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Abstract. We apply the time-dependent local density ap-
proximation (TDLDA) to calculate dipole excitations in
small carbon clusters. A strong low-frequency mode is found
which agrees well with observation for clusters Cn with n
in the range 7–15. The size dependence of the mode may be
understood simply as the classical resonance of electrons in a
conducting needle. For a ring geometry, the lowest collective
mode occurs at about twice the frequency of the collective
mode in the linear chain, and this may also be understood
in simple terms.

PACS: 22.8.97

I Introduction

In this work we examine strong optical transitions in light
carbon clusters, with the goal of providing a diagnostic tool
for the structure of the clusters. Carbon has a rather com-
plex structural evolution [1] as a function of the number
of atoms n. Small clusters are linear, and at higher n rings
are favored. For intermediate n values, rings may be more
favored at even n and linear chains at odd n. Direct infor-
mation on the shapes of the clusters may be obtained by ion
chromatography [2], but one mostly relies on spectroscopic
data to interpret the structure [3].

We will demonstrate that the strong optical absoption
resonances behave in a very systematic way as function of
cluster size, and that the frequency of the transitions gives
direct information about the shape of the cluster. In par-
ticular, the strong π − π∗ transition in chains is at about
half the frequency of the mode in rings. We also find that
the frequencies can be understood very simply using clas-
sical concepts. The most important determinant in systems
of similar composition is the polarizability, which is much
larger for chains along their axes than for rings in the plane
of the ring.

In the Sect. 2 below we discuss our quantum calculations,
which are done using the time-dependent local-density ap-
proximation (TDLDA). This is nothing more than the Kohn-
Sham equations with the “energy” of the orbital replaced by

the time derivative i∂/∂t. The TDLDA and its small am-
plitude limit has been shown to be a reliable tool to cal-
culate strong resonances in the optical response of metallic
clusters [4, 5] and molecules such as C60 [6] and polyenes
[7]. Our method to solve the equations is a very straightfor-
ward one, but it deserves some discussion because there are
many implementations of small-amplitude TDLDA in the
literature, and our method is not conventional in condensed-
matter or chemical physics. We use a Hamiltonian of the
usual Kohn-Sham form, taking a local-density approxima-
tion for the non-Coulombic electron-electron interaction, and
a pseudopotential to describe the carbon ions.

However, the calculations with ab initio Hamiltonians
are very time consuming, and it is important to analyze the
results to gain understanding of the functional dependence
of the excitation energy on the cluster properties. This will
be done in Sect. 3; our result briefly is that the resonance

frequency ωn in chains scales with n as ωn ∝
√

lnn/n. This
applies to both chains and rings, with different coefficients
of proportionality.

Part of the interest in the specta of carbon chains comes
from astrophysics, the question of the composition of in-
terstellar matter. Absorption bands are seen which may be
due to carbon clusters, but specific identification of species
remains controversial [8, 9]. The TDLDA is probably only
reliable to 10% or so on the frequencies of the strong tran-
sitions, which is not enough to use the theory to assign un-
known transitions. However, it might be that the theory could
be used to predict the shifts due to small changes in struc-
ture, for example by adding another atom at the end of the
chain. We plan in the future to investigate various molecules
that are similar to the carbon chains and see how large the
perturbations are.

II TDLDA

A General

Time-dependent mean field theory is a powerful tool to cal-
culate the collective excitations of quantum many-particle
systems, and it has been widely applied in cluster physics.
There are a number of implementations of the theory, all
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starting from the time-dependent Schroedinger equation.
With the local density approximation for the electron-electron
interactions, the equation has the form of a time-dependent
Kohn-Sham equation,

i�
∂

∂t
ψi(r, t) =

{
�

2

2m
∇2 +

∑
a∈ion

Vion(r− Ra) (1)

+e2

∫
dr′

n(r′, t)
|r− r′| + Vxc

(
n(r′, t)

)}
ψi(r, t).

Here ψi represents a single-particle wave function, n(r, t)
is the electron density, Vion is the ionic core potential, and
Vxc is the potential associated with exchange and correla-
tions, For our purposes, ψi is not perturbed greatly from
the ground state wave function, and a small amplitude ap-
proximation justifiable. This leads to the RPA and the linear
response method of solution. We believe that for large num-
bers of particles, the most efficient technique to treat LDA
Hamiltonians is the straightforward integration of the time-
dependent equations of motion. The argument is given in
the Appendix. The optical response of the light chains C3,5

and C7 has been calculated with the configuration-interaction
method of quantum chemistry [10, 11], but this brute-force
technique is impractical in large clusters.

Our numerical method is taken over from the nuclear
physics [12], where it is called the TDHF theory. The effi-
ciency of the method requires that the Hamiltonian matrix
be sparse, and this is fulfilled by using a coordinate mesh to
represent the wave function. It is also necessary for numer-
ical efficiency to use Hamiltonians whose energy scales are
not too large; this means that one treats only valence elec-
trons and uses pseudopotentials for Vion to take into account
the effects of the core electrons. Thus we treat dynamically
only the four valence electrons of carbon. Our psuedopoten-
tials are calculated according to the commonly accepted pre-
scriptions [13, 14]. The exchange-correlation potential Vxc

is taken from [15].
Some details of our integration algorithm are given in

the Appendix. The important numerical parameters are the
spatial mesh size Δx, the number of mesh points M , the
time step Δt, and the total length of time integration T . The
values for these parameters are discussed below.

B Initial conditions

We wish to start with the Kohn-Sham ground state wave
function, and in principle the geometry of the ions as well
as the electron wave functions are determined by minimizing
the Hamiltonian function. However, a full minimization of
the structures is quite time consuming, and we believe that
small variations in bond lengths will not have a significant
effect on the collective excitations. We therefore take ge-
ometries from outside rather than calculating ab initio. For
simplicity, we fixed the nearest neighbor distance of the car-
bon atoms at 1.28 Å. This is the average LDA equilibrium
distance for large circular rings or long chains.

To calculate the response, our initial wave functions are
perturbed from the static solutions φi by a velocity field

ψi(r, 0) = eikzφi(r). (2)
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Fig. 1. Optical response of the linear chain C7, calculated in TDLDA. The

mesh spacing is Δx = 0.3 Å and Δt = 0.001 eV−1. The spatial grid has

the shape of a cylinder, with 30,000 mesh points. The integration time was

10 eV−1

The momentum k is set to be small to ensure that the re-
sponse is linear (we use typically k = 0.1 Å−1). The real-
time evolution of the dipole moment is obtained as

z(t) =
∑
i

< ψi(t)|z|ψi(t) >, (3)

and its Fourier transform in time gives the dipole strength
function S(ω)

S(ω) =
2ωm

πk

∫ ∞

0

dt z(t) sin(ωt). (4)

The strength function defined in this way is related to the
oscillator strength f by∫

dωS(ω) = f. (5)

C Results

We first discuss the numerical parameters needed for carbon
clusters. We found that a mesh size of Δx = 0.3 Å is needed
to adequately represent the sp-orbitals of carbon. This is
more than a factor of two finer than the mesh size parameter
needed for the s-orbitals of alkali metals. The wave function
is represented on this grid within the interior of a cylindrical
volume. The size of the cylinder is chosen to include all
mesh points within 4 Å of each carbon atom. With this pro-
cedure, the wave function for the C7 cluster requires 30,000
mesh points.

There are two numerical time parameters. The first is
the time step in the integration. In the carbon calculations
we used Δt = 0.001 eV−1, which is an order of magnitude
smaller than the value needed for alkali metal clusters. This
corresponds to the order-of-magnitude difference between
the maximum kinetic energies in the meshes used for sys-
tems, 0.3 Å in carbon versus 0.8 Å in alkali metals. The
other numerical time parameter is the total integration time
T . The inverse of this sets the scale for the energy resolu-
tion in the response; we use T = 10 eV−1 to make visible
structure on the energy scale of 0.1 eV.
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Fig. 2. Molecular orbital diagram for the C7 chain in the LDA. On the

left are shown the lowest π states, which correspond to the 7 orbitals of

the tight-binding approximation. On the right are the highest occupied and

lowest unoccupied σ orbitals

The response of a typical case, C7, is shown in Fig. 1.
Plotted is the integrated oscillator strength as a function of
excitation energy. The upper curve shows the response par-
allel to the chain, and the lower curve shows the perpendic-
ular response. The total sum rule (f = 4n = 28, four valence
electrons per carbon atom), is satisfied to within 10% by the
calculation1 The longitudinal response has a strong excita-
tion at 5.3 eV. About 1/3 of the 28 units of oscillator strength
is in this excitation. The perpendicular response has no cor-
responding strong excitation below 10 eV. The small wiggles
in the calculated response are artifacts of the truncation in
the Fourier transformation. In our case here, the effect is ob-
viously small. To understand better the nature of the 5.3 eV
collective excitation, it is helpful to know the characteristics
of the orbitals near the Fermi surface and the corresponding
single-particle transitions. The single-particle level scheme,
giving by the eigenenergies of the static Hamiltonian, are
shown in Fig. 2. The lowest strong single-particle transition
is between the highest occupied and lowest empty π or-
bitals. This gap is 2.1 eV, roughly half the frequency of the
TDLDA mode. Note that there are two σ orbitals within the
π − π∗ gap, but these electrons are localized on the outer
ends of the carbon chain and do not couple strongly to the
other states.

The 2.1 eV π − π∗ transition has a very large oscillator
strength (f = 10.2), which equals the strength of the TDLDA

1 In principle, the TDLDA conserves the sum rule exactly if the Hamil-

tonian is local. This is not the case when the core electrons are omitted,

because the resulting pseudopotentials have a nonlocal character [14]

Table 1. Excitation energy and strength of carbon chains in TDLDA

Size Efree [eV] ffree ETDLDA[eV ] fTDLDA

3 4.15 3.5 8.1 3.1

4 3.89 5.2 7.2 4.5

5 2.81 6.9 6.4 6.3

6 2.72 8.6 5.9 8.0

7 2.13 10.2 5.3 9.8

8 2.10 11.9 5.0 11.4

9 1.71 13.5 4.6 13.1

10 1.71 15.2 4.4 14.8

11 1.43 16.7 4.1 16.4

12 1.44 18.4 3.9 18.1

13 1.23 19.8 3.7 19.7

14 1.26 21.6 3.5 21.3

15 1.08 22.9 3.3 22.9

20 0.90 31.7 2.7 30.8
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Fig. 3. Systematics of the longitudinal mode in CN linear chains. Filled
circles: experimental, from [18] and [16]; squares, TDLDA; triangles, quan-

tum chemistry calculations from [10] and [11]

mode to within 4%. The magnitude of f may be understood
qualitatively as equal to the number of π electrons. To a
good approximation, the longitudinal dipole operator on π
electrons in a chain keeps them in the π manifold, so the
sum rule is approximately conserved within the π manifold.
The number of them in an odd-n chain is N = 2n−2, filling
the molecular orbitals in the usual way. Thus, if the lowest
transition would exhaust the sum rule, the oscillator strength
would be f = 12 for the twelve π electrons in C7. This is to
be compared with ∼ 10 from the LDA wave functions.

We have calculated the excitation energies and oscilla-
tor strengths for the collective transition for carbon chains
in the range2 N = 3 − 20, and the results are tabulated in
Table 1. When more than one transition is seen, the aver-
age excitation energy and the summed oscillator strength
are given. The features described for C7 apply systemati-
cally these chains. The oscillator strength is roughly given
by the number of π electrons; the frequency of the TDLDA
mode is larger than the unperturbed excitation energy by a
factor that ranges from 2 in the light chains to 3 in the heav-
ier ones. The frequencies from Table 1 are graphed in Fig. 3
and one can see that they vary smoothly with chain length.
The filled circles are experimental points for odd n from
[16] and [18]. We see rather good agreement for the larger

2 In the ground state of the even-n clusters with chain geometry, the

highest occupied orbital is doubly degenerate and we assumed each spatial

orbital to be occupied by one electron to make a triplet ground state. For

other cases, all the occupied orbitals are completely filled
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Fig. 4. Systematics of π − π∗ gap energies compared with observed tran-

sitions from [19, 20]

Table 2. Excitation energy and strength of carbon rings in TDLDA

Size Efree [eV] ffree ETDLDA [eV] fTDLDA

7 4.9 5.8 7.8 3.1

8 4.8 8.6 8.2 4.6

9 4.1 9.0 7.6 5.5

10 3.7 9.8 7.2 6.9

11 3.5 10.7 7.0 7.9

12 3.3 11.8 6.9 9.2

13 3.0 12.5 6.6 10.3

14 2.8 13.5 6.3 11.3

15 2.6 14.4 6.1 12.4

20 2.0 18.7 5.2 17.4

chains. The clusters C3,5,7 have been calculated by the CI
method of quantum chemistry [11], and the predicted strong
transition is in the same region, at 8.10, 6.35, and 5.54 eV,
respectively, which are close to our results of 8.1, 6.4, and
5.3 eV. The oscillator strength for C3 is calculated in [11] as
about 1.1. The oscillator strength given in Table 1 is 3.1 for
C3, but this is the strength along the chain direction. Divid-
ing the strength by three to average over spatial orientations
gives f=1.0, in agreement with the quantum chemistry cal-
culation. While there is experimental data for the excitation
energies of odd-n chains in the range n = 7 − 15, there is
no corresponding data on the even chains. We are confident
that the systematics is smooth going over odd and even n,
so it should be possible to observe the mode in even-n.

Reference [18] also reported weaker transitions in odd-
n chains at lower energy. The authors in [19, 20] observe
transitions in heavier even-n clusters which fall within the
same systematics as the weak odd-n transitions. We believe
that the even-n transitions may be associated with the single-
particle transition across the energy gap. There are two in-
equivalent electrons at the Fermi surface due to the partial
orbital occupancy, and one combination becomes the high-
frequency collective state and the other combination remains
near the gap energy with only a small oscillator strength. In
Fig. 4 we show the systematics of the low transition, com-
pared to the calculated π − π∗ gap energy.
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Fig. 6. Systematics of the single-electron transition and the collective ex-

citation in chains, compared with functional fits of the form (6) and (7)

We have also calculated the in-plane response of ring
configurations in the range N = 7 − 15. For simplicity we
assumed uniform circular rings, although the structures may
have some distortion [21]. The results for the collective π
transition are shown in Table 2. The ratio of collective fre-
quencies for rings to chains is plotted in Fig. 5. We see that
the rings are predicted to have a collective frequency about
twice that of the chains with the same number of atoms.

III Interpretation

Our goal in this section is to characterize the n-dependence
of the excitations, and further the dependence on shape,
whether chain or ring. It is well known that the Fermi gap
(or HOMO-LUMO gap) Δε in a linear chain depends on n
as

Δε ∝ 1

n
. (6)

This function fits well the systematics of our calculated
single-particle transition energy, but it does not describe the
collective excitation. This may be seen from the log-log plot
of the energies in Fig. 6. The figure shows that electron-
electron interaction plays an important role not only in the
absolute frequency of the transition but in its functional form
as well. The inadequacy of (6) to describe the systematics
of the strong excitation was also mentioned in [18].

In purely classical physics, the analogous problem is the
plasma resonance in a needle-shaped conductor. The closest
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problem that can be treated analytically is plasma resonance
in a ellipsoidal conductor. Reference [22] derives the for-
mula,

ω2 =
1− e2

e2

(
− 1 +

1

2e
log

1 + e

1− e

)
ω2

0 (7)

where e is related to the ratio of short to long axes, R⊥/R‖,
by

e2 = 1−
(R⊥
R‖

)2

. (8)

This formula has been applied to the collective π excita-
tions in football-shaped fullerenes [23]. For our problem,
we obtain the fit shown in Fig. 6, treating ε and ω0 as ad-
justable parameters. It describes the systematics very well.
Of course, the carbon chain is not ellipsoidal, and we should
seek rather that analytic behavior of the resonance in a con-
ducting cylinder.

The behavior of electromagnetic resonances on infinitely
long wires is known from classical electromagnetic theory.
The dispersion formula for the one-dimensional plasmon on
a long wire reduces to the following expression in the long-
wave length, thin wire limit [24, 25].

ω2 =
4πnee

2

m
q2 log

1

qa
(9)

where q is the reduced wave number of the plasmon, ne is
the density of electrons per unit length, and a is the radius
of the wire. For a finite wire, the lowest mode would have a
q varying inversely with the length of the wire L. Thus the
lowest mode would behave as

ω ∝
√

ln(L)

L
. (10)

This in fact is the asymptotic behavior of (7) in the limit of
large R‖ = L. Taking L ∝ n, the frequency dependence in
chains would be

ω ∝
√

ln(n)

n
(11)

This behavior can be extracted from a more quantum ap-
proach using the polarizability estimate of the collective fre-
quency [26],

ω2 =
�

2e2N

mα
. (12)

Here N is the number of active electrons and α is the po-
larizability. This formula is derived from the ratio of sum
rules, and N may be identified with the oscillator strength f
associated with the transition. We established in Sect. 2 that
the oscillator strength in the π manifold of states is given
roughly by the number of π electrons, and scales accordingly
with n.

We next estimate the polarizability. The asymptotic be-
havior for large n can be determined under the assumption
that the chain behaves as a perfect conductor. The electrons
in a perfect conductor will respond to an external field to re-
store the internal electric field to zero. This gives an implicit
equation for the electron density in terms of the external
electric field E ,
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Fig. 7. Comparison of the TDLDA collective excitation in chains with (6)

and (11)

zE = e

∫
dz′δn(z′)V (z − z′) (13)

Here δn(z) is the induced linear electron density, obtained
by integrating the induced ordinary density over transverse
coordinates. If this is solved for δn(z), the polarizability is
then obtained as the ratio of the induced dipole moment to
E ,

α =
1

E

∫
dz′z′δn(z′) . (14)

To determine asymptotic behavior, we note that V (z) is
strongly peaked at zero, so we may approximate it as a δ
function times

∫
V dz:∫

dz′δn(z′)V (z − z′) ≈ δn(z)

∫
dz′V (z′) (15)

The V (z) behaves as 1/|z − z′| at large separation, so the
integral on the right hand side depends logarithmically on
the integration limits. Thus we may estimate the integral as

∫
dz′V (z′) ≈

∫ L/2

−L/2

dz′V (z′) ≈ 2 log(
L

a
). (16)

Here a is a length having the order of magnitude of the
transverse dimension of the wire. We thus obtain

δn(z) ≈ zE
2 log(L/a)

. (17)

From (4), this implies that the polarizability is

α =
L3

24 log(L/a)
(18)

We now insert this in (12) and use n ∼ L to obtain (11).
The fit with this function is shown in Fig. 7. It obviously de-
scribes the asymptotic behavior much better than (6), which
is also shown in the figure.

We finally discuss the relative frequencies of the modes
in chains and rings using (12). We first examine the oscil-
lators strengths, needed for the numerator of (12). Naively
we would expect similar values, since the number of π elec-
trons in a ring from orbital counting is given by N = 2n.
However, comparing Tables 1 and 2, we may see that the
in-plane ring values are only 2/3 the chain values along the
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axes3. Much more important for the frequency change is the
differing polarizabilities of chains and rings. We have made
a similar asymptotic estimate of the ring polarizability, and
we find that it also increases logarithmically with the cir-
cumference of the ring. The ratio of polarizabilties of a thin
wire ring compared to a straight wire of the same length is
about a factor of 6. The two factors of the oscillator strength
ratio and the polarizability ratio combine in (12) to produce
a frequency shift by a factor of two. This is indeed what
the TDLDA gives asymptotically (see Fig. 5), confirming
the polarizability and oscillator strength argument we made
here.

IV Conclusion

We have demonstrated that the collective π transition in car-
bon chains and rings behaves in a very systematic way, cal-
culable to ≈ 10% accuracy by TDLDA, and understandable
in macroscopic terms. This should give one confidence in
using these transitions to infer the shape of the clusters. We
hope in addition that the smooth dependence of the tran-
sition would allow its perturbation going between similar
structures to be calculable to accuracy of interest for spec-
troscopic identification purposes.

We thank R.A. Broglia for calling our attention to (7).
This work is supported by the Department of Energy under
Grant No. DE-FG06-90ER40561, and by a Grant in Aid for
Scientific Research (No. 08740197) of the Ministry of Edu-
cation, Science and Culture (Japan). Numerical calculations
were performed on the FACOM VPP-500 supercomputer in
RIKEN and the Institute for Solid State Physics, University
of Tokyo.

Appendix: numerical aspects

The method we use, explicit time integration of (1) in the
coordinate space representation, can be shown to be the most
efficient of the methods in use for large systems when there
are no symmetries to reduce the dimensionality. The coor-
dinate space representation is also the most efficient for the
static problem under similar conditions [27].

Let us first consider the matrix RPA in a particle-hole
configuration space representation. This method has been
applied to sodium clusters in [28] and to C60 in [6]. The
number of numerical operations to extract the eigenmodes
and eigenfrequencies scales with the dimensionality of the
matrix M as M 3. The dimensionality of the matrix is given
by the number of particle-hole configurations. A complete
calculation, guaranteed to respect the sum rules and con-
servation laws, requires that all occupied and unoccupied
orbitals be included in the space. The single-particle space
will have a dimensionality that is proportional to the size
of the system, and the number of unoccupied orbitals will
thus be proportional to the number of particles N . Thus the
dimensionality with this method scales as O(N 6). Note that

3 The reason for the lower value is that the electric field in the plane of

the ring is partly transverse and partly longitudinal with respect to the C-C

bond axes. This implies dipole excitations lie partly outside the π manifold

of states. Thus part of the sum rule is shifted to higher energy excitations

this could be much reduced by truncating the particle-hole
basis. For example, in our study of collective π transition
in carbons chains, the orbitals away from the Fermi energy
are not so important. However, we do not know a system-
atic scheme for truncation that would preserve the oscillator
strength and lead to a more favorable N dependence for the
algorithm.

Another widely used technique is the linear response
method. This has been applied to the molecule N2 in [29]
and to alkali metal clusters in [5]. Here the object one cal-
culates is the density-density response function. In a coordi-
nate space representation, its dimensionality is the number
of points in the coordinate space mesh. Thus the dimension-
ality of the matrix scales as M ∝ N . The matrix operation
required in this case is inversion rather than diagonalization,
but it also goes as the cube of the dimension. So this method
scales as O(N 3). Note that we could have used another rep-
resentation of the response, such as momentum space, and
still obtained O(N 3) scaling.

The advantage of direct coordinate space methods is that
one can take advantage of the sparse character of the Hamil-
tonian in that representation. The Hamiltonian has a dimen-
sionality that scales M ∝ N , and the number of operations
required to apply the Hamiltonian to a single-particle wave
function is also O(N ) because of the sparseness. Perform-
ing the operation on all N particles is then O(N 2), and this
gives the scaling for the method. Note that there is a large
prefactor, because the equations have to be integrated many
time steps. However, the time integration depends only on
the energy scales in the Hamiltonian which does not change
with N . Finally, we note that the advantage of this method
would apply to any representation of the wave function that
allows a sparse Hamiltonian matrix.

For the numerical aspects of integrating the Kohn-Sham
equation, we follow closely the method used in [12] to solve
the time-dependence mean field equations in nuclear physics.
The algorithm must insure energy conservation and norm
conservation to very high accuracy to be useful. In addition,
for the results to be converged, the time step of the integra-
tion must be small compared to the inverse frequencies of
the density oscillations. Fixing the time step by this crite-
rion, energy conservation is achieved by using an implicit
method to integrate the equations. One can show that the in-
tegration over the time step will conserve energy if the mean
field is computed with a fixed density given by the average
of the initial and final densities, for Hamiltonians with ordi-
nary two-body interactions4. In our computer program, we
obtain sufficient accuracy for our time steps by using a sim-
ple predictor corrector method to find the average density
and integrate over the time step.

We have now reduced the problem to the time integration
of a fixed Hamiltonian. Since the Schroedinger equation is

4 A more general condition, valid for nonlinear density dependencies

such as in the correlation-exchange potential, is given by taking the potential

in the single-particle Hamiltonian as

V (r) =
v[n+(r)] − v[n−(r)]

n+ − n−

where v is the potential energy functional of density and n± are the den-

sities at the beginning and end of the time step
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linear, we can integrate straightforwardly by using the Taylor
series expansion of the time evolution operator,

φ(t + Δt) = e−iHΔtφ(t) =

kmax∑
n=0

1

n!
(iHΔt)nφ(t) (19)

We found that the fourth-order approximant, kmax = 4, is
sufficient with our time steps to insure norm conservation to
the needed accuracy.
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