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Abstract
The majority of patients with Parkinson’s disease (PD) develop swallowing, speech, and voice (SSV) disorders. Impor-
tantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although 
PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impres-
sive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long 
considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. 
Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the 
same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. 
The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction 
results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions 
of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underly-
ing SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least 
in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and 
distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic 
targets and set a foundation for the development of new therapies to treat SSV disorders in PD.
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MPC	� Middle pharyngeal constrictor
NA	� Nucleus ambiguous
PAS	� Phosphorylated α-synuclein
PC	� Pharyngeal constrictor
PCA	� Posterior cricoarytenoid muscle
PD	� Parkinson’s disease
Ph-IX	� Pharyngeal branch of the IX nerve
Ph-X	� Pharyngeal branch of the X nerve
PNS	� Peripheral nervous system
RLN	� Recurrent laryngeal nerve
SG	� Styloglossus
SL	� Superior longitudinalis
SLN	� Superior laryngeal nerve
SPC	� Superior pharyngeal constrictor
SSV	� Swallowing,speech and voice
T	� Transversus
TA	� Thyroarytenoid muscle
UA	� Upper airway
UE	� Upper esophagus
USSLBD	� Unified Staging System for Lewy Body 

Disorders
V	� Verticalis
VFB	� Vocal fold bowing
X	� Vagus nerve
XII	� Hypoglossal nerve

Introduction

Parkinson’s disease (PD) is a progressing neurodegenera-
tive disorder diagnosed by the presence of classic move-
ment symptoms, including tremor, bradykinesia and muscle 
rigidity, and postural instability [1, 2]. PD was long consid-
ered to be a central nervous system (CNS) disorder caused 
by the lose of dopaminergic neurons in the basal ganglia. 
The pathological hallmark of PD is aggregates of phos-
phorylated α-synuclein (PAS) within the CNS neurons [1, 
3]. However, studies have demonstrated that PAS pathology 
is distributed not only in the CNS but also in the peripheral 
nervous system (PNS) [4–10].

At the peripheral level, PAS aggregates have been found 
mainly in the autonomic pathways. Beach and colleagues 
[11–21] and others [22–29] performed extensive studies to 
detect PAS pathology in multiple peripheral organs and tis-
sues, including cervical vagus nerve (X) [11], stomach [11, 
22], colon [12, 16, 23, 24], minor salivary and submandibu-
lar glands [13, 14, 16–19, 25], cardiac plexus [20, 26, 27], 
skin [16, 21, 28, 29], and retina [15]. Biopsy of periperal tis-
sues such as colon, skin, and submandibular glands has been 
performed to detect PAS pathology and identify histological 
biomarkers for PD. While a simple and validated biomarker 
for PD is still lacking, studies by Beach and colleagues [13, 

14, 16, 18, 19] showed that submandibular glands in PD had 
relatively high densities of PAS aggregates and its needle 
biopsy has the potential for PD diagnosis. However, further 
work with large trials is needed to assess the efficacy of the 
peripheral tissue biopsies for a more precise and early diag-
nosis of PD [30].

More recently, PAS pathology has been also demon-
strated in the PD pharynx. Mu and colleagues [31–34] were 
the first to investigate autopsied pharynges from subjects 
with clinically diagnosed and neuropathologically con-
firmed PD. Specifically, PAS aggregates were identified in 
the motor [31] and sensory [32] pharyngeal nerves, muscles 
[33], and mucosa [34]. The authors demonstrated muscle 
fiber atrophy in the PD pharynx [33], and this has been con-
firmed by a subsequent independent study [35]. These find-
ings point to the possibility that direct PAS damage to the 
peripheral motor and sensory nerves innervating the upper 
airway (UA) structures would contribute, at least in part, 
to swallowing, speech, and voice (SSV) disorders com-
monly seen in PD patients. However, it remains unknown if 
the PNS controlling the larynx and tongue as well as other 
surrounding structures is affected by the PAS pathology. 
Further studies are needed to determine the presence and 
distribution of PAS pathology in the aerodigestive/vocal 
tract for better understanding the mechanisms of SSV dis-
orders and for the development of novel therapies to treat 
impaired SSV in PD.

SSV Disorders in PD

SSV deficits in PD represent a large clinical challenge. Up 
to 90% of patients with PD develop SSV disorders, includ-
ing dysphagia, dysarthria, and dysphonia. Dysphagia affects 
50–80% of PD patients and 25–50% of PD patients experi-
ence aspiration [36–40]. Oropharyngeal dysphagia can be 
particularly devastating, as it can result in life-threatening 
conditions such as choking, aspiration pneumonia, and 
death [41–45]. It has been estimated that up to 70% of 
patients with PD die from aspiration pneumonia [46, 47].

It is generally believed that SSV disorders are caused by 
the same dopaminergic problem as that causing impaired 
limb movements (i.e., bradykinesia and rigidity) [38, 48]. 
However, there is no correlation between overall muscle 
rigidity score and dysphagia [48, 49]. Although currently 
available PD treatments have significant therapeutic effects 
on limb motor functions, their effects on SSV disorders are 
disappointing [36, 37, 50–54]. Therefore, some researchers 
postulated that SSV disorders may be not caused solely by 
a reduction in basal ganglia dopamine activity [50, 55, 56]. 
Despite the high incidence of SSV disorders in PD, their 
pathophysiological mechanisms are poorly understood. This 
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gap in our understanding is a significant barrier to develop-
ing effective therapies for the treatment of SSV disorders.

Pharynx, larynx, and tongue play a vital role in swal-
lowing, airway protection, phonation, speech, and respi-
ration. These functions are frequently impaired in PD. In 
this review, advanced knowledge regarding the specialized 
neuromuscular organization patterns and functions of the 
UA structures as well as clinical features of the disordered 
SSV in PD are presented below for better understanding the 
mechanisms of SSV disorders and for further detecting PAS 
pathology and developing new therapies targeting the UA 
structures.

The Pharynx

The pharynx is a tube-like structure located between oral 
cavity and esophagus and serves as an aerodigestive/vocal 
tract. The pharyngeal walls are formed by three segmentally 
arranged superior, middle, and inferior pharyngeal constric-
tor (SPC, MPC, and IPC) muscles as well as the paired sty-
lopharyngeus, salpingopharyngeus, and palatopharyngeus 
muscles. During swallowing, contraction of the pharyngeal 
constrictors (PCs) constricts the pharyngeal lumen to drive a 
bolus downward to the esophagus [57]. During respiration, 
PCs activate to stiffen the pharyngeal walls, thus avoiding 
pharyngeal collapse and maintaining airway patency [58]. 
During speech, the muscular pharyngeal walls also activate 
to shape the vocal tract [59].

The pharynx receives its motor innervation from the pha-
ryngeal branches of the glossopharyngeal (IX) and vagus 
(X) nerves, which form the so-called pharyngeal plexus 
(Fig. 1A). In humans, the X nerve provides motor innerva-
tion to all the PCs [60, 61]. While it is generally described 
that the IX nerve only innervates the stylopharyngeus mus-
cle [60], our studies using Sihler’s stain, a whole-mount 
nerve staining technique, and Karnovsky-Roots acetylcho-
linesterase (AChE) stain showed that IX also provides motor 
branches to innervate the inner layer of the PCs [61]. The 
IX, X, and internal superior laryngeal nerve (ISLN) provide 
sensory nerve supply to the pharyngeal mucosa [60, 62, 63] 
and play a crucial role in many UA reflexes. The areas with 
dense sensory nerve terminals include lateral and posterior 
pharyngeal walls innervated by the IX and X nerves [62, 
63]. These densely innervated areas are consistent with the 
well-known areas that initiate pharyngeal swallowing [57, 
64].

In PD pharynx, we demonstrated for the first time that 
there were PAS lesions in the sensory and motor nerves and 
their innervating targets [31–34] (Fig. 1B-D). Sensory nerve 
degeneration induced by PAS lesions could impair swallow-
ing initiation. Motor nerve degeneration results in muscle 

denervation, fiber atrophy, fiber type grouping, and fast-to-
slow myosin heavy chain transformation [33, 61]. All these 
PD-induced neuromuscular alterations could affect muscle 
contractile properties. Notably, the density of PAS lesions 
is greater in PD patients with dysphagia versus those with-
out dysphagia [31–34]. These findings indicate that oropha-
ryngeal dysphagia in PD is related to the extent of the PAS 
lesions in the pharyngeal sensory and motor nerves and their 
innervating mucosa and muscles.

The Larynx

The larynx is an important organ for voice production, air-
way protection, respiration, and swallowing. The perfor-
mance of these functions relies largely on normal sensory 
imputs and normal vocal fold movements controlled by 
five intrinsic laryngeal muscles, including thyroarytenoid 
(TA), posterior cricoarytenoid (PCA), lateral cricoarytenoid 
(LCA), interarytenoid (IA), and cricothyroid (CT) muscles 
innervated by the laryngeal nerves (Fig.  2A and B). The 
laryngeal muscles are functionally divided into three groups: 
adductors (i.e., TA, LCA, and IA), abductor (i.e., PCA), and 
tensor (i.e., CT) of the vocal fold. Adductor and abductor 
muscles are innervated by the recurrent laryngeal nerve 
(RLN), whereas the tensor CT muscle receives its motor 
innervation from external superior laryngeal nerve (ESLN) 
[60]. Sanders and colleagues [65–68] investigated the inner-
vation of the human larynx in detail by using Sihler’s stain 
and provided a number of new findings. In brief, almost all 
of the intrinsic laryngeal muscles are composed of neuro-
muscular compartments, each of which is innervated by a 
distinct nerve branch. In addition, multiple communicating 
nerves between RLN, ESLN, and ISLN have been identi-
fied. These findings are important for better understand-
ing laryngeal functions and motor dysfunction caused by 
a number of neurological diseases, including PD. Sensory 
innervation of the mucosa overlaying the larynx and laryn-
gopharynx is from the ISLN and sensory fibers in the RLN 
[60, 62, 63]. Sihler’s stain showed that the mucosa covering 
the laryngeal surface of epiglottis innervated by the superior 
branch of the ISLN and arytenoid and postcricoid regions 
innervated by the inferior branch of the ISLN has high den-
sity of sensory nerve terminals (Fig.  2C and D) [62, 63]. 
These areas have abundant receptors that elecite swallowing 
and reflex glottic closure [69–71].

During swallowing, the larynx is closed to protect the air-
way by adduction of the true vocal folds, approximation of 
the false vocal folds, and approximation of the arytenoids 
to the base of the epiglottis and epiglottic inversion [72]. 
Laryngeal motor system is frequently affected in PD as 
indicated by a number of abnormalities observed in the PD 
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bowing could be related to aspiration. However, the cause 
of VFB has not been determined. These clinical observa-
tions suggest that the laryngeal motor nerves are most likely 
affected in PD. Laryngeal motor dysfunction could result 
in impaired vocal fold movements, vocal fold atrophy and 
bowing, and incomplete glottic closure.

Laryngeal sensory nerve dysfunction also results in dys-
phagia and aspiration. As ISLN innervates the mucosa of 

larynx. For instance, laryngeal examinations have revealed 
that more than 90% of PD patients have incomplete, delayed 
or totally absent reflex glottic closure during swallowing 
[55, 73], and vocal fold bowing (VFB) with a glottic gap 
[74–79]. This gap between the vocal folds leads to a loss of 
air and reduced voice intensity during phonation, thereby 
leading to a characteristic breathy voice, and possibly 
aspiration during swallowing. The vocal fold atrophy and 

Fig. 1  (A) Photograph of a human 
semipharynx processed with 
Sihler’s stain, a whole-mount 
nerve staining technique, show-
ing the pharyngeal plexus formed 
by the pharyngeal branches of 
the X and IX nerves innervating 
the superior, middle and inferior 
pharyngeal constrictor (i.e., SPC, 
MPC and IPC) and cricopharyn-
geus (CP) muscles. 1, pharyngeal 
branch of the X nerve (Ph-X); 
2, pharyngeal branch of the IX 
nerve (Ph-IX); IX-L, lingual 
branch of the IX nerve; ESLN, 
external superior laryngeal nerve; 
ISLN, internal superior laryngeal 
nerve; UE, upper esophagus. 
(B-C) Photomicrographs of 
longitudinal sections of a cervi-
cal X nerve trunk (B) and Ph-X 
(C) from a PD subject with 
dysphagia. The sections were 
immunostained for PAS. Note 
that there are numerous PAS-
immunoreactive axons (darkly 
stained threads and dots) in both 
the nerve X and Ph-X. (D) A 
cross-section of IPC muscle from 
a PD subject with dysphagia 
stained with monoclonal antibody 
NOQ7-5-4D specific for type I 
myofibers (dark staining). Note 
that there are numerous small 
atrophied myofibers in the IPC 
muscle. Original magnification: 
(B-D) 200x
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to the mucosa innervated by the ISLN. Studies have dem-
onstrated that PD patients with dysphagia have decreased 
laryngopharyngeal sensitivity [100–104]. Approximately 
75% of the people with dysphagia have severe laryngopha-
ryngeal sensory deficits and patients with sensory deficits 
often have laryngeal penetration and aspiration [99].

Clearly, motor and/or sensory dysfunction of the lar-
ynx could result in dysphonia, dysphagia, aspiration, and 
aspiration pneumonia. Motor nerve lesions are associated 
with vocal fold atrophy and bowing and impaired vocal 
fold movement, whereas sensory nerve pathology could 
diminish laryngeal sensation that impairs swallowing, glot-
tic closure, and cough reflexes. All of these changes could 
affect swallowing and laryngeal protective mechanisms. 
However, it remains unknown if the laryngeal nervous sys-
tems are affected by PAS pathology in PD. Further studies 
are needed to determine the presence and distribution of the 
PAS pathology in the PD larynx.

the larynx and the laryngopharynx, it plays a critical role 
in airway protection [71, 80]. Stimulation of the ISLN or 
laryngeal receptors in the mucosa readily elicits reflex swal-
lowing [57, 81], laryngeal closure [82–85], and coughing 
[86–89]. Dysphagia, aspiration, and reduced laryngeal 
cough reflex are commonly seen after nerve transection or 
complete anesthesia of the ISLN [80, 90–92]. PD patients 
with dysphagia and aspiration have decreased cough sen-
sitivity [93–95]. Loss of laryngeal sensation as indicated 
by the absence of cough upon aspiration is a risk factor for 
aspiration pneumonia [96].

Sensory dysfunction of the larynx and laryngopharynx in 
PD patients has been demonstrated by using sensory testing. 
In the 1990s, Aviv and colleagues [97–99] developed a new 
technique for sensory testing using a modified endoscope, 
known as fiberoptic endoscopic evaluation of swallowing 
with sensory testing. Laryngopharyngeal sensitivity can be 
determined by endoscopically delivering air pulse stimuli 

Fig. 2  (A) Schematic, showing 
the human larynx (lateral view) 
and its innervating nerves. (B) 
Schematic, showing locations of 
the intrinsic laryngeal muscles 
(lateroposterior view). Note 
that cervical X nerve gives off 
superior laryngeal nerve (SLN) 
and recurrent laryngeal nerve 
(RLN). SLN further divides into 
its internal (ISLN) and external 
(ESLN) branches to supply the 
mucosa and cricothyroid (CT) 
muscle, respectively. The RLN 
innervates the remaining muscles 
(i.e., posterior cricoarytenoid, 
PCA; thyroarytenoid, TA; 
lateral cricoarytenoid, LCA; and 
interarytenoid, IA). E, epiglot-
tis; H, hyoid bone; TC, thyroid 
cartilage. (C-D) Sihler’s stained 
human laryngeal mucosa show-
ing the branching and distribu-
tion patterns of the ISLN and 
sensory nerve terminals in the 
mucosa overlaying the laryngeal 
surface of the epiglottis (C) and 
postcricoid region (D) (Printed 
with permission from Fig. 4 in the 
article by Mu and Sanders [63]). 
Note that both areas are inner-
vated by dense sensory plexus
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a bone outside the tongue while the other end inserts into the 
tongue body. Intrinsic muscles, including superior longitu-
dinalis (SL), inferior longitudinalis (IL), transversus (T) and 
verticalis (V), originate and insert within the tongue body 
without bony attachments (Fig. 3A).

The Tongue

The tongue is a muscular organ located on the floor of the 
oral cavity. The tongue muscles include extrinsic and intrin-
sic. Extrinsic muscles, including genioglossus (GG), stylo-
glossus (SG), and hyoglossus (HG), have one attachment to 

Fig. 3  (A) Schematic, showing 
the human tongue and its ana-
tomical correlations with the lar-
ynx and pharynx as well as other 
structures. CP, cricopharyngeus; 
CT, cricothyroid; GG, genioglos-
sus; HG, hyoglossus; IL, inferior 
longitudinal; IPC, inferior pha-
ryngeal constrictor; M, mandible; 
MPC, middle pharyngeal con-
strictor; SG, styloglossus; SPC, 
superior pharyngeal constrictor; 
TC, thyroid cartilage; TH, thyro-
hyoid; UE, upper esophagus. (B) 
Photograph of a human tongue 
processed with Sihler’s stain, 
showing branching and distribu-
tion patterns of the nerves to the 
tongue (Printed with permission 
from Fig. 1A in the article by Mu 
and Sanders [108]). Note that the 
XII nerve is divided into lateral 
(green circle) and medial (purple 
circle) divisions at the posterior 
tongue to supply the tongue 
muscles. The lingual branch of 
the IX nerve (IX-L) gives off 
multiple secondary branches to 
supply the mucosa overlaying the 
posterior one-third of the tongue 
and vallate papillae (black dots). 
Lingual nerve (LN) splits off a 
bundle of branches to supply the 
mucosa covering the anterior 
two-thirds of the tongue. There 
are a number of communicating 
branches between LN and XII
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enzyme-histochemical methods. Detailed information about 
accurate innervation of the tongue muscles is helpful for a 
better understanding of the physiology and pathophysiology 
of the tongue and for future studies on the PD tongue.

Studies have demonstrated that the tongue muscles play 
an important role in chewing, swallowing, speech, and res-
piration and that these tongue-related motor tasks are car-
ried out by coordination of extrinsic and intrinsic muscles 
[110–115]. Dysfunction of the tongue has been demon-
strated in patients with PD. Videofluoroscopy of swallowing 
in PD patients shows that the tongue has difficulty forming 
and controlling the food bolus and that it does not propel the 
bolus immediately. Instead, it moves the bolus forward and 
backward repetitively [116]. Slower tongue movements can 
be associated with hypokinesia related to PD basal ganglia 
pathology and/or PD-induced peripheral nerve degeneration 
as seen in the pharyngeal motor and sensory nerves (Fig. 1B 
and C). PD pathology affects sensorimotor processing, 
motor control, and muscle weakness that impair tongue 
movements during chewing, swallowing, and speech. The 
tongue is the most important articulator of speech. PD 
patients typically have hypokinetic dysarthria character-
ized by hypophonia (decreased loudness) and dysprosody 
(monotony). PD speech, known as hypokinetic dysarthria, 
affecting about 90% of patients with PD [37, 117, 118], is a 
particularly disabling problem that influences social interac-
tions and alters daily living activities [119]. Unfortunately, 
impaired voice, speech, and swallowing are the PD symp-
toms with a poor response to classical pharmacologic and 
surgical (deep brain stimulation) PD treatments [for review, 
see 120, 121]. Therefore, some authors postulated that the 
mechanism of speech disorders may differ from that of limb 
motor impairment in PD [for review, see 118].

However, previous studies have yet to directly examine 
whether the motor and sensory nerves, muscles, and mucosa 
in the larynx and tongue are affected by PAS pathology in 
PD. We hypothesize that PAS pathology may affect the lar-
ynx and tongue and degeneration of the peripheral nerves 
controlling the UA could contribute, at least in part, to SSV 
disorders.

Conclusions and Future Research Directions

This review provides an overview on the neuromuscular 
organization patterns, functions of the pharynx, larynx, 
and tongue, clinical features of SSV disorders, and gaps in 
knowledge regarding the pathophysiology underlying SSV 
disorders in PD. This information could be helpful for fur-
ther research on these anatomically complex and function-
ally important structures to elucidate the pathophysiological 
mechanisms of disordered SSV in PD.

The tongue is able to move in all directions and change 
in shapes for its diverse functions in chewing, swallowing, 
speech, and respiration. At least five specific tongue move-
ments have been described, including tongue rolling, fold-
ing, twisting, cloverleaf, and a pointing tongue [105, 106]. 
These tongue movements and shape changes are accom-
plished by coordinative actions of different tongue muscles. 
The extrinsic tongue muscles participate primarily in pro-
trusion (GG), retraction (SG + HG), depression (HG + GG), 
and elevation (SG + PG) of the tongue, as well as side-to-
side tongue movement (GG). The intrinsic tongue muscles 
are involved in tongue-shape changes and movements. For 
example, contractions of the longitudinal muscles (i.e., SL 
and IL) shorten, retract, and curl the tip and sides of the 
tongue (SL for dorsiflexion and IL for ventroflexion of the 
tip of the tongue). Activation of the T muscle narrows and 
elongates the tongue, whereas activation of the V muscle 
flattens, broadens, and elongates the tongue [60, 107]. 
Therefore, the tongue muscles are generally divided into 
protrudors (i.e., GG, T and V) and retractors (i.e., SG, HG, 
SL and IL). Contractions of the protrudors move the tongue 
forward, whereas contractions of the retractors pull the 
tongue backward. In addition to protruding the tongue, the 
GG is responsible for side-to-side movement of the tongue 
[60].

Motor control of the human tongue is poorly understood, 
and considerable controversies and uncertainties concerning 
its innervation still remain [108]. It is generally described 
that hypoglossal nerve (XII) innervates all the tongue mus-
cles, except for the PG muscle, which is innervated by the 
pharyngeal branch of the X nerve [60]. The mucosa overlay-
ing the tongue is supplied by lingual nerve (LN) and lingual 
branch of the IX nerve (IX-L) (Fig. 3B) [60]. Sihler’s stain 
showed that the XII is divided into a lateral and a medial 
division that control tongue muscle activities. The lateral XII 
supplies nerve branches to innervate longitudinally arranged 
tongue muscles (i.e., SG, HG, SL and lateral IL), whereas the 
medial XII gives off motor branches to supply GG, T and V, 
and medial IL muscles. More importantly, Sihler’s stained 
human tongue specimens demonstrated that the LN supplies 
not only the mucosa of the tongue, but also the IL and SL 
muscles. In addition, numerous communicating branches 
between the LN and XII have been identified [108]. These 
findings suggest that LN may not be a pure sensory nerve 
as traditionally described. This hypothesis gains support 
from studies by Saigusa and colleagues (2006) [109], who 
demonstrated that some motor fibers from the motor root 
of the trigeminal nerve enter into and travel within the LN 
and supply the IL and SL muscles. However, it has never 
been definitively shown that the LN nerve has motor func-
tions. Therefore, further studies are needed to document 
if the LN contains motor axons by using anatomical and 
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for better understanding the pathways of the PAS pathology 
affecting the PNS controlling the UA structures.

Taken together, identification of the PAS lesions in 
the UA structures and determination of the relationships 
between SSV deficits and severity of PAS pathology in the 
PNS vs. CNS are critical for uncovering the pathophysi-
ological mechanisms of disordered SSV in PD. Demonstra-
tion of the PAS pathology in the PNS controlling the UA 
structures may open up a new avenue to develop new thera-
pies to treat SSV disorders in PD. At present, there are can-
didate anti-synuclein monoclonal antibodies (ASMAs) and 
drugs that are designed to stop or reverse PAS. For instance, 
ASMAs have already been in clinical trials [for review, see 
130]. However, the therapeutic potential of systemic use of 
ASMAs or drugs targeting PAS aggregates in the brain may 
be limited because their high molecular weight cannot cross 
the blood brain barrier. In contrast, if SSV disorders in PD 
are caused primarily or partially by PAS pathology in the 
PNS, intravenous administration or focal injection of these 
ASMAs and/or drugs would be effective to dissolve PAS 
lesions in peripheral organs such as the UA structures for 
treatment of SSV disorders in PD.
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