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Abstract. The ‘‘paradox of optical isomers’’ revealed by
Hund in 1927 is re-examined taking into account the
interaction of a chiral molecule with phonons of optically
inactive solids below the Debye temperature �

�
. It has

been shown, that in the strong coupling limit, where the
dephasing rate is much higher than the energy splitting
frequency, the interaction can lead to a complete loss of
coherence between mirror-antipodal states of the molecu-
le due to the phonon-induced dephasing. This, in turn,
suppresses tunnelling oscillations between them, so that
transitions, which are reversible in time for an isolated
chiral molecule become irreversible for the same molecule
placed in a low-temperature matrix. In order to propose
a particular mechanism of such stabilization, contribu-
tions of a single- and multi-phonon processes in the de-
phasing rate have been evaluated. It has been established
that only the two-phonon scattering provides the suffi-
ciently strong dephasing in low-temperature solids. Such
a two-phonon mechanism is responsible for the stabiliz-
ation of molecular chiral states as long as the temperature
of the medium is lower �

�
, but exceeds a few Kelvin

degrees. These findings are discussed in the context of the
evolutionary concept known as ‘‘the cold prehistory of
life’’.

PACS: 82.30.!b; 87.10.#e; 87.15.!v

1 Introduction

Certain objects of the molecular world known as ‘‘chiral’’
possess a structure that does not have the center of inver-
sion or the inversion plane. Typical examples are com-
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pounds with ‘‘propeller-shaped’’ structure (like substituted
biphenyl) or molecules (like amino acids, sugars, etc.)
with the central carbon atom bound to four different
substituents. Each of them can exist in the form of two
mirror antipodes (enantiomers) which are spatially
non-superimposable on each other, just as the left
hand and the right hand. Such antipodes are usually
called laevo and dextro isomers and hereinafter are de-
noted by the letters ¸ (from laevo, ‘‘left’’) and D (from
dextro, ‘‘right’’) following notations used in the biophysi-
cal literature.

Since the beginning of the era of quantum mechanics,
a chiral molecule isolated from its surroundings and from
external fields has been treated as a particle in a one-
dimensional symmetric double-well potential with the
only stationary energy level in each individual well (see
Fig. 1). The analysis of this simplest double-well system
(DWS) leads to the paradox revealed by Hund in 1927 [1].
Consider ¸ and D isomers of a chiral molecule. Let us
assume that the x coordinate on Fig. 1 represents the
position of certain atom, the rotation angle of an atomic
group around a bond or some other configurational coor-
dinate of the molecule. Then the mirror-antipodal states
�¸� and �D� are related to wave functions localized in the
left or in the right potential well, respectively. These states
have a chirality but do not have a definite parity and are
degenerate in energy from the quantum-mechanical
standpoint. Nevertheless, they cannot be the eigenstates of
the isolated molecule since for a finite barrier their wave
functions overlap. Such overlapping is responsible for the
lost of a definite chirality and makes the molecular eigen-
states be symmetric and asymmetric combinations of the
¸- and D-states:

�#�" 1

�2
(�¸�#�D�) ,

(1)

�!�" 1

�2
(�¸�!�D�) .

As a result, we arrive at the situation where an iso-
lated chiral molecule occurring in nature as two mirror



Fig. 1. Isolated chiral molecule modelled by a one-dimensional
symmetric double-well system. The ¸- and D-states correspond to
the ¸- and D-enantiomers of a chiral molecule, respectively. They
have the same energies E

�
splitted due to the quantum mechanical

tunnelling. The splitting energy, �E, is the product of the Planck
constant � and the tunnelling frequency �. Other notations: x is the
configurational coordinate of a chiral molecule, E is the height of the
potential energy barrier separating the ¸- and D-states, Q is the
width of the barrier

antipodes has the states with a definite parity, rather than
with a definite chirality (the Hund paradox). This, in turn,
implies that the molecule will spend equal times in the ¸-
and D-states and will tunnel back and forth between them
with a characteristic frequency �. The latter quantity can
be expressed in terms of the height of the barrier E, its
width Q, the effective mass of the tunnelling particle
M and the preexponential factor �

�
as

�"�
�
exp[!(2ME)���Q/�] . (2)

Obviously, the slower the tunnelling, the longer the life-
time of an isolated chiral molecule in the initial isomeric
form. Therefore, the apparent stability of mirror antipodes
relative to the spontaneous ¸ ��D conversion might be
explained by extremely low frequencies of tunnelling oscil-
lations. However, estimations [2, 3] carried out for real
chiral molecules like amines [4] show that actually the
� values predicted by (2) appear to be of the order of
10� s�� and are too high for accepting this explanation.

Several attempts have been made to improve the situ-
ation by taking into account the weak interactions [5],
collision processes [2, 6, 7], and the coupling of DWS to
phonons [8—12] or photons [13] at temperature, ¹, low
enough for neglecting the thermal activated ¸D-
transitions. The potentiality of resolving the discrepancy
by nonlinear wave mechanics [14] has also been discussed
in the literature [3].

It has been demonstrated [2, 6—11] that the interaction
of enantiomers with their low-temperature surroundings
can stabilize the chiral states over the time scale longer
than a period of free tunnelling oscillations �

�
"���.

Such an effect has been explained [5, 9] by the competi-
tion between tunnelling and various dephasing processes
(e.g. collisions, coupling with the phonon bath, etc.). Such
processes lead to a loss of coherence in a time �

��
(the

so-called dephasing time) and therefore favor the localiza-
tion in the initally occupied well of an individual DWS. As
a result, the medium affects dynamics of transitions in

a single DWS making tunnelling oscillations damped
rather than free with the damping rate dependent on
a specific mechanism of dephasing [9].

The dephasing induced by the DWS-phonon coupling
is of particular interest for two reasons. First, it provides
a useful model for studying the role of dissipation in the
tunnelling mechanisms of transport and chemical reactiv-
ity in condensed media (for review see e.g. [15, 16].
Second, the mentioned dephasing mode is quite competi-
tive with coherent tunnelling oscillations between chiral
states at low temperatures and in solid phase, i.e. under
physical conditions typical for outer space. The latter
circumstance enables one to expect that the phonon-
induced dephasing may play an important role in the
extra-terrestrial scenario of the origin of life (for review see
[17—19]).

In order to clarify this point, we now turn to the most
recent version of such a scenario called ‘‘the cold prehis-
tory of life’’ [17, 18]. It relies on the phenomenon of the
low-temperature quantum limit of a chemical reaction
rate [20] and on the discovery of some fairly complex
organic compound (ranging up to amino acids) in the
interstellar medium [21—24]. According to this concept,
the main stage of the formation of prebiotic polymers is
hypothetically represented by the grains of dust of dense
interstellar clouds and more explicitly, by the dirty ice
mantles surrounding the cores of these grains. As any
other hypothesis concerning the origin of life, the scenario
under discussion should explain the typical feature of
living species, i.e. the chiral purity of amino acids in all
proteins (only ¸-enantiomers) and of sugars in RNA and
DNA (only D-enantiomers). Detailed analysis of this key
property of living matter [17, 18, 25] leads to the con-
clusion that chiral purity was achieved by spontaneous
breaking of mirror symmetry in racemic organic medium
containing equal numbers of ¸ and D isomers. Various
kinetic models of the mirror symmetry breaking have been
the subject of active research in recent decades (see e.g.
[26—34]). All of them implicitly suggest that enantiomers
are able to preserve the certain ‘‘sign’’ of chirality during
the characteristic times, �

�	
, of chemical processes included

in a specific kinetic scheme. Such an assumption is true in
‘‘warm’’ scenarios since the chemical reactions go quite
rapidly on the evolutionary time scale. By contrast, in the
‘‘cold’’ scenario, however, reaction rates can be so slow
that �

�	
becomes comparable with �

�
. As a conse-

quence, the ¸D delocalization in a ‘‘cold’’ scenario may
lead to the situation where the concept of the certain sign
of chirality ‘‘gets lost’’ over the time scales of the
physical and chemical processes. However the effect of
solid medium on the dynamics of tunnelling transitions in
DWS [8—12] causes us to anticipate that the phonon-
induced dephasing offers the way to guard against this
possibility.

In the present paper we propose a mechanism of
stabilization of molecular chiral states based on the de-
tailed analysis of the phonon-induced dephasing at ¹ be-
low the Debye temperature �

�
. Theoretically this mecha-

nism follows from the model for the coupling of DWS
with phonons considered in the next section with special
emphasis on two aspects of the problem. One aspect is the
influence of dephasing on the tunnelling dynamics of
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DWS, while the other concerns the evaluation of kinetic
parameters describing the time evolution of the well popu-
lations. Using the density matrix formalism, we demon-
strate that in the strong coupling limit the dephasing
completely suppresses coherent tunnelling oscillations
and that the transition between wells becomes irreversible.
This corresponds to the stabilization of molecular chiral
states by the solid phase environment. It is also shown
that the dephasing resulting from a single-phonon process
does not allow achieving the above limit and only can
slightly reduce the coherence. As a consequence, the
damping oscillations between wells would be expected in
agreement with earlier theoretical findings [9]. Taking
into account that a single-phonon dephasing appears to
be inefficient, the contribution of multi-phonon processes
in the � values is evaluated in Sect. 3. Analytical expres-
sions for this contribution are derived for two important
cases where the thermal wavelength of phonons, �


	
, is

either longer or shorter than a typical dimension, R
�
, of

a molecular scattering center. The results obtained are
summarized and discussed in Sect. 4. Numerical estima-
tions made in this section indicates that the two-phonon
scattering controls the dephasing rate if ¹ exceeds ca. 1 K.
Moreover, such a process yields the � values which cor-
respond to the strong coupling limit as long as temper-
ature is less than �

�
, but higher than a few Kelvin degrees.

Our analysis enables us to conclude that the two-phonon
process offers the mechanism for the stabilization of mo-
lecular chiral states under conditions typical for outer
space.

2 Model for DWS coupled with phonons

Let a single chiral molecule modeled by DWS be coupled
to a phonon gas of an optically inert solid. Such a coup-
ling gives rise to the dephasing which is supposed to
proceed with the rate �"1/�

��
. Besides, in the case of

the disordered matrix the interactions of two mirror
antipodes with the same atom occupied the irregular
position in the lattice cell may be distinct. For some
particular orientations of a single chiral molecule with
respect to the disorder surroundings, the latter circum-
stance can give rise to the asymmetry, E

�
, of energy levels

corresponding to the ¸- and D-states. A pictorial example
is shown in Fig. 2. The evaluation of the E

�
values for such

special situations represents a separate problem which is
beyond the scope of the present work. Nevertheless, we
will take the above asymmetry into account for generality
considering E

�
as the parameter.

Our main concern in the context of the stabilization of
molecular chiral states is to describe the time evolution of
the probability that one of two states, say �¸�, will be
populated at time t'0 if initially it has been the only
occupied state of an individual DWS. To achieve this
objective, we first analyze the time behavior of the well
populations in terms of the density matrix supposing that
the main physical parameters characterizing DWS are
known. In addition to E

�
and �, they include the coherent

tunnelling frequency � and the rate of the incoherent
tunnelling transitions ¼. Since the effect of dephasing on
the transition probability is of primary interest here, our

Fig. 2. Top view of mirror antipodes of a chiral molecule in the
elementary cell of a disordered solid. A chiral molecule has four
different ligands R

�
, R

�
, R

	
, and R



bound to the central carbon

atom C*. The ligand R
�

is located above C* and cannot be seen on
the figure. The elementary cell of a disordered solid is formed
by species M. One of them, M

�
, occupies the irregular position.

The asymmetry, E
�
, of energy levels corresponding to the ¸- and

D-states arises due to the distinct local interaction of ligands R
�and R



with their nearest neighbours M and M

�
. Note that for

a perfect square lattice this distinction disappears and E
�

becomes
equal zero

consideration is restricted to the case, where ¹ is less than
�
�
, but exceeds both ��/k


and E

�
/k


. As shown in the

first part of this section, the decay of the population in the
limit of strong dephasing is completely defined by values
of two parameters ¼ and �. The method of their evalu-
ation is discussed in the second part of the section.

2.1 Kinetic analysis

Our approach to the kinetic description of DWS is based
on the Bloch equation for the density matrix �̂ (t). In the
temperature range under investigation the elements ��� of
this matrix satisfy a set of equations

	�
��

	t
"! i

2�
� (�

��
!�

��
)!¼(�

��
!�

�
) ,

	�
��

	t
" i

2�
� (�

��
!�

��
)!¼(�

��
!�

�
) ,

(3)
	�

��
	t

"(iE
�
/�!�)�

��
!i� (�

��
!�

��
)/2 ,

	�
��

	t
"(!iE

�
/�!�)�

��
#i� (�

��
!�

��
)/2 .

Here subscripts 
 and � have values 1 or 2 which corres-
pond to the ‘‘left’’ and ‘‘right’’ wells of DWS, respectively.
Since for the sake of definiteness we have assumed that at
t"0 only the ¸-state is occupied, (3) should be solved
under the initial conditions

�
��

(0)"�
��

(0)"�
��

(0)"0, �
��

(0)"1. (4)

To characterize the dynamics of transitions within DWS,
we introduce the difference ��(t) in probabilities to find
a particle in the ‘‘left’’ and ‘‘right’’ wells. Then the use of the
Laplace transform �J ��"��

�
��� exp(!st) dt for solving (3),
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enables one to express this quantity as

��J "�J
��

!�J
��

"�s#¼# (s#�)��

(s#�)�#E�
�
/���

��
. (5)

For an isolated DWS, parameters E
�
, ¼, � are equal to

zero, and the inverse Laplace transform of (5) gives the
familiar result (see e.g. [16]).

��(t)"cos (�t). (6)

Being applied to a chiral molecule, it shows that in the
absence of the interaction with the medium the transition
between two mirror antipodal states follows the pattern
typical for coherent tunnelling oscillations. This is also
true as long as a chiral molecule is not coupled with
phonons. Indeed, if such a molecule is imbedded in the
irregular rigid lattice, both ¼ and � equal zero as before,
but E

�
O0. As a consequence, the inverse Laplace trans-

form of (5) yields

��(t)"(E
�
/E)�#(��/E)�cos(Et/�), (7)

where E denotes the total splitting energy defined as

E"(E�
�
#����)���. (8)

The comparison of (7) with (6) shows that similar to the
time behavior of the isolated DWS, dynamics of
transitions within such a system embedded in a rigid
matrix exhibits coherent oscillations. The only distinction
between two cases is a smaller amplitude of the oscilla-
tions in the asymmetric situation. According to (7), for
E
�
<�� its value becomes so small that a chiral molecule

in a rigid lattice appears to be predominantly localized in
the initial isomeric form.

However, it should be noted that the above explana-
tion of the Hund paradox is incomplete since it ignores the
effect of phonons on the dynamics of DWS. Such an effect
becomes evident from the analysis of (5) in the limit of the
weak DWS-phonon coupling, where both ¼ and � are
much less than E/�. Under these conditions the time
dependence of �� becomes distinct from that expected
from (7), i.e.

��"(E
�
/E)�exp(!¼

��
t)#(��/E)�cos(Et/�) exp (!�t)

(9)

where ¼
��

is the total rate of tunnelling transitions given
by

¼
��

"¼# �����

E�
�
#����

. (10)

Equation (9) implies that the inclusion of the weak interac-
tion between a single chiral molecule and phonons leads
to the damping of coherent oscillations between the ¸-
and the D-state in conformity with earlier theoretical
findings [9—11]. Such an oscillatory motion is suppressed
in the strong coupling limit, where �<E/�5�. In the
latter case ��(t) evaluated from (5) varies with time fol-
lowing the exponential law

��(t)"exp(!¼
��

t), (11)

which corresponds to the complete dephasing.

The obtained result suggests the alternative explana-
tion of the Hund paradox that does not require any
special assumptions about the energy asymmetry of the ¸-
and D-states in a rigid matrix. This explanation lies in the
fact that the strong coupling of a chiral molecule with
phonons makes the transitions between these states irre-
versible due to a loss of the phase coherence. Nevertheless,
the kinetic analysis alone cannot offer the answer to the
question as to whether the strong DWS-phonon interac-
tion provides the stabilization of molecular chiral states.
To resolve the latter question, it also needs to be ascer-
tained if such an interaction indeed yields the dephasing
rates sufficient for a complete loss of coherence. This calls
for a method which makes it possible to calculate the
kinetic parameters appearing in (11). Such a method,
taking into account both a single- and a multi-phonon
processes, will be considered below.

2.2 Evaluations of kinetic parameters

The Hamiltonian of the system under consideration has
the form

H� "H�
�
#H�

�	
#H�

��

, (12)

where H�
�
, H�

��

, and H�

�	
describe DWS in a rigid lattice,

a phonon thermostat, and the interaction of DWS with
phonon gas, respectively. Using the site representation, we
express three terms of (12) as follows

H
�
"E

�
(d�

�
d
�
!d�

�
d
�
)/2#�� (d�

�
d
�
#d�

�
d
�
)/2 , (13)

H�
�	

" �
�k���

�k��
b�k � �

bk�
, (14)

H�
��


"�
�

»K
�
(d�

�
d
�
!d�

�
d
�
). (15)

Here d�
�

and d
�
are the creation and annihilation oper-

ators for a chiral molecule in the i-th state with i being
equal to 1 and 2 for the ‘‘left’’ and ‘‘right’’ wells as before,
b�k�

and bk� �
are the same operators, but for phonons which

belong to the branch j and have the wave vector k,


�� �
"c�

�
k is the frequency of the j-th phonon mode

( j"1, 2, 3) , c�
�

is the sound velocity for the j-th mode,
and »K

�
is the Hamiltonian of the n-th order phonon

process.
Since the operator »K

�
can, in principle, be specified for

any n51, the Fermi Golden rule allows the evaluation of
the contributions �

�
made by each one of phonon pro-

cesses into the dephasing rate. The contribution arising
due to a single phonon process deserves special attention.
The point is that this process must be accompanied by
tunnelling between two levels since there is no way to
absorb or to emit a single phonon without a subbarrier
transition; otherwise the phonons with a zero frequency
would be required. However, phonons with "0 are
actually absent in the system because the appropriate
density of states depends on the frequency as �. As
a consequence, a single phonon process always results in
the transition between ¸- and D-states with the rate
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approximated by

¼"2�
�
"��

E�

��
�

��

�»K
�
(t)»K

�
(0)�exp (iE

�
t) dt, (16)

where the notation �2� means averaging over the en-
semble of states of the phonon subsystem in a thermal
equilibrium.

The above restriction does not exist for a multi-
phonon ‘‘scattering’’. In this case the major contribution
to the dephasing rate comes from the processes without
tunnelling [16, 35], so that for n52 the Fermi Golden
Rule gives

�
�
"1

2

��
�

��

�»K
�
(t)»K

�
(0)�dt. (17)

Now the calculation of the dephasing is straightforward
and reduces to the summation of all contributions, namely

�" �
�
���

�
�
. (18)

The second physical parameter which controls the dy-
namics of DWS in the strong coupling limit (cf. (11)) is the
total transition rate for tunnelling ¼

��
. According to (10),

this rate is expressed in terms of �, ¼, and �. Hence (16),
(17), and (18) together with (10) define the tunnelling
transition rate if the � value is known.

In order to illustrate the application of the method
proposed here for calculating � and ¼, in the next
section we specify the Hamiltonian for single and multi-
phonon processes and calculate their contributions in the
rate of tunnelling and in the dephasing rate. This allows us
to show that for ¹(�

�
these rates are mainly determined

by one- and two-phonon scattering. The temperatures
ranges where both processes dominates are also esti-
mated.

3 Tunnelling and dephasing rates:
single- and multi-phonon contributions

3.1 Single-phonon process

In this case the Hamiltonian »K
�

for the DWS-phonon
interaction can be written as

»K
�
"i �

��k
k

�
�
[�/(Mc�

�
N)]���k����k��

(b�k ��
!bk� �

) , (19)

where N is the total number of elementary cells of mass
M and �k��

is the coupling constant for phonons which
belong to the branch j and have the wave vector k. The
factor k��� appears in (19) due to the translation invari-
ance of DWS and its molecular environment.

The substitution of (19) into (16) yields

¼"(��k

�
�
)�

NME�
�
�

�
k

(��k��/c�
�
)k�(E!�c �

�
k) (2�

�
#1), (20)

where �
�
"[exp(E/k


¹ )!1]�� is the occupation num-

ber for phonons with energy E. Taking into account that

in (20) summation over k can be replaced by integration
and making evident transformations, we arrive at the
following expression for the incoherent tunnelling rate

¼"2�
�
"9�

�
��
�

(��)�E

Mc�
�
k

�
�

coth[E/(2k

¹ )] , (21)

with �
�
/c

�
"(1/3) �

�

��
���

/(c�
�
) and �

���
being the DWS-

phonon coupling constant for the wave vector k
�
"

E/(�c�
�
). Since (k


�
�
/�)	"6��c	

�
/», (21) is identical to the

expression for ¼ obtained in earlier publications [12, 36].

3.2 Contributions of multi-phonon processes

To evaluate the contribution made by multi-phonon pro-
cesses into the values of parameters � and ¼, we start
with the two-phonon Hamiltonian defined by

»K
�
"!k


�
�
�

NM
�

�����k��k
(c�

�
c��
�
)����(kk�)��������k�k

�(b�k��
!bk��

)(b�k����
!bk����

). (22)

The most significant contribution of two-phonon pro-
cesses is usually associated with scattering [16]. Hence

�
�
"�

k

�
�

NM�
�

�
�� ��

1

c�
�
c��
�

�
k�k�

kk�(�����k�k�
)��k��

�(1#�k����
)�(k��

!k����
), (23)

where �k� �
"[exp(�k� �

/k

¹ )!1]��.

It should be mentioned that �����k�k�
arising in (23) is

proportional to the scattering amplitude. The latter
quantity has a maximum value for events with small
changes of wave vector �k"�k!k��(1/R

�
because of

a finite size of a molecular scatterer. In order to take this
circumstance into account, we assume that

(�����k�k�
)�"�

�
exp[!(k!k�)�R�

�
] (24)

and then substitute (24) into (23). As a result, two limiting
cases become evident. For temperatures exceeding
¹

�
"�c

�
/(k


R

�
) ��

�
(a/R

�
) that correspond to the short

wavelength limit (�

	
(R

�
), the contribution of the two-

phonon process in the dephasing rate is given by

�
�
�10
k


�
�
(¹/�

�
) [k


�
�
�
�
/(Mc�

�
)]�(a/R)�/� , (25)

where a is the size of the elementary cell. Otherwise (i.e. for
¹(¹

�
) one gets

�
�
�10k


�
�
(¹/�

�
)�[k


�
�
�
�
/(Mc�

�
)]�/� (26)

in agreement with the expression available in the litera-
ture (see e.g. [16]) for the rate of the two-phonon dephas-
ing in the long wavelength limit (�


	
'R

�
) . Note that large

numerical factors in (25) and (26) result from the integra-
tion of the polynomial function k� with the high value of
the exponent m.

Contributions �
�

coming from the phonon
process of higher order can be evaluated in similar
fashion. As an example we present the result obtained for
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the three-phonon inelastic scattering. Such process is de-
scribed by the Hamiltonian

»K
	
"!i

k

�
�
�	��

(NM)	��
�

��������

�
k�k��k��

(c�
�
c��
�
c���
�

)����(kk�k��)������������k�k��k��

�(b�k��
!bk��

) (b�k����
!bk����

) (b�k������
!bk������

) . (27)

Calculations similar to those made for the two-phonon
scattering again shows the existence of low-temperature
(short wavelength) and high-temperature (long wave-
length) limits

�
	
�10

(k

�
�
)
��

�
�(Mc�

�
)	

(¹/�
�
)� �

(a/R
�
)	

10�(¹/�
�
)	

if ¹'¹
�

if ¹(¹
�

. (28)

However, a comparison of (28) with (25, 26) shows that
�
	

depends on temperature much stronger than �
�
. Tak-

ing typical values of parameter appearing in (25), (26), and
(28), one can easily verify that for Mc�

�
�10 eV and

k

�
�
�0.01 eV the dephasing rate related to the two-

phonon scattering is higher than �
	

as long as ¹ is below
�
�
�100 K. This implies that for ¹(�

�
the contribution

of the three-phonon process in the dephasing rate can be
neglected. For each one of the processes with the number
of phonons n'2, the dephasing rate will be even lower
than �

	
since any additional phonon involved in the

single scattering event decreases the phase volume at least
by a factor (¹/�

�
)	;1. Besides, any extra phonon adds

the small factor k

�
�
/(Mc�

�
) �10�	 in the corresponding

�
�
value. Thus, one- and two-phonon processes make the

main contribution in the dephasing rate below the Debye
temperature.

4 Discussion and conclusions

In the present paper we consider the Hund paradox of
optical isomers [1] and propose its explanation in terms
of the strong coupling between a single chiral molecule
modeled by DWS and the phonon surroundings. The
analysis of the DWS dynamics in low-temperature solids
(see Sect. 2) enables us to show that such a coupling can
lead to the complete dephasing which, in turn, suppresses
coherent tunnelling oscillations between the ‘‘left’’ and
‘‘right’’ wells. As a result, transitions between mirror-an-
tipodal states which are reversible in time for an isolated
chiral molecule (cf. (6)) become irreversible for the same
molecule embedded in low-temperature solid (cf. (11)). In
this regard molecular chiral states turn out to be stabilized
by the medium.

The above mechanism of stabilization works only if
phonon processes with the dephasing rate higher than
E/� exist. According to numerical estimations carried out
using (21) with Mc�

�
�10 eV, k


�
�
�0.01 eV and

��10� s��, a single-phonon process cannot be con-
sidered as an appropriate candidate since for ¹(�

�
its

contribution to the dephasing rate is too small in com-
parison with E/�. However calculations made for the
two-phonon scattering invoking (26) with the same
value of parameters Mc�

�
and k


�
�

show that for typical
coupling constant �

�
�100 [37] the two-phonon scatter-

ing will provide the sufficient dephasing rate above the

temperature ¹* given by

¹*�0.01�
�
[E/(��)]���. (29)

For the symmetric DWS, E��� (see (8)) and from (29) we
get ¹*�1 K. The result for the asymmetric situation is
almost the same because ¹* depends only slightly on E in
view of (29). In spite of small differences, in both cases the
estimated ¹* are much below ¹

�
obtained for reasonable

values of the ratio a/R
�
ranging from 0.1 to 1. Taking this

circumstance into account, we conclude that the dephas-
ing caused by two-phonon scattering stabilizes molecular
chiral states in solids with a temperature less than �

�
, but

higher than a few Kelvin degrees.
It appears to be important that the proposed mecha-

nism of stabilization becomes efficient under physical con-
ditions typical for molecules of organic compounds found
[21—24] in the dirty ice mantles around the cores of the
dust particles in dense interstellar clouds. The temper-
ature of these grains is estimated as ¹

�
�20 K [18, 24] and

hence falls within the temperature range where the two-
phonon dephasing is the main stabilizing factor for mo-
lecular chiral states. Setting ¹"¹

�
in (21), (25), (26) and

using the above values of the other parameters, we obtain
that at 20 K the incoherent tunnelling rate is lower than
the frequency of coherent tunnelling by four orders of
magnitude (¼"2�

�
�10	 s��), whereas �

�
�10�� s��

and exceeds � by five orders of magnitude. By virtue of
(10) this implies that for the discussed conditions the rate
of the subbarrier transitions between two chiral states are
completely controlled by incoherent tunnelling rather
than by free tunnelling oscillations with the frequency
given by (2). As a consequence, the decay of the population
difference ��(t) can be considered as exponential with the
rate constant equal to ¼.

Summing up, we conclude that the two-phonon de-
phasing arising from the interaction of a chiral molecule
with a low-temperature solid removes the Hund’s paradox
without invoking the non-linear wave mechanics [3, 14].
In addition, such a dephasing provides the efficient
mechanism for stabilization of molecular chiral states
which preserve the certain ‘‘sign’’ of chirality over the
time scale comparable with the rates of low-temper-
ature physical and chemical processes. This circumstance
makes the question about the possibility of a mirror
symmetry in the cold prehistory of life accessible for anal-
ysis by means of modern methods of chemical physics
[17, 18, 25].
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