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Abstract

Background Methods for evaluating standard skills in the

operating room typically are based on direct observation

and checklists, but such evaluations are time consuming

and can be subject to bias. It often is possible to acquire

more objective measurements using surgical simulators.

However, motor performance in simulators can differ sig-

nificantly from that in the operating room. Intraoperative

assessment is particularly challenging because of the sig-

nificant variability between procedures related to

differences in the patients, the surgical setup, and the team.

This study aimed to evaluate the feasibility of using a new

framework for interpreting quantitative measures acquired

in the operating room to distinguish between levels of

laparoscopic skill development.

Methods Two levels of surgical skill development were

observed, namely, those of three fourth-year residents and

three attending surgeons performing three laparoscopic

cholecystectomies each. Electromagnetic position sensors

were attached by the surgeons to a 5-mm curved dissector

and a 5-mm atraumatic grasper. From the tools’ position

histories and video recordings, time, kinematics, and

movement transition measures were extracted. Various

measures such as the Kolmogorov–Smirnov statistic and

the Jensen–Shanon Divergence were used to provide

intuitive dimensionless difference measures ranging from 0

to 1. These scores were used to compare residents and

expert surgeons executing two surgical tasks: exposure of

Calot’s triangle and dissection of the cystic duct and artery.

Results The two groups could be clearly differentiated in

both tasks during monitoring for the dominant hand

(analysis of variance [ANOVA] and Mann–Whitney;

p \ 0.05) but not for the nondominant hand.

Conclusions It is practical to acquire time, kinematic, and

movement transition measures intraoperatively using video

and electromagnetic position-sensing technologies. Princi-

pal component analysis proved to be a useful technique for

presenting differences between skill levels based on those

measures. The authors conclude that objective assessment

of intraoperative surgical motor behavior is feasible and

likely practical.

Keywords Laparoscopy � Motor skills � Performance �
Quantitative assessment

The minimally invasive surgical (MIS) techniques that

have emerged over the past two decades are largely more

difficult to master with proficiency than the corresponding

open techniques. Inserting tools through keyhole incisions

reduces the number of degrees of freedom, virtually

eliminates direct tactile feedback, and because of the ful-

crum effect, produces motion reversals, all of which pose

significant learning challenges. At the same time, it has

become increasingly difficult to use operating room time
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for instruction, so training moves increasingly toward

simulated scenarios such as animal and cadaver labs as

well as physical and virtual reality simulators [1–3].

A number of simulators have been developed by various

groups [4–8]. However, although physical and virtual

reality simulators can facilitate the design of graduated

training programs by controlling or eliminating some key

sources of variability (e.g., differences in patients’ anatomy

and disease processes) and by presenting task elements to

the trainee in increasing order of difficulty, and although

these simulators can allow us to acquire objective mea-

surements of the trainee during training, it still is not clear

how effective simulators are in developing surgical skills.

It is fairly well established that people with preexisting

surgical skill can perform better in simulators than novices

and that training in the simulator can improve skills in the

simulator [9, 10]. However, there is relatively little

understanding of the relationship between performances in

simulated environments and those in the operating room

[9–11]. Although good correlations of performances

between the minimally invasive surgical trainer in virtual

reality (MIST-VR) simulator and a pig model of chole-

cystectomy have been found [12], more complete

comparisons between performances in simulators and those

in the operating room have been hampered by a lack of

universally agreed-on metrics for quantitative skill assess-

ment, by differing skill levels of the participants, and by

small sample sizes [9, 12].

Because it is not yet possible to use performance in

simulated surgical tasks to measure surgical skill reliably in

the live operating room, it remains necessary to perform

intraoperative assessments. Current performance evalua-

tion methods used in the operating room include direct

observation, global assessments, and checklists [13, 14].

These have proved largely to be reasonably effective and

reliable, but they require evaluators to be in the operating

room for the entire case to monitor the surgeon’s move-

ments and errors. Moreover, they are time-consuming, and

some protocols can be subject to bias [15]. Moreover, these

types of evaluation typically provide limited information

for further focused training because they usually are per-

formed at the ‘‘whole procedure’’ level and normally do not

distinguish between elements of the overall surgery judged

to be relatively easier or more difficult, nor do they provide

detailed commentary and feedback about specific surgical

skills. They also are subject to intraoperative variability

(due to differences in patients’ condition, the operating

room staff, equipment, and the like), so reliability can be

difficult to establish using these methods [16].

It would therefore be desirable to introduce some ele-

ments of objective assessment into the operating room

environment, especially if such assessments could be per-

formed with relatively less effort than required for the

current manual assessments. Experience with quantitative

assessments conducted with surgical simulators has dem-

onstrated that differences in skill levels can be reliably

reflected in quantitative measures such as the speed of a

surgeon’s hand movements or the number of movements

needed to perform a task [13, 17–20].

In earlier work, we established that it is feasible to

acquire kinematic data in the operating room [21]. To deal

with the interprocedure variability that characterizes live

operations, we also earlier proposed and validated a sur-

gical modeling tool—the Motor and Cognitive Modeling

Diagram (MCMD)—which can be used to represent a

procedure hierarchically using a four-level decomposition

consisting of phase, task, subtask, and action levels [22].

By attaching particular surgical gestures to the appropriate

elements in this decomposition, we can analyze movements

in context and aggregate results from similar elements at

different points in the same procedure and across different

procedures and different surgeons, thereby enabling

meaningful comparisons.

We have shown that the MCMD has sufficient gener-

ality to describe different laparoscopic procedures,

including cholecystectomy and colectomy procedures [22].

By incorporating a data stream comprising measurements

of the position and orientation of selected surgical tools,

the MCMD can support assessments of surgical motor

performance based on time, transition, and kinematic

measures.

Although this evaluation is not yet automated (identifi-

cation of the phase, task, subtask, and action boundaries

still relies on a manual video analysis), it is sufficiently

developed for us to test whether analyses of live operating

room data are repeatable enough to distinguish reliably

between surgeons of different skill levels or not and

thereby provide a level of discrimination between groups

similar to that found in simulator settings. Therefore, the

study reported here aimed to evaluate whether a quantita-

tive analysis of live surgeries based on MCMD will

produce relatively low intrasubject variation, moderately

low intragroup variation (among a group of surgeons at a

similar level of skill development), and significant inter-

group variation, thereby demonstrating that quantitative

measures can be used to distinguish between surgeons of

different skill levels in the live operating room.

Materials and methods

Subjects

We recruited two sets of subjects to represent different

levels of skill development: residents (represented by three

fourth-year surgical residents, that is, at the earliest stage of
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training at which they could perform a laparoscopic cho-

lecystectomy under supervision), and experts (represented

by three attending surgeons, each of whom had performed

hundreds of laparoscopic cholecystectomies).

Both the Vancouver Coastal Health Authority and the

University of British Columbia (UBC) research ethics

boards granted ethics approval for this study. Residents were

protected from coercion by ensuring that their clinical

supervisors were not involved in the participation request

process and so did not know which particular residents were

invited to participate in the study nor the reply of any indi-

vidual resident. We were not able to protect against

supervisors knowing the identity of residents who accepted

the invitation to participate because their surgeries were

instrumented and monitored, and the presence of the

equipment was obvious. However, clinical supervisors were

never shown data with any identifying information attached.

Experimental setup

We observed surgeons in the operating room performing

three laparoscopic cholecystectomies (LC) per subject

using standard surgical tools. Laparoscopic cholecystec-

tomy was the procedure of choice because it is one of the

earliest MIS procedures a resident learns to perform and

has become widely used as an index operation for ongoing

assessment of laparoscopic skills [23].

To measure the positions of surgical tools, we provided

two custom-designed clips to which small (*1 cm3) Pol-

hemus electromagnetic tracking sensors (Polhemus Inc.,

Colchester, VT, USA) were attached. At the beginning of

the procedure, the surgeon attached the clips to two sur-

gical tools: a 5-mm curved dissector for the dominant hand

and an atraumatic grasper for the nondominant hand. These

tools were chosen because they are used for some of the

most skill-dependent tasks in LC surgery.

We used the Polhemus electromagnetic tracking system

because our earlier work [24] showed that its sampling rate

of 120 Hz was high enough to capture all relevant fre-

quencies of the tool movement without running into aliasing

(undersampling) problems. Previous studies [25] have

shown its accuracy to be sufficient for the type of analyses

presented in this report. The Polhemus product manual [26]

quotes an accuracy of 2 mm within a 1-m3 working volume.

In the operating room setting, we were able to position the

transmitter at an average distance of 20–25 cm from the

receiver, which is well within this volume [25].

The sensor’s repeatability (ability to detect differential

movement) typically is an order of magnitude better than

its accuracy [26]. The sensor clips were precalibrated so

that we could determine the three-dimensional location and

orientation of the tool tip at each sampling instant. Figure 1

presents our experimental setup in the operating room.

The standard laparoscopic camera (Stryker Inc., Kala-

mazoo, MI, USA) and tools were used, and the tasks were

digitally recorded using video to allow segmentation of the

kinematic data stream using the labels in the MCMD. All

equipment used was approved by the Biomedical Engi-

neering Department at UBC Hospital, and sterilized using

ethylene oxide where appropriate.

Analytical methods

This study focused on analyzing the movements of the

dominant hand for two subtasks in MCMD for LC

identified by the expert surgeons as the most demanding

steps of the procedure in terms of the surgical dexterity

required. These two subtasks, part of the ‘‘isolate cystic

duct [CD] and cystic artery [CA]’’ surgical task, are

called ‘‘expose triangle’’ and ‘‘dissect cystic duct,’’

respectively. In addition, each subtask was further

decomposed into a set of 10 fundamental surgical actions

(or gestures) defined by Cristancho et al. [22] as pull,

push, reach, sweep, spread, orient, grasp and hold, grasp

and cut, idle, and out. We performed analyses of intra-

subject, intragroup, and intergroup variability at both the

subtask and action levels.

Fig. 1 Top: Custom-designed sensor clip with a Polhemus electro-

magnetic sensor attached. Bottom: Electromagnetic sensors attached

to surgical tools in use in the operating room during a live procedure
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Variability analysis at the subtask level

The position data from the two main subtasks, ‘‘expose

triangle’’ and ‘‘dissect CD/CA,’’ were separated from the

electromagnetic sensor’s data stream by manual identifi-

cation of the start and end times to the nearest 1/30 of a

second using video analysis. The ‘‘expose triangle’’ subtask

consists of retracting the gallbladder and dissecting some

of the surrounding tissue so as to open the cystic pedicle

space and identify where the cystic duct and cystic artery

lie. It begins when the gallbladder is first stretched out and

ends when the cystic pedicle is identified. The ‘‘dissect CD/

CA’’ subtask consists of identifying and isolating the cystic

duct from the cystic artery by dissecting the surrounding

tissue. It begins when the tip of the tool is first inserted

between the two anatomic structures and ends when both

structures have been completely freed from one another.

The video clips were further decomposed at the action

level by identifying the beginnings and endings of the fun-

damental surgical motions, and the time records were used to

segment the corresponding sensor data stream. The three-

dimensional tip velocities were derived from the position

records through numeric differentiation using a generalized

cross-validation algorithm with an approximate cutoff fre-

quency of 20 Hz. The smoothing parameter (B) was set to a

constant value of 10–11 for all data processing after a wide

variety of data streams from the various subjects and pro-

cedures had been analyzed and the resulting smoothing

parameter values had been averaged [27].

For each subject (i) and procedure (j) (Sij) and for each

subtask, we created a cumulative distribution function

(CDF) for the absolute value of each velocity component in

the three directions relative to the tool tip (lateral, axial,

and vertical). These CDFs represent the proportion of

samples with an absolute velocity component in the given

direction that is less than the value of the corresponding

abscissa. These give a more complete picture of the

velocity distributions than a simple measure such as the

mean or median absolute velocity.

We next constructed three matrices for each subtask in

which each row corresponded to a particular combination of

subject and procedure. Each matrix represented a velocity in

one of the three cardinal directions: lateral, axial, and ver-

tical. Each row contained 11 velocity components. These 11

velocity components, derived from the corresponding

cumulative velocity distributions, represented the velocity

values at 5%tile increments between the 25th and 75th

percentiles, as shown in Table 1. This range was selected

because it broadly represents the range of the velocities used

by each surgeon without becoming overly subject to extreme

values. We independently checked a subset of our data to test

the sensitivity of our results to the selection of the end points

of this range and found no significant impact.

Once the data from each category were arranged into the

corresponding matrix form, we normalized it by dividing

each element by the column standard deviation (defined

across all procedures and subjects), and then used the

principal components analysis (PCA) dimension reduction

technique to extract the dominant contributors to overall

variability [28].

A PCA analysis replaces a large number of physical

measurements with a small number of more abstract

weighting terms. The result of this analysis is a new matrix

with the same number of rows but a much reduced number

of columns, which allows a simpler presentation of the

processed data to the surgical trainer.

Applying this approach to each movement direction

separately, we found that for all the cases computed, we

typically could reduce the number of columns to two while

still explaining 90% to 99% of the variability (e.g., see the

data for the axial movement direction shown in Fig. 2).

To test the hypothesis that level of skill development is

apparent in intraoperatively acquired quantitative measure-

ments, we computed the contributions to variability in the

PCA weight space (defined as the mean squared distance of

points in the weight space relative to the global mean posi-

tion across all subjects and groups) due to intrasubject,

intragroup, and intergroup variability. We evaluated the null

hypothesis that residents and experts all have the same mean

positions in this weight space using a nested analysis of

variance (ANOVA) test with four degrees of freedom at the

subgroup level and one degree of freedom at the group level

(a = 0.05). We also computed distances from each subject’s

center to the experts’ center (as the reference group) and

applied a Mann–Whitney test to evaluate whether residents

were, on the average, located further away from the experts’

center than the experts themselves, which would demon-

strate significant group separation.

Variability analysis at the action level

At the more detailed action level, we compared perfor-

mances of individual subtasks by decomposing them into

Table 1 Symbolic representation of a data matrix for the axial

velocity components (indicated by ‘‘a’’) of one of the surgical

subtasks*

Subject/trial 25th 30th 35th – – 75th

S11 V11a25th V11a30th V11a35th V11a75th

S21 V11a25th V21a30th V11a35th V11a75th

… … … … – – …
Sij V11a25th Vija30th V11a35th V11a75th

* Each row consists of 11 boxes. Each box contains the corre-

sponding percentile value for the axial velocity of the dominant hand

during the ‘‘expose Calot’s triangle’’ surgical subtask
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the 10 elemental tool tip motions—push, pull, reach, orient,

sweep, spread, grasp and hold, grasp and cut, idle, out—

described in our earlier study [22]. We used manual video

analysis to identify the start and end times of each action

type and the resulting time stamps to segment the corre-

sponding tool tip position data. Velocities, accelerations,

and jerks were computed analytically using the spline

approximants determined when the generalized cross val-

idation procedure described earlier was applied.

Because each action typically was performed many

times in executing a subtask, we modeled transitions

between actions (states) using a semi-Markov model [29]

and constructed empirical distributions of holding times,

velocities, accelerations, and jerks in each state, together

with a matrix representing the transitions between states.

We refer to velocity, acceleration, and jerk profiles col-

lectively as kinematic measures.

To compare performances between two subjects—

resident (R) and expert (E)—performing a particular sub-

task, we defined VR and VE as the group of kinematics

distributions for all executed actions, hR and hE as the

group of holding time distributions for all executed actions,

and TR and TE as the state transition probability matrices.

We then computed difference measures for the kinematics

Fig. 2 Top row: Subtask-level principal components analysis (PCA)

for the dominant hand for two key subtasks: ‘‘expose Calot’s triangle’’

and ‘‘dissect cystic artery/cystic duct.’’ Each point corresponds to a

separate performance of the subtask by the indicated surgeon. Middle
row: Contributions to variability in the PCA weight space due to

intrasubject, intragroup, and intergroup variability. Variability is

measured as the mean sum of squared distances from the global mean

position. Bottom row: Distances from each subject’s center to the

experts’ center used to compute the Mann–Whitney test (p = 0.049

for both subtasks)
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(VR vs. VE) and holding time (hR vs. hE) distributions using

the Kolgomorov–Smirnov statistic (K-S) [30–32] and dif-

ference measures for state transitions using the Jensen–

Shannon divergence statistic (JSD) [33–35]. These statis-

tics are useful because they produce values ranging from 0

(no difference) to 1 (maximum possible difference) and

thus can be compared directly without further normaliza-

tion procedures. Across all subjects and executions, we

obtained a k 9 w matrix of difference measures, where k

corresponds to the number of subject comparisons (RI vs.

EJ) and w to the number of extracted performance

measures.

In our analysis, k equals 15 (9 comparisons of residents

to experts and 2 sets of 3 intragroup comparisons, for

example, R1 vs. R2, R1 vs. R3, and R2 vs. R3 for the

residents and a similar set for the experts) and w equals 71

(1 JSD value for the transition matrix and 7 sets of 10 K-S

values; each set of 10 values corresponds to the 10 different

kinds of surgical actions; the first group of 4 sets represents

summary K-S values comparing the average holding times,

velocities, accelerations, and jerks across all visits to each

action state, whereas the second group of 3 sets represent

the K-S values comparing the detailed velocity, accelera-

tion, and jerk distributions concatenated across all visits to

each action state).

Given the large number of elements in each row, we

again used principal components analysis to reduce the

dimensionality of the difference matrix and a Mann–

Whitney test to test the null hypothesis that there is no

distinction between groups when subjects from the same

skill level (R vs. R or E vs. E) are compared with subjects

from different skill levels (E vs. R).

Results

In this section, the two variability analyses at the subtask

and the action levels are reported to determine whether

detectable differences in kinematic and time patterns exist

across skill levels and which measures are most useful in

separating surgeons along this spectrum when the motor

the performances of the dominant and nondominant hands

are analyzed.

Variability analysis at the subtask level

The results of the PCA decomposition for the 25th to 75th

percentile axial velocity data for the two subtasks analyzed

are shown in Figs. 2 and 3. More than 99% of the vari-

ability in both plots is explained by the first principal

component, which suggests that a relatively simple sum-

mary measure such as the average velocity may be

sufficient to represent the variation at the subtask level and

that more complex representations may be unnecessary.

The results for the lateral and vertical directions are similar

to those presented in Figs. 2 and 3 for the axial direction.

The ANOVA for both the ‘‘expose triangle’’ and ‘‘dis-

sect CD/CA’’ subtasks in monitoring of the dominant hand

showed a significant intergroup contribution to variability

(p = 0.03 and 0.02, respectively), which indicates that the

velocity measure is able to distinguish between residents

and experts (Fig. 2). This result is consistent with the data

points shown in the upper plot, in which the intrasubject

repeatability is generally high and there is an apparent

separation between the residents at the right side of the plot

and the experts spread over a wider range on the left side of

the plot. In contrast, the test failed to find such a distinction

between the residents and experts in monitoring of the

nondominant hand in both subtasks (p = 0.09 and 0.10,

respectively) (Fig. 3).

Similarly, the Mann–Whitney test indicated that domi-

nant hand performance provided group separation for both

subtasks (p = 0.049) but that the nondominant hand did

not (p = 0.28 for ‘‘expose triangle’’ and 0.52 for ‘‘dissect

CD/CA’’).

Variability analysis at the action level

At the action level, the PCA analyses included 71 differ-

ence measures based on kinematics, holding times, and

transition probabilities. We found that five principal com-

ponents were required to represent 80% of the variability in

R1 vs. E1

R1 vs. E2

..

.

R3 vs. E3

2
664

3
775 ¼

JSDR1 vs:E1

..
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�������

�������
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the original data. Figure 4 plots the first two principal

components to facilitate graphic interpretation of the data.

The Mann–Whitney test indicated that performance

during the ‘‘expose triangle’’ subtask (p = 0.001) clearly

differentiates the set of comparisons among peers (i.e.,

expert with expert or resident with resident) from com-

parisons among subjects belonging to different groups (i.e.,

expert with resident), but not during the ‘‘dissect CD/CA’’

subtask (p = 0.35). This is somewhat different from the

PCA analysis at the subtask level, in which the test is

significant for separating between groups in both subtasks.

However, there appears to be some intermingling of sub-

jects from the two groups in the ‘‘dissect CD/CA’’ subtask,

which could be related to the fact that no group differen-

tiation was found at the action level.

Discussion

This study aimed primarily to evaluate the feasibility of

using quantitative measurements obtained during live

surgeries to assess motor aspects of surgical skill. The

most important early test of a proposed assessment

technique is whether it can reliably distinguish between

subjects at the extreme ends of the skill development

spectrum.

Fig. 3 Top row: Subtask-level principal components analysis (PCA)

for the nondominant hand for two key subtasks: ‘‘expose Calot’s

triangle’’ and ‘‘dissect cystic artery/cystic duct.’’ Each point corre-

sponds to a separate performance of the subtask by the indicated

surgeon. Bottom row left: Contributions to variability in the PCA

weight space due to intrasubject, intragroup, and intergroup variabil-

ity. Variability is measured as the mean sum of the squared distances

from the global mean position. Bottom row right: Distances from each

subject’s center to the experts’ center used to compute the Mann–

Whitney test (p = 0.28 for ‘‘expose’’; p = 0.52 for ‘‘dissect’’)
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In this study, we demonstrated that it is feasible to acquire

intraoperative position data using electromagnetic sensors

and to process the data using manual video segmentation in

the context of MCMD, which serves as a template for the

procedure. The interprocedure variability seemed low

enough to enable distinctions at both the subtask and action

levels between resident and expert surgeons during moni-

toring of two surgical subtasks (i.e., ‘‘expose triangle’’ and

‘‘dissect CD/CA’’) judged by the expert surgeons to be

among the tasks in the procedure most dependent on surgical

motor skills. Although the nondominant hand behavior did

not exhibit significant group separation (possibly because

this hand plays a more ‘‘passive’’ role in simple retraction of

the gallbladder), we conclude that a quantitative assessment

technique based on tool position measurements is feasible,

although considerable work must yet be done to make it a

practical technique.

Some groups have examined the potential of using for-

ces and torques exerted on the tools or between the tools

and the tissues subjected to surgery to discriminate

between skill levels [36]. Rosen et al. [37, 38] have done

extensive work using force/torque signatures applied at the

hand–tool interface to evaluate performance in a porcine

model. These authors used Markov modeling to show the

feasibility for correctly classifying surgeons into two

experience levels based on the similarity of the models

representing their low-level tool–tissue interactions to

models derived from reference groups representing the two

experience levels. They demonstrated that the forces and

torques applied by experts and novices differed, as did the

time to complete the procedures.

In the future, it likely would be valuable to combine

both force and position measurements into a single

assessment process. Our group has developed a curved

dissector tool with an integrated force sensor and position

sensor [39], but the instrumentation required involves more

significant modifications to the surgical tools, so there are

some practical obstacles to making these measurements

intraoperatively on a routine basis.

Our current results suggest that objective tool position

measurements may ultimately prove useful in assessing a

resident’s progress in developing surgical motor skills. To

reach that goal, further work must be done to assess how

many surgeries must be monitored to ensure that the

Fig. 4 Top row: Action level principal components analysis (PCA)

for the dominant hand for the ‘‘expose Calot’s triangle’’ and ‘‘dissect

cystic artery/cystic duct’’ subtasks. Each point corresponds to a

selected comparison of the action-level data between pairs of

surgeons either at the same or different levels of skill development.

Bottom row: Distances from each subjects’ pair to the experts’ center

used to compute the Mann–Whitney test (p = 0.001 for ‘‘expose’’;

p = 0.35 for ‘‘dissect’’)
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contributions from interprocedure variability can be

‘‘averaged out.’’ In addition, we need a better understand-

ing of the relation between intrasubject variability and

levels of difference that signify significant steps in skill

development.

In this study, we evaluated the end points of the skill

development spectrum for residents and experts. In the

future, we aim to draw finer distinctions such as whether a

given resident is keeping up with his or her year level or

not. It also would be instructive to assess differences in

performance between expert surgeons for a better under-

standing of different expert approaches to the same surgical

goal. Such assessments could potentially lead to more

nuanced discussions of what constitutes ‘‘best practice’’ for

particular surgical tasks.

In addition, now that we have the ability to acquire

quantitative intraoperative data on a surgeon’s motor per-

formance, we can revisit the question of the relationship

between these intraoperative measurements and the same

surgeon’s performance on surgical simulators. By using the

MCMD to isolate selected surgical tasks rather than by

looking at an undifferentiated stream of data from a live

surgical procedure, we may be able to establish stronger

correspondences between selected surgical tasks and the

corresponding simulations of these tasks. This may ulti-

mately enable us to do validated assessments in a simulated

setting. We also could use these comparison metrics to

assess the degree to which specific skills acquired in a

simulator setting can be transferred to the operative setting

by comparing pre- and posttraining patterns in the simu-

lator and the corresponding pre- and posttraining patterns

in the live operating room. However, we would first need to

ensure that the differences we investigate are larger relative

to the intertrial or interprocedure variability.

Because this is a newly proposed assessment method, a

considerable amount of further work is needed to make it

clinically practical. Future work likely will focus on the

following issues:

• Incorporating measurements from l-hook dissectors

because they are a common alternative to the curved

dissectors. Because surgeons apply cautery more

frequently when using l-hook dissectors than when

using curved dissectors, and because cautery interferes

with electromagnetic tracking systems, it will be

necessary to adapt or develop an optical tracking

system or a fiberoptic-based system to replace the

Polhemus sensor we have used in this study to avoid

this cautery-related interference.

• Expanding the set of physical measures assessed by

incorporating force sensing. The attending surgeons

specifically recommended using force sensing to mon-

itor whether the nondominant hand is providing

appropriate traction to the anatomic structure being

dissected or not, but force sensing also will likely

contribute to improving the characterization of the

dominant hand–tissue interactions. This will be a

particularly challenging task for three main reasons:

(1) force sensors usually are highly sensitive to electro-

magnetic interference such as that generated during

cautery; (2) force sensors need to be placed in the load

path, which typically requires modification of the

surgical tools; and (3) external force sensors cannot

differentiate between forces applied at the tool tip and

trocar interaction forces, which may require the devel-

opment of new force sensors.

• Automating the movement segmentation process to

decrease the postprocessing burden of our current

manual segmentation process. An interesting approach

was proposed recently by Murphy [40] at Johns

Hopkins University, who developed automatic tech-

niques based on hidden Markov models to detect raw

motion data from a surgical task and segment these into

a labeled sequence of surgical gestures. Although this

approach to date has been tested only in simulated

environments, it would be worth exploring its capabil-

ity to segment motion data from live surgeries as well.

• Using the method presented in this report to create a

database of residents and expert surgeons executing

multiple procedures on a variety of patients, coupled

with data on the characteristics of each patient, to

enable control or compensation for the innate difficulty

of each procedure. Such a database would enable us to

store sufficient data to test the method’s value in

drawing finer distinctions along a surgeon’s training

arc, such as in monitoring year-to-year development.

• Expanding our method to other types of surgeries to

form the basis of a comprehensive skill assessment

process.

We do not believe that objective assessment methods ever

could or should be used to replace the more subjective and

nuanced feedback from experienced surgical instructors

during the training process. However, we do believe such

methods can serve a useful complementary role as an

unbiased starting point for evaluation based on quantitative

metrics. If such methods can discriminate between skill

levels and detect subtle differences in surgical technique,

they may someday be used to provide specific, helpful, and

relevant feedback to trainees concerning areas in which

improvement is needed.
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