that a clear

decline in performance occurs after training (posttest

evaluations) and an even further decline in retention tests

when performance is assessed using the FLS metrics

(which are mainly time based).

Because time is easy to measure, task completion time

often is used as a performance metric. It is clear that for

any kind of activity we perform, the more experience we

have, the faster we can perform the task. However, care

must be taken when time is used as a performance metric

for several reasons:

1. Performing a task quickly means that the trainee has

reached the automatous phase [17] but does not mean

that the task is being performed correctly.

2. A clear trade-off exists between speed and accuracy;

hence, performing a task faster is not necessarily

better.

3. Everyone is different, and what is fast for one person

might not be fast for another. Time is not a measure of

ability [12], and it is important for surgeons to work at

their own pace, especially near critical areas.

4. Depending on the specialty, doing things too fast could

be a detriment to the overall outcome. This is

Fig. 2 Average task completion time for the five tasks according to

the level of experience

Fig. 3 Average normalized jerk as a function of experience level for

all five tasks
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especially true for thoracic surgeons who work close to

critical anatomic features.

5. Training for time teaches trainees to focus on doing a

task fast, and they may become aggressive to achieve

the time requirements.

6. An overall time metric might be influenced by other

aspects of the training scenario, for example, distract-

ing factors or other differences between the practice

scenario and the assessment scenario.

Nevertheless, task completion time may be useful as a

measure of trainee skill level when combined with other

metrics. The results of the position- and force-based met-

rics show interesting trends for qualifying experience

during a complex procedure composed of five tasks. Some

of the position-based metrics and most of the proposed

force-based metrics showed significant correlations with

the six levels of experience (p \ 0.05). As expected, the

correlations found for the simpler tasks (tasks 1–3) are

weak, whereas those found for the complex tasks (tasks 4

and 5) are the strongest.

The strongest correlations with the position-based met-

rics were found with the speed peaks and jerk metrics

(Table 2). However, the correlations found with these

metrics and experience level were not much stronger than

those found with time except for the speed peaks during the

tissue-handling task (task 3). Table 2 also shows that a few

of the force-based metrics exhibited greater correlations

with experience level than those found with time and

Fig. 4 Sample graphs of average force-based metrics across all

subjects. A Maximum grasping force for task 1. B Derivative of the

grasping force for task 4. C Derivative of the grasping force for task

5. D Derivative of the Cartesian force for task 4. E Integral of the

Cartesian force for task 4. F Integral of the Cartesian force for task 5.

Error bars correspond to ± one standard deviation
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motion. The strongest correlations were observed with the

integral and the derivatives of the forces.

The results of the aforementioned experiments show that

force-based metrics were able to provide stronger correla-

tions with experience than those found with task comple-

tion time or position-based metrics. The relationships

obtained with force showed consistently decreasing trends.

With more subjects and increased power in the data, force-

based metrics may be able to distinguish better between

sublevels within the expert category because the trends

show continuously decreasing values at the different levels.

In other words, when trainees are considered trained in

basic skills, time- and position-based metrics provide a

measure of proficiency similar to that achieved by expert

surgeons with many years of experience. However, some

force-based metrics may be able to distinguish between

those different levels.

With regard to the combined metrics, it should be noted

that the original GOALS scores are intended to be measured

by a trained expert based on visual observation. It is a very

subjective metric that most likely would vary between

evaluators. The five elements are assessed on a scale of 1–5

and then added up for a maximum score of 25 points. The

analysis presented in this article aimed to provide some

objectivity for the elements assessed by GOALS. Although

these elements could be measured in other ways, this ana-

lysis proposes metrics that may be used to represent the

GOALS score in a more quantitative manner. No current

proof exists to show that the metrics selected are in fact

directly related to the GOALS scores. These metrics were

selected based on intuition considering the available metrics

and the performance elements that needed to be measured.

Depth perception is something that cannot be directly

measured without information on the target location. The

jerk metric, as a measure of smoothness, was selected to

measure depth perception because overshooting targets

would cause the movement of the instruments to be less

smooth. Other reasons not directly related to depth per-

ception exist to explain why jerk would be high. The

efficiency metrics were selected to represent efficiency in

the use of space (the total volume used) and efficiency in

the movement itself (number of peaks in speed). Instead of

combining all the available metrics, the metrics presented

earlier were proposed as a starting point in the quantifica-

tion of those metrics considered to be important.

An interesting analysis results from observing the opti-

mized scaling values presented in Table 3. From these

parameters, we can identify which metrics are more affected

by trainee experience levels. As the results show, the metrics

that appear to be the most important for the combined force–

position metric include the Cartesian force integral (tasks

2–5), the grasping force integral, and the derivative (tasks 1,

3–5), as well as the total volume (task 5). This combined

metric provided stronger correlations with experience than

any of the other single metrics. However, their implementa-

tion is more difficult because they depend on systems that can

measure instrument motion and applied forces in the different

degrees of freedom (i.e., grasping and Cartesian directions).

The value of computing a combined metric is that by

adjusting the scaling coefficients, it may be possible to

obtain metrics tailored to the task or procedure needing to

be assessed. For example, they can serve to penalize

severely for lack of accuracy in certain times or to penalize

for lack of efficiency in others.

Conclusions

This study evaluated the effect of experience level on

performance when a complex procedure composed of five

Fig. 5 Comparison of the best possible Spearman’s rho correlations

between the six levels of experience and several different metrics

Table 3 Scaling factors resulting from the optimization of the

combined metric

Jerk RH 0.07 0.01 0.03 0.02 0.21

Jerk LH 0.05 0.00 0.02 0.02 0.19

MAPR 0.01 0.00 0.03 0.01 0.02

Volume LH 0.01 0.00 0.01 0.01 0.32

Volume RH 0.01 0.00 0.01 0.03 0.11

Peaks LH 0.04 0.01 0.03 0.02 0.20

Peaks RH 0.04 0.00 0.02 0.02 0.24

Force int. LH 0.18 0.98 0.02 0.14 0.11

Force int. RH 0.03 0.00 0.45 0.78 0.59

Force der. LH 0.29 0.00 0.01 0.42 0.09

Force der. RH 0.32 0.00 0.04 0.04 0.07

Grasp int. LH 0.38 0.00 0.01 0.74 0.40

Grasp int. RH 0.01 0.00 0.66 0.11 0.15

Grasp der. LH 0.36 0.00 0.01 0.02 0.46

Grasp der. RH 0.57 0.00 0.67 0.93 0.38

LH left hand; RH right hand; MAPR movement arrest period ratio; int.

integral; der. derivative

Surg Endosc (2014) 28:2106–2119 2117

123



tasks was carried out, with the goal of identifying new

performance metrics. Novel force-based metrics and met-

rics that combine force and position metrics were pre-

sented. These new metrics can be automatically computed,

can provide a measure throughout the task, and can

objectively measure aspects of performance that actually

may have an effect on the outcome and safety of the pro-

cedure. The results show that experience level correlates

well with force-based metrics. In particular, the integral

and the derivative of the forces, or the metrics that combine

force and position, provide the strongest correlations.

Future work in this area should evaluate the effect that

training with the use of force-based metrics may have on

the trainees’ development and learning curve and should

identify other possible combinations of metrics that include

task completion time and the outcome of the procedure.
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