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Abstract
Mastication is controlled by central pattern generator in the brainstem and can be modulated by volition. The aim of this 
study was to investigate the effect of chewing well on swallowing. Twenty-six healthy participants were instructed to eat 8, 
12, and/or 16 g of steamed rice with barium sulphate under the following two conditions: chewing freely task (CF; chewing 
naturally in their usual manner) and chewing well task (CW; chewing the food with a request to “chew well”). We evaluated 
bolus transport and swallowing movement using videofluoroscopy and electromyography of the masseter, suprahyoid and 
thyrohyoid muscles. The chewing time and pharyngeal transit time (PTT) at the first swallow showed high reproducibility 
in both CF and CW. PTT for CW was significantly shorter and longer than CF in 12 and 16 g, respectively. In 12 g, CW 
increased the pharyngeal bolus velocity and decreased thyrohyoid EMG activity during swallowing compared with CF. In 
16 g, the difference between CW and CF in the estimated swallowed bolus volume was positively correlated with that in 
upper esophageal sphincter transit duration. We speculate that CW modulates PTT during swallowing depending on the 
mouthful volume.
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Abbreviations
CW  Chewing well
CF  Chewing freely
EMG  Electromyography
PTT  Pharyngeal transit time
ICC  Intraclass correlation coefficient
Mas  Masseter
SD  Standard deviation
SH  Suprahyoid
TH  Thyrohyoid

UES  Upper esophageal sphincter
VF  Videofluoroscopy

Introduction

Mastication is the first step of digestion. During mastica-
tion, solid foods are broken down from large particles into 
small particles and mixed with saliva to form a bolus before 
swallowing. Although masticatory rhythm and pattern are 
controlled by central pattern generator in the brainstem [1], 
they can be modulated by volition [2–4].

The interaction between mastication and swallowing is 
acknowledged in humans and animals. At rest, the swal-
lowing reflex is readily evoked by mechanical or chemical 
stimulation to the oropharyngeal region in humans [5] and 
even in anesthetized animals [6]. When human subjects 
eat solid foods, a triturated bolus accumulates in the oro-
pharynx during mastication and before swallowing; this 
is known as stage II transport [7, 8]. Consistent with this, 
animal studies have revealed the inhibitory effect of activa-
tion of the cortical masticatory area on swallowing initia-
tion [9–12]. Studies of healthy humans found that stage II 
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transport starts at four-fifths of the masticatory sequence 
and the number of stage II transport cycle is associated 
with the duration of swallowing [13, 14]. Palmer et al. 
reported that stage II transport was delayed and transport 
to the valleculae was inhibited under the command of a 
swallow by investigator in cookie chewing [4], suggesting 
that volition alters initiation of swallowing.

The relationship between masticatory function and sys-
temic disease has received much attention. Fushida et al. 
reported that lower masticatory performance increases the 
risk of developing metabolic syndrome [15]. In addition, 
Yamazaki et al. suggested that higher masticatory perfor-
mance decreases the risk of developing diabetes [16]. The 
importance of the oral function for safe eating has been 
emphasized [17]. About half of non-hospitalized choking 
victims aged 18 to 64 years were defective or partial den-
tition without dental prostheses, suggesting that reduced 
masticatory performance increases the risk of choking 
[18]. Because the condition of the food broken down by 
mastication affects swallowing, chewing might change the 
pharyngeal bolus transit during swallowing and relate the 
risk of aspiration and pharyngeal bolus residue in patients 
with dysphagia. Furuya et al. reported that longer chew-
ing with volition alters bolus transport during swallow-
ing, resulting in easier swallowing [3]. Although chewing 
well is generally recommended in both young and old, it 
remains unclear how this affects swallowing depending 
on mouthful volumes. The aim of the present study was 
to investigate the effect of chewing well on swallowing 
among three mouthful volumes.

Materials and Methods

On the basis of our and other previous studies [19–21], we 
determined the mouthful volumes in this study. Because we 
assumed that the volume of 16 g of rice is too large for 
women [20], only men were recruited. Since we selected 
the vaguely instructions “chewing well”, we doubted the 
intrasubject reproducibility. Thus, we firstly evaluated the 
reproducibility of food bolus transit time using 12 g rice 
which is reported as the volume of rice in a single natural 
bite [21].

Participants

Twenty-six healthy men (mean age ± standard deviation 
(SD): 30.1 ± 8.5 years, range: 20–62 years) participated in 
this study. Before starting the study, a dentist confirmed that 

no participants had abnormalities in the number or position 
of their teeth, temporomandibular disorders, or masticatory 
problems. No participants complained of coughing, swal-
lowing, or speech problems, and none had histories of res-
piratory disease, neuromuscular disorders, or stroke.

Electromyography (EMG) 
and Videofluoroscopic (VF) Images

Surface EMGs were recorded from the right side of the 
masseter (Mas) muscle and bilateral sides of the suprahy-
oid (SH) and thyrohyoid (TH) muscles. The main contrib-
utors to the SH EMG are the mylohyoid, the anterior belly 
of the digastric, and the geniohyoid muscles [22]. Dis-
posable electrodes (NM-31; Nihon Kohden, Japan) were 
attached to the skin with an interpolar distance of 2 cm 
and were positioned at the center of the Mas muscle, the 
anterior belly of the digastric muscle, and the TH muscle. 
Before recording, we confirmed Mas, SH, and TH muscle 
activation during biting, opening the mouth, and swallow-
ing, respectively. Signals were amplified (AB-611 J; Nihon 
Kohden) and filtered (low cut: 15 Hz; high cut: 1 kHz). 
Lateral views of the VF images were simultaneously 
recorded to evaluate the feeding sequence (ARCADIS 
Avantic, Siemens Healthineers, Germany). The sampling 
rate was 2 kHz for the EMGs and 30 Hz for the VF images, 
and these data were converted via an analogue-to-digital 
converter (Power Lab 8/35; AD Instruments, USA). Sig-
nals from the EMGs and VF images were stored on a com-
puter through the PowerLab software package (LabChart 8 
with Video Capture Add-On; AD Instruments).

Data Collection

All participants were instructed not to eat or drink for 
at least 1 h prior to each experiment. During the record-
ing, they were seated comfortably in a chair. A steel ball 
11 mm in diameter was attached to their chin for distance 
correction in the VF images. Initially, they were instructed 
to perform maximum opening mouth, maximum biting and 
swallowing voluntarily twice in this order as the reference 
activity for the SH, Mas, and TH muscles, respectively.

Next, participants were instructed to eat steamed rice (8, 
12, and/or 16 g, Sato No Gohan, Sato Foods, Japan) with 
barium sulphate (20%) under the following two conditions: 
chewing freely task (CF: chewing and swallowing the food 
in their usual manner) and chewing well task (CW: chew-
ing the food with a request to “chew well” followed by 
swallowing in their own manner). In initial experiment, 
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we evaluated the reproducibility of food bolus transit time 
during chewing and swallowing for six participants using 
12 g mouthful volume with following trial order: 1st CF, 
2nd CF, 1st CW, 2nd CW. Because we confirmed good 
reproducibility of chewing time and pharyngeal transit 
time (PTT) in CW and CF trials and needed to reduce 
radiation exposure, we investigated CF and CW once in 
each mouthful volume for another twenty participants. 
Out of them, eight participants also joined the prelimi-
nary single swallow experiment to evaluate the validity of 
the measurement of the food bolus area in the VF images. 
In this experiment, participants were instructed to freely 
chew the steamed rice with barium sulphate (2, 4, 6, 8 and 
10 g) and attempt single swallows per bolus.

Before eating, all participants were asked to swallow their 
saliva. When finished eating, they lifted right hand and each 
trial was ended after examiner’s confirmation of no food 
residue in their mouth. The time interval between trials was 
at least 1 min, and the participants rinsed their mouths with 
distilled water between trials whenever they wished. After 
all the experiments, we asked twenty participants which 
mouthful volume (8, 12 or 16 g) was closest to their usual 
mouthful volume.

Data Analysis

The results are presented as the mean ± SD. Three den-
tists (A.O., T.T. and T.S.) analyzed VF images, who were 
well trained and had > 5 years of clinical experience in den-
tal practice and dysphagia rehabilitation. VF images were 

divided into the following three stages, in accordance with 
previous studies [3, 4]. Stage I transport time: From when 
the head of food passed the incisors until the food was trans-
ported to the molar region for chewing, Chewing time: From 
the start of mastication until the rapid hyoid movement in 
an antero-superior direction (Onset of the first pharyngeal 
swallow), PTT: From the first rapid hyoid movement in an 
antero-superior direction until the trailing edge of the food 
bolus passed the entrance of upper esophageal sphincter 
(UES) as defined by reaching the level of the vocal cords 
[7]. PTT was further subdivided into before (pre-UES transit 
duration: Pre-UTD) and after (UES transit duration: UTD) 
the head of the bolus passed the entrance of the UES.

To measure the hyoid movement during the first swal-
low, the anterior-inferior ridge of the hyoid bone and the 
anterior-inferior corner of the C4 vertebra were defined 
as the hyoid bone position and the origin, respectively. 
The line running from the origin and the anterior inferior 
corner of the C2 vertebra was used as a vertical axis and 
the line passing through the origin perpendicular to the 
vertical axis was used as a horizontal axis. The distance 
from the hyoid position at the start of rapid movement in 
an anterior-superior direction to the position in the most 
anterior-superior aspect was measured with Image J 1.53e 
software (National Institutes of Health, USA). The dis-
tance from the bolus head position to the entrance of the 
UES at the onset of the first swallow was also measured 
with Image J 1.53e software. The pharyngeal bolus veloc-
ity was calculated by dividing the distance the bolus head 
position to the entrance of the UES at the first swallow by 
Pre-UTD.

To measure the swallowed bolus volume, the food bolus 
at the onset of each swallow and the pharyngeal residue 
after each swallow were checked frame by frame using VF 
images. After each image was imported into Adobe Photo-
shop CS6 software (Adobe Systems, USA) and optimized for 
brightness and contrast, the outlines of the food bolus at the 
onset of each swallow and the oropharyngeal residue after 
each swallow were drawn and measured with Image J 1.53e 
software as the food bolus area. In a preliminary experiment, 
the food bolus area was normalized to the food bolus area 
for 10 g in each participant. The estimated swallowed bolus 
volume at the first swallow was calculated using the follow-
ing formula with the measurement of the food bolus area.

EMG activity was defined as active when the rectified 
and smoothed EMG signal was more than the mean + 
3SD of the background activity gained from the 5 s stable 
period with a rapid elevation and drop. The duration, peak 
amplitude, and integral area of the filtered EMG bursts in 
bilateral SH and TH muscles during the first swallow were 
measured. The peak amplitude and area were normalized 
to the average values for two voluntary swallows. Aver-
aged EMG data between right and left sides were used.

Tests for normality and equality of variances were ini-
tially performed for the statistical analysis to determine 
whether to use parametric or nonparametric tests. A paired 
t-test or Wilcoxon’s rank sum test was used to analyze dif-
ferences between two groups. The correlation coefficient 
was evaluated using Pearson’s correlation. Differences 
were considered significant at p < 0.05.

Bolus area at the first swallow

Sum of bolus area at each swallow − Sum of pharyngeal residue area after each swallow
×mouthful volume
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Results

Mouthful Volume

Six participants ate 12 g of steamed rice with barium sul-
phate in their own manner (CF) or chewing the food with a 
request to “chew well” (CW) two times each. Next, twenty 
participants ate 8, 12, and 16 g of steamed rice with bar-
ium sulphate in CF and CW conditions. After eating three 
mouthful volumes of steamed rice, eleven of twenty (55%) 
participants answered that 12 g fitted their one mouthful 
volume. Seven (35%) and two (10%) participants answered 
16 g and 8 g, respectively.

Effect of Chewing Well on Food Bolus Transport

Typical recordings for CF and CW are shown in Fig. 1. 
Following large SH EMG bursts with mouth opening, 
the food passed the incisors and was transported to the 

molar region. Subsequently, Mas and SH EMG bursts 
were reciprocally observed during chewing followed by 
a swallow accompanied by TH EMG bursts. No partici-
pants showed laryngeal penetration and aspiration in all 
tasks. Many participants did not show pharyngeal residue 
after tasks. Chewing time was markedly longer for CW 
than CF (Fig. 1). Using the VF images, we analyzed food 
bolus transport. Initially, we evaluated the reproducibility 
of each stage (stage I transport time, chewing time, PTT) 
for CF and CW in 12 g (Table 1). The stage I transport 
time for CF and CW were short and quite varied, in that 
intraclass correlation coefficient (ICC) between first and 
second trials was low in CF and CW. On the other hand, 
the ICC of chewing time and PTT between first and second 
trials were high in CF and CW. There was no significant 
difference between first and second trials of all stages in 
both conditions. Next, we compared food bolus transit 
time between CF and CW (Fig. 2). The stage I transport 
time did not differ between CF and CW in all mouthful 
volumes. The chewing time was significantly longer for 

Fig. 1  Example of simultaneous recording of electromyographs and 
videofluoroscopy (VF) images from one participant. This partici-
pant ate 12  g rice under the chewing freely (CF) and chewing well 
(CW) conditions. The chewing time in CF (left) was 13.25 s and that 
in CW (right) was 33.82 s. Two swallows (arrowheads) were evoked 
in CF and one swallow was evoked in CW. Vertical dotted lines rep-
resent the passage of food between the upper and lower incisors (a), 
food transportation to the molar region (b), the passage of the bolus 

head on the lower border of the mandible (c), the start of rapid hyoid 
movement in an antero-superior direction (onset of pharyngeal swal-
low) (d), and the passage of the trailing edge of the food bolus on 
the entrance of the upper esophageal sphincter (e). The lower panel 
shows VF images of (a) to (e) for CW. Rt-Mas: right side of masseter 
muscle; Rt-SH: right side of suprahyoid muscle; Lt-SH: left side of 
suprahyoid muscle; Rt-TH: right side of thyrohyoid muscle; Lt-TH: 
left side of thyrohyoid muscle
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CW than CF in all mouthful volumes. On the other hand, 
the PTT was affected by CW depending on the mouthful 
volume. In 8 g, the PTT did not differ between CF and CW. 
In 12 g, the PTT for CW was significantly shorter than CF. 
Conversely, the PTT for CW was significantly longer than 
CF in 16 g. Subsequently, we subdivided PTT into before 
(Pre-UTD) and after (UTD) the head of the bolus passed 
the entrance of the UES in 12 and 16 g (Fig. 3). In 12 g, 
Pre-UTD and UTD were significantly shorter for CW than 
CF. In 16 g, UTD was significantly longer for CW.

We developed the following three hypotheses for the 
effect of CW on PTT: CW modulates the first swallowing 
movement (first hypothesis), changes the bolus head posi-
tion at the onset of first swallow (second hypothesis), and 
alters the bolus volume at the first swallow (third hypoth-
esis). To investigate them, we further analyzed the EMG 
activity and VF images.

Swallowing Movement and the Position of the Food 
Bolus

To evaluate the effect of CW on the swallowing movement, 
we analyzed SH and TH EMG activity (Fig. 4) and hyoid 
movement (Fig. 5A) of the first swallow. The relative inte-
gral area and duration of SH EMG did not differ between 
CF and CW in all mouthful volumes. On the other hand, 
the area of TH EMG for CW was significantly smaller than 
CF in 12 g but not 8 and 16 g. Consistent with this data, the 
TH EMG duration for CW was significantly shorter than 
CF in 12 g. The relative maximum amplitude of SH and 
TH EMG activity did not differ between CF and CW in all 
mouthful volumes (SH: 145 ± 66% for CF and 143 ± 66% 
for CW in 8 g, 159 ± 85% for CF and 150 ± 61% for CW in 
12 g, 166 ± 78% for CF and 142 ± 80% for CW in 16 g; TH: 
143 ± 61% for CF and 154 ± 85% for CW in 8 g, 136 ± 51% 
for CF and 131 ± 61% for CW in 12 g, 144 ± 99% for CF and 
154 ± 105% for CW in 16 g, n = 20, paired t-test, p > 0.05). 
The correlation analysis revealed that the difference between 
CW and CF in the TH EMG was not correlated with the 
difference between them in the PTT (n = 20, Correlation 
Coefficient = 0.165, Pearson’s correlation, p = 0.486). The 
hyoid distance from the start of the rapid movement to the 
anterior–superior maximum position did not differ between 
CF and CW in all mouthful volumes. Next, we evaluated the 
position of the food bolus at the first swallow (Fig. 5B). The 
distance from the bolus head position to the entrance of the 
UES at the onset of the first swallow did not differ between 
CF and CW in all mouthful volumes. 
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Quantitative Measures of the Estimated Swallowed 
Bolus Volume

To investigate the validity of quantitative measures of the 
estimated swallowed bolus volume using VF images, we 
first evaluated the estimated swallowed bolus volume at 
a single swallow per bolus in eight participants. The data 
recorded from one participant was discarded, because he 
could not swallow 10 g of steamed rice at one time. The food 
bolus area was positively correlated with mouthful volume 
(Fig. 6A). The relative food bolus area was significantly pos-
itively correlated with mouthful volume with a high coeffi-
cient of determination (Fig. 6B). We also estimated the inter-
rater reliability using the ICC. The ICC for the two raters 
(AO and TT) was 0.945, indicating excellent reliability. On 
the basis of these results, we made a formula to calculate the 

estimated swallowed bolus volume at the first swallow. CW 
significantly increased the estimated food bolus than CF in 
16 g, although CW did not change it in 8 and 12 g (Fig. 7). 

Pharyngeal Bolus Velocity and Relationship 
Between Estimated Swallowed Bolus Volume 
and PTT

Because CW shortened Pre-UTD and UTD compared with 
CF in 12 g, we speculate that CW accelerates pharyngeal 
bolus velocity at the first swallow. Pharyngeal bolus velocity 
was significantly faster for CW than CF in 12 g (Fig. 8A). 
In contrast, the velocity did not differ between them in 
16 g (247 ± 77 mm/sec for CF, 237 ± 113 mm/sec for CW, 
n = 20, paired t-test, p = 0.746). Next, we speculate that the 
increased swallowed bolus volume in CW extends the UTD 
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Fig. 2  Comparison of bolus transit time between chewing freely task 
(CF) and chewing well task (CW). Stage I transport time (Stage I) 
did not differ between CF and CW (n = 20, Wilcoxon’s rank sum 
test, p = 0.121 for 8 g; paired t-test, p = 0.065 for 12 g, paired t-test, 
p = 0.523 for 16 g). CW significantly extended chewing time (Chew-
ing) compared with CF in all mouthful volumes (n = 20, paired 

t-test, p < 0.001 for 8 g, 12 g and 16 g). CW significantly shortened 
and extended pharyngeal transit time (PTT) compared with CF in 12 
and 16 g, respectively (n = 20, paired t-test, p = 0.638 for 8 g, paired 
t-test, p < 0.001 for 12 g; paired t-test, p = 0.007 for 16 g). **p < 0.01, 
***p < 0.001
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in 16 g. The correlation analysis revealed that the difference 
between CW and CF in the estimated swallowed bolus vol-
ume was significantly positively correlated with the differ-
ence between them in the UTD in 16 g (Fig. 8B). In contrast, 
those parameters did not correlate in 12 g (n = 20, Pearson’s 
correlation, Correlation Coefficient = 0.143, p = 0.546).

Discussion

In the present study, we demonstrated the different effects 
of CW on the pharyngeal bolus transit during swallowing 
among three mouthful volumes. The chewing time and PTT 
showed good reproducibility in both CF and CW. The PTT 
for CW was significantly shorter and longer than CF in 12 
and 16 g, respectively. The pharyngeal bolus velocity in 
CW was significantly faster than CF in 12 g. The difference 
between CW and CF in the estimated swallowed bolus vol-
ume was positively correlated with the difference between 
them in UTD in 16 g. These results suggest that CW short-
ens PTT via the acceleration of pharyngeal bolus velocity 
in 12 g and extends the PTT via the increased swallowed 
volume in 16 g. We speculate that CW modulates PTT dur-
ing swallowing depending on the mouthful volume.

Appropriate Mouthful Volume

Over half of participants considered that 12 g fitted their one 
mouthful volume in the present study. Okada et al. reported 
that the volume of sushi rice in a single natural bite was 
approximately 12 g [21]. We speculate that 8, 12, and 16 g 
of steamed rice would correspond to small, appropriate, and 
large volumes for healthy adult men, respectively. Consist-
ent with a previous study [21], most of the rice in 8 and 
12 g were swallowed in CF and CW conditions, and those 
did not significantly differ between them. In 16 g, however, 
about 60% volume in CF and 80% volume in CW were swal-
lowed in the first swallow and those significantly differed. 
One participant could not swallow 10 g rice at one time in 
the preliminary experiment. Even in healthy participants, 
the bolus volume they can swallow might differ based on 
their eating habits and swallowing ability. Indeed, the fitted 
mouthful volume varied among participants.

Different Effects of CW on Food Bolus Transport 
Among Three Mouthful Volumes

Since stage I transport time was short, it is easy to imagine 
that the time varied and represented low ICC between repeti-
tive two trials. On the other hand, chewing time and PTT 
showed high ICC, indicating good reproducibility. Consist-
ent with a previous study [3], chewing time was significantly 
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the trailing edge of the bolus passed the UES (UES transit duration: 
UTD) between chewing freely task (CF) and chewing well task (CW) 

in 12 and 16 g. Pre-UTD and UTD for CW was significantly shorter 
than CF in 12 g (n = 20, paired t-test, p = 0.002 for Pre-UTD; paired 
t-test, p = 0.031 for UTD). On the other hand, UTD for CW was sig-
nificantly longer than CF in 16 g (n = 20, paired t-test, p = 0.487 for 
Pre-UTD; paired t-test, p = 0.009 for UTD). *p < 0.05, **p < 0.01



 A. Okubo et al.: Effect of Chewing Well on Swallowing

longer for CW than CF in all mouthful volumes. On the 
other hand, CW did not change the bolus head position at 
the onset of first swallowing. Although a previous study 
reported that longer chewing with volition extended the 
duration of the post stage II chewing sequence [3], the bolus 
head position at the onset of the first swallow might not 
depend on the chewing time in healthy participants. How-
ever, this may be not the case in older people and patients 
with dysphagia [23].

CW shortened and extended the PTT in 12 and 16 g, 
respectively. We discuss the modulatory effect of CW on 
PTT. The results of shortened PTT in 12 g was consist-
ent with Furuya’s study. The authors reported that longer 
duration of chewing with volition shortened the PTT using 
agar jelly [3]. We described that CW shortened Pre-UTD 
and UTD and accelerated pharyngeal bolus velocity during 
first swallowing in 12 g. We can imagine that one of the 

reasons for reduction of PTT by CW in 12 g might be the 
alteration in the physical property of the bolus after chew-
ing well, such as hardness, cohesiveness and adhesiveness. 
SH EMG activity includes both voluntary and involuntary 
components during swallowing [24], whereas TH EMG 
activity is involved in involuntary component of swallowing, 
i.e. pharyngeal phase of swallowing [25]. We observed that 
CW decreased TH EMG activity during swallowing than 
CF in 12 g. Although only half of participants answered 12 g 
steamed rice for fitted their one mouthful volume, it might 
be appropriate volume which CW change into the proper 
triturated bolus and facilitate the pharyngeal bolus passage. 
With decreased TH EMG activity, this might be related to 
the subjective easiness of swallowing by CW [3]. Although 
modulation of TH EMG activity by CW might affect bolus 
transit, we thought that TH EMG change by CW is not main 
cause of PTT reduction by CW based on the correlation 
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Fig. 4  Comparison of the relative integral area (A) and duration (B) 
of the electromyographic bursts of the first swallow between chewing 
freely task (CF) and chewing well task (CW). The integral area of TH 
EMG in CW was significantly smaller than CF in 12 g (n = 20, SH: 
paired t-test, p = 0.939 for 8 g, paired t-test, p = 0.299 for 12 g, Wil-
coxon’s rank sum test, p = 0.571 for 16 g; TH: paired t-test, p = 0.144 
for 8  g, paired t-test, p = 0.037 for 12  g, Wilcoxon’s rank sum test, 

p = 0.784 for 16  g). The duration of TH EMG in CW was signifi-
cantly shorter than CF in 12 g (n = 20, SH: paired t-test, p = 0.508 for 
8 g, paired t-test, p = 0.194 for 12 g, paired t-test, p = 0.804 for 16 g; 
TH: paired t-test, p = 0.069 for 8 g, paired t-test, p = 0.049 for 12 g, 
paired t-test, p = 0.460 for 16 g). *p < 0.05. SH: suprahyoid muscle; 
TH: thyrohyoid muscle
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analysis between TH EMG activity and PTT. Another pos-
sible reason might be the tongue manipulation. The impor-
tance of tongue driving pressure during swallowing has been 
shown in a comparison between healthy participants and 
patients with restricted tongue motion [26, 27]. Huckabee 
and Steele reported the emphasizing tongue-to-palate con-
tact during effortful swallowing generated greater orolingual 
and pharyngeal pressure compared with inhibiting tongue-
to-palate emphasis [28]. Increasing tongue driving force may 
contribute to shortened PTT. In the future study, we should 
evaluate the bolus transit during swallowing with tongue 
motion and pharyngeal pressure among different mouthful 
volumes.

During mastication, mechanoreceptors in the periodon-
tal ligaments and gingival increase salivary secretion via 
masticatory-salivary reflex [29] and the saliva changes the 

structure of food bolus including lubrication and cohesive-
ness [30]. There is no doubt that the estimated swallowed 
volume did not reflect the real weight, because the weight 
of the mixed saliva needs to be considered. Nevertheless, 
the strong positive linear relationship between the relative 
food bolus area and the mouthful volume indicates that the 
calculation of the estimated food volume at the first swal-
low is relatively valid. Our results suggest that CW extends 
the PTT in 16 g mouthful volume via increased first swal-
lowed volume. Previous studies support our speculation. For 
instance, the food bolus volume has been shown to modulate 
swallowing more than the bolus viscosity [31]. Addition-
ally, the larger swallowed bolus volume causes a longer UES 
opening duration [32, 33]. Although longer chewing changes 
the physical property of the bolus which is decreased hard-
ness and increased the cohesiveness and water content of 
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with mixed saliva [34], we speculate that the effect of CW on 
pharyngeal bolus transit during swallowing is more affected 
by the swallowed bolus volume than the physical property 
of the bolus in the case of large mouthful volume. In fact, 
two out of two (100%) participants who decreased swal-
lowed bolus volume in CW compared with CF recorded a 
shortened UTD in CW (Fig. 8B), although averaged swal-
lowed bolus volume in CW was significantly larger than CF 
in 16 g (Fig. 7B). In human liquid swallowing, the duration 
and integral area of the SH EMG and hyoid movement dur-
ing swallowing has been shown to increase with increasing 
the bolus volume [35–38]. Although CW in 16 g increased 
the swallowed bolus volume, we did not find any change in 
EMG activity and hyoid movement. One possibility for the 
discrepancy between the present results and previous studies 
is that the increase in volume in this study was quite small 
compared with that of previous studies—approximately 
3 g for this study and 10 ml or more for previous studies. 
Another possibility is that the different food type (liquid 
vs solid) may have affected the results. Additionally, some 
researchers have described differences in hyoid velocity and 
temporal EMG activity among swallowing-related muscles 
during swallowing under certain experimental conditions 
[39, 40]. Further precise analyses in swallowing kinematics 
will be needed in future studies.

Limitations

There are several limitations in this study. First, this study 
includes only small number of healthy male participants. 
Therefore, we were unable to investigate any difference in 

sex and age. Masticatory functions are known to vary with 
age and gender [41]. We must consider the investigation for 
older population, subjects with dental prosthesis including a 
denture or patients with dysphagia in the future study. This 
is useful to discuss the importance of mouthful volume and 
chewing behavior on safe eating. Second, we used only 
steamed rice which is relatively soft and sticky as a test food. 
The foods with different hardness and cohesiveness might 
bring different results. Third, we instructed just “chew well” 
for CW tasks. We selected this vaguely request to partici-
pants because dentists and other medical staffs often advise 
patients or older people to “chew well” at mealtimes. The 
meaning of chewing freely and chewing well might depend 
on participants, i.e. subjective, and affect the results. Fourth, 
we evaluated the immediate effect following CW instruction. 
A recent study reported that the use of a wearable device 
for measuring masticatory behaviors increases the number 
of chews for a rice in healthy participants [42]. We should 
investigate how to chew and swallow the food after masti-
catory behavior modification. Fifth, the test food contained 
barium sulphate and the number of trials was small to reduce 
radial exposure. Because of these methodological limita-
tions, we have to consider the difference between experimen-
tal condition and meal situation. Nevertheless, our results 
suggest that appropriate mouthful volume accelerates phar-
yngeal bolus transit and large mouthful volume increased 
swallowed bolus volume under chewing well condition. This 
might emphasize the importance of mouthful volume and 
chewing behavior on swallowing dynamics.
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