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Abstract

Swallowing is a sophisticated process involving the precise and timely coordination of the central and peripheral nervous
systems, along with the musculatures of the oral cavity, pharynx, and airway. The role of the infratentorial neural structure,
including the swallowing central pattern generator and cranial nerve nuclei, has been described in greater detail compared
with both the cortical and subcortical neural structures. Nonetheless, accumulated data from analysis of swallowing perfor-
mance in patients with different neurological diseases and conditions, along with results from neurophysiological studies of
normal swallowing have gradually enhanced understanding of the role of cortical and subcortical neural structures in swal-
lowing, potentially leading to the development of treatment modalities for patients suffering from dysphagia. This review
article summarizes findings about the role of both cortical and subcortical neural structures in swallowing based on results
from neurophysiological studies and studies of various neurological diseases. In sum, cortical regions are mainly in charge
of initiation and coordination of swallowing after receiving afferent information, while subcortical structures including basal
ganglia and thalamus are responsible for movement control and regulation during swallowing through the cortico-basal
ganglia-thalamo-cortical loop. This article also presents how cortical and subcortical neural structures interact with each other
to generate the swallowing response. In addition, we provided the updated evidence about the clinical applications and effi-
cacy of neuromodulation techniques, including both non-invasive brain stimulation and deep brain stimulation on dysphagia.

Keywords Deglutition disorder - Cerebral cortex - Neurophysiology

Introduction

Swallowing is a sophisticated process involving the precise
and timely coordination of the central and peripheral nerv-
ous systems, along with the musculatures of the oral cavity,
pharynx, and airway [1]. Basic physiological research has
demonstrated that the swallowing central pattern generator
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(sCPG) and cranial nerve nuclei at the brainstem are critical
to controlling and coordinating the swallowing process [2].
However, the role played by cortical and subcortical neural
components in swallowing is less clearly understood when
compared with the sCPG in the brainstem.

Clinical physiological research among stroke patients
has further emphasized the importance of the brainstem’s
sCPG in normal swallowing. Stroke patients with brainstem
lesions were found to have poorer outcomes in terms of safe
oral feeding, possibly due to delayed or absent swallowing
reflex leading to impaired airway protection and passage of
food from the pharynx to the esophagus [3, 4]. Impaired
sCPG and cranial nerve nuclei delays the swallowing reflex,
with the oropharyngeal musculatures unable to contract with
normal strength, timeliness, and coordination. However,
the sCPG not only plays major role in involuntary swal-
lowing by initiating the swallowing reflex but also receives
various feedback and inputs from the supranuclear regions,
including the somatosensory cortex, basal ganglia (BG), and
thalamus [2]. Furthermore, clinical studies have revealed
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that patients with neurological diseases including cortical
or subcortical stroke and Parkinson’s disease have altered
swallowing patterns, although the sCPG should be intact [5,
6]. While Albert et al. disclosed no significant correlation
between stroke location and the occurrence of aspiration,
the majority of lesion-symptom mapping studies found the
correlation between the lesion sites and the presentation or
prognosis of swallowing disturbance among patients with
cortical or subcortical stroke [4, 5, 7-22]. Lesions includ-
ing somatosensory and motor cortices, basal ganglia, insula,
and internal capsules have been reported to cause dysphagia
[23, 24]. These findings indicate the role of various cortical
and subcortical neural structures in swallowing, in addition
to sCPG.

In recent years, rapid advances in functional neuroimag-
ing and neuromapping modalities have allowed research-
ers to further investigate how the human brain processes
sensory and motor information. The development of
modalities including functional magnetic resonance imag-
ing (fMRI), positron emission tomography (PET), magne-
toencephalography (MEG), electrocorticography (ECoG),
and transcranial magnetic stimulation (TMS) has enabled a
more comprehensive exploration of the neuroanatomy and
neurophysiology of swallowing mediated by both cortical
and subcortical structures [23—40]. fMRI and PET detect
hemodynamic and metabolic changes correlating to neural
activation triggered by swallowing [23, 27]. MEG captures
the magnetic fields generated by synchronized neuronal cur-
rents [32]. ECoG detects the cortical potential generated by
neural oscillatory activities and has disclosed the role of the
cerebral cortex in both the motor and sensory components
of voluntary swallowing [41, 42]. TMS enables direct acti-
vation of cortical neurons and was used to investigate the
integrity of the corticospinal and corticobulbar tracts [43].
These developments have driven enhanced understanding
of how these supranuclear neural structures interact in both
normal swallowing and dysphagia. Therefore, this review
article aims to provide a comprehensive summary of the
functions of cerebral cortices, subcortical gray matter, and
subcortical white matter in swallowing control based on
results from clinical studies of various central nervous sys-
tem disorders and neurophysiological studies investigating
the neural control of swallowing.

Role of Cerebral Cortex in Swallowing

Information about the cortical control of swallowing was
derived from animal studies, functional imaging studies
of normal subjects, and, to a large extent, lesion studies of
stroke patients. These lesion studies provide indirect indi-
cations of the role of cortical structures by demonstrating
their impact on swallowing performance when damaged.

@ Springer

However, further neurophysiological studies are necessary
to precisely delineate the physiological functions of the cer-
ebral cortex. This review article illustrates the potential con-
tribution in swallowing of commonly reported cortical areas
including sensorimotor cortices, insular cortex, parieto-tem-
poral cortex, and cingulate cortex. These cortical regions are
connected with subcortical structures including BG and the
thalamus through white matter tracts, like periventricular
white matter (PVWM) and corona radiata (CR). In addi-
tion, the internal capsule (IC) contains the corticobulbar
tract connecting the cortical regions with the brainstem.
Table 1 summarizes the main results of both neurophysi-
ological and clinical lesion studies investigating the impact
of the cerebral cortex in swallowing control, while Fig. 1
shows a schematic presentation of central nervous system
(CNS) control in swallowing, with emphasis on the interplay
between cortical and subcortical structures. Table 2 summa-
rizes the potential roles of the cerebral cortex in swallowing
based on the knowledge of neurophysiology.

Sensorimotor Cortices

The sensorimotor cortex is composed of primary motor and
primary sensory cortices. The topographic organization
of the sensorimotor cortex, called the motor and sensory
homunculus, contains motor or sensory representations of
certain body parts, including those used in swallowing, such
as the face, lips, teeth, gums, jaw, tongue, larynx, and phar-
ynx [87-91]. Through the corticobulbar tract, which con-
nects the cortical regions with the brainstem, the sensorimo-
tor cortex initiates voluntary swallowing by activating and
providing cortical inputs to the sSCPG and receives afferent
inputs from cranial nerve nuclei at the brainstem. [92-95]
Sensory inputs from the oral, laryngeal, pharyngeal, and
esophageal areas have been shown to activate the primary
sensory cortex, and this sensory information is important
in providing biofeedback to ensure safe swallowing [79].
Among patients with impaired cortical sensory input due
to oropharyngeal anesthesia, swallowing could still be
generated by the brainstem but the swallowing response
was less coordinated due to loss of cortical modulation to
the sCPG [58]. Several studies have found a relationship
between impaired somatosensory cortices in stroke patients
and the occurrence of dysphagia [5, 10, 11]. Wilmsskoetter
et al. found that impaired laryngeal vestibular closure and
excessive pharyngeal residue are associated with lesions in
the postcentral gyrus, while impaired laryngeal elevation is
associated with lesions in the precentral gyrus [5]. In addi-
tion, lesion mapping analysis revealed that the only region
that was predictive for severe dysphagia was the right post-
central gyrus, the primary sensory area for swallowing. [10]
One 2007 study investigated the influence of primary
motor cortex inhibition on swallowing, using TMS to create
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Fig.1 A schematic figure showing the interplay between cortical and
subcortical neural structures and the sCPG. Note the sCPG could be
divided into dorsal (NTS-DSG, nucleus tractus solitarius-dorsal swal-
lowing group) and ventral (VLM-VSG, ventrolateral medulla-ventral
swallowing group) parts [44]. The NTS-DSG receives supramedul-

an artificial lesion on the primary motor cortex [57]. Inves-
tigators applied an inhibitory repetitive TMS protocol to
both the stronger and weaker pharyngeal motor cortex of
13 healthy volunteers. A stronger pharyngeal motor cor-
tex was defined as the pharyngeal motor cortex producing
the largest consistent motor-evoked potential at the lowest
stimulus threshold, while the contralateral pharyngeal cortex
was defined as the weaker one. Each participant performed
voluntary swallowing tasks following electrical cues. The
timing of initiation of swallowing and change of pressure
wave was recorded by a pressure transducer placed at the
pharynx. The time from the electrical cue to the onset of
swallowing was the swallow reaction time. Results showed
that the swallowing reaction time decreased significantly
if inhibitory TMS stimulation was applied to the stronger
pharyngeal motor cortex. The authors asserted that the
reduction of swallowing reaction time might be indicative
of less controlled swallowing, causing poorer manipulation
of bolus and higher risk of consequent aspiration [57]. More
importantly, the results indicated that the pharyngeal motor
cortex produces important inhibitory inputs to the brain-
stem that influence swallowing initiation and modulate vol-
untary swallowing behavior asymmetrically [57]. A recent
study used intracranial electroencephalography to record
the cortical oscillatory changes induced by swallowing at
the orofacial motor cortex [41]. High-gamma activity bursts
coincided with voluntary swallowing and soon decreased
with the completion of voluntary swallowing, indicating
that the motor cortex plays a crucial role in the initiation of
voluntary swallowing [41]. Similarly, several other studies
also found that the motor cortex participates in swallowing
initiation, as do other cortical regions including the insular

lary inputs and further activates the VLM-VSG [44]. The VLM-VSG
further controls motor neurons of cranial nerve nuclei at brainstem
[44]. Also note that the cortico-striato-thalamo-cortical loop was pre-
sented with the red arrows and the cerebello-thalamo-cortical path-
way was presented with the blue arrows

cortex, cingulated cortex, and supplementary motor area,
and provide significant inhibitory input to the brainstem.
[26, 39, 46, 48, 49, 57, 59, 96]

Based on findings from neurophysiology studies and stud-
ies of stroke patients, the sensorimotor cortices are in charge
of the initiation and coordination of the swallowing process.

Parietal-Temporal Cortex

Despite the association between lesions in the posterior pari-
etal and temporal lobes and dysphagia, the actual role of
parietal-temporal cortex in swallowing has yet to be clearly
identified [10-13]. These regions, including the supramar-
ginal gyrus and angular gyrus, are traditionally known as
sensory-motor integration areas, and process and relay affer-
ent information to generate movement planning [97]. The
temporal lobe was found to have a rich connection with the
frontal lobe, occipital lobe, and thalamus, suggestive of its
potentially integrative role for these regions [98].

Previous studies have reported the right parietal-tempo-
ral regions are related to impaired swallow response, indi-
cated by aspiration or penetration or by poor cough reflex
found during fiber-optic endoscopic evaluation of swallow-
ing (FEES) and oropharyngeal residue [10, 11]. The results
of these studies revealed the possible importance of pari-
etal-temporal regions in relaying afferent sensory informa-
tion to the swallowing motor network [10, 11]. In 2009,
Steinhagen et al. found that patients with parieto-temporal
infarction of either side were prone to attention deficits and
those with left-side parieto-temporal infarction were more
likely to have buccofacial apraxia, causing disturbance of
orofacial movement during the oral stage of swallowing

@ Springer
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Table 2 Summarized information about the role of cerebral cortices, subcortical gray matter, and subcortical white matter in swallowing

Summarized information about the role of cerebral cortices in swallowing

Cortical regions Potential roles in swallowing

Reference

Primary motor cortex Initiation of voluntary swallowing

Primary sensory cortex
nated swallowing

Parietal-temporal cortex
ment planning of swallowing

Insular cortex

Cingulate cortex

Provides cortical modulation to the SCPG and biofeedback to ensure safe and coordi-

Relays afferent sensory information to swallowing motor network to generate move-

[26, 39, 41, 57, 48, 49,
59, 46]

[79, 58]

[10, 11]

Acts as the central integration hub of the swallowing network and participates in moti- [13, 33, 47-50, 81, 82,
vation and initiation of swallowing and motor planning

54,50, 47, 80-82]

The ACT of ACC might be indicative of visceromotor activity such as digestive func- [39]

tion or affective/attentive response of swallowing
The PCC integrates sensory information via reciprocal connection with the thalamus
and might further modulate the swallowing motor response

Summarized information about the role of subcortical gray matter and white matter in swallowing

Subcortical regions Potential roles in swallowing

Reference

Basal ganglia

Movement control and coordination during swallowing

[83, 67, 69, 76,717, 70]

Thalamus Processes both sensory and motor inputs via the thalamo-cortical or the thalamostri-  [5, 47, 72, 84, 85]
atal pathways in swallowing

Periventricular white matter Connects the cerebral cortex and cranial nerve nuclei at brainstem [16]

Corona radiata Coordinates the sCPG of the bulbar swallowing center through integration of both [17]

central and peripheral afferent signals

Internal capsule Connects the cerebral cortex and the cranial nerve nuclei and the sCPG at brainstem [8, 20]
via the corticobulbar tract at genu of IC

Superior longitudinal fasciculus Connects the temporal—parietal swallowing regions to the frontal motor areas [13]

External capsule Connects the SMC with the BG and therefore plays a role in motor control [86]

ACC anterior cingulate cortex; ACT activation; BG basal ganglia; /C internal capsule; PCC posterior cingulate cortex; sSCPG swallowing central

pattern generator; SMC sensorimotor cortex

[12]. Furthermore, swallowing deficits including delayed
or absent swallowing response, impaired laryngeal vestibu-
lar closure, and reduced hyolaryngeal excursion were more
frequent among patients with parietal-temporal lesions. [13]

Insular Cortex

The insular cortex contains the primary gustatory cortex that
encodes chemosensory information of food and may play a
role in food preferences [80]. Moreover, insular cortex has
abundant connectivity to both the cortical and subcortical
brain regions [81]. Connections among the olfactory bulb,
limbic system, sensory cortex, thalamus, frontal cortex,
nucleus tractus solitarius, and insular cortex are both directly
and indirectly related to swallowing and are implicated in
functions including taste, the motivation, and initiation of
swallowing and motor planning [81, 82]. For multifaceted
involvement in swallowing, the insular cortex is considered
to be a central integration hub of the swallowing network
[13].

Several fMRI studies have shown the participation of the
insular cortex in swallowing. Insular activation was found

to be either bilateral or more significant in the right hemi-
sphere [47-50, 53, 54]. The exact location of insula activated
during swallowing has also been investigated but without
definite conclusions. While Daniel et al. reported that the
anterior insula (which directly connects to cortical and sub-
cortical regions participating in the swallowing process)
is particularly important in normal swallowing compared
with posterior part, others have reported the posterior insula
is activated during swallowing [48, 65]. Malandraki et al.
suggested that the entire insular cortex plays a role in swal-
lowing, with the posterior insula possibly being more acti-
vated in less voluntary and more autonomic actions, such as
laryngeal closure [59]. The role of insular cortex in initiation
of voluntary swallowing was suggested by Watanabe et al.
[33]. In this study, long-lasting activation of insular cortex
was detected by MEG before initiation of swallowing, sug-
gesting that the activation of insular cortex might be crucial
for initiation of swallowing. [33]

Clinically, stroke patients with impaired insular cortex
might have prolonged dysphagia and thus be restricted from
oral feeding. According to Galovic et al., stroke patients
with impaired insular cortex were more often feeding tube
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dependent within the first 48 h after stroke onset [71]. In 2017,
a lesion mapping study investigated the severity of swallow-
ing impairment using Functional Oral Intake Scale (FOIS)
among stroke patients with a follow-up period up to 4 weeks
after stroke [72]. This study demonstrated that lesions of the
anterior insula are associated with impaired oral intake dur-
ing the second to fourth week after stroke [72]. The impact
of the integrity of the insular cortex on swallowing could be
explained by its integrative nature, as the insula is connected
to key regions involved in the initiation and execution of swal-
lowing, including the sensorimotor cortices, thalamus, and
nucleus tractus solitarius. [72, 81, 82]

Cingulate Cortex

Different parts of the anterior cingulate cortex (ACC) have
different functions related to swallowing. The rostral part of
the ACC can process painful stimuli, while the affective part
processes emotion and attention to volitional actions [33]. On
the other hand, the more dorsal and caudal parts are considered
to be involved in movement regulation, response selection, and
performance of willed action [99]. However, the exact role
of the ACC in swallowing is not yet fully understood and the
exact site of activation in the ACC during voluntary and invol-
untary swallowing remains unconfirmed. In 1999, two studies
from the same research team reported that both the rostral and
caudal ACC could be active during water swallowing [26, 39].
Martin et al. found the rostral ACC was activated during naive
saliva swallowing, while activation of the intermediate and
caudal ACC was associated with voluntary saliva and water
bolus swallowing [48]. This is consistent with a subsequent
study by Toogood et al. [55]. Although not conclusive, these
results suggest a functional partition of the ACC correspond-
ing to voluntary versus involuntary aspects of swallowing
tasks [59].

Malandraki et al. also found the posterior cingulate cortex
(PCC) is active during throat clearing [59]. In addition, PCC
was activated with a volitional swallowing task [39]. The
PCC integrates sensory information via reciprocal connec-
tion with the thalamus [100]. Therefore, activation of this
area in conjunction with other sensory areas (including the
primary somatosensory cortex, thalamus, and precuneus)
during swallowing might indicate that sensory information
from the oropharyngeal area and esophagus is received and
processed in these areas. Furthermore, these sensory infor-
mation would modulate the motor response via connections
with the motor cortex and the insula. [39]

@ Springer

Subcortical Regions Related to Swallowing

Daniels et al. created a neural anatomic model of swallowing
involving the bilateral sensorimotor cortex with descending
input to the medullary swallowing center [14]. Theoretically,
disruption of the connection between cortical and subcortical
structures like periventricular white matter (PVWM) would
lower inputs to the brainstem. Clinical observations of post-
stroke dysphagia have shown that impaired neural structures
including the basal ganglia, internal capsule, thalamus and
PVWM led to significant swallowing disturbance [15, 94].
Also, studies investigating the swallowing disturbance of
Parkinson’s disease (PD) noted the importance of the intact
cortico-striatal-thalamic-cortical loop in normal swallowing
[84]. The following text illustrates the potential contribution
to swallowing of commonly reported subcortical structures,
including BG, thalamus, PVWM, internal capsule, superior
longitudinal fasciculus (SLF), and external capsule. Table 1
summarizes the main results of both neurophysiological and
clinical lesion studies investigating the impact of subcortical
neural structures in swallowing control. Table 2 summarizes
the potential roles of subcortical neural structures in swal-
lowing based on the knowledge of neurophysiology. Figure 1
presents the connection between the subcortical and cortical
regions and the sCPG.

It should be stressed again that these lesion studies offer
indirect evidence regarding the involvement of subcorti-
cal structures by showcasing the effects of their damage on
swallowing performance. However, additional neurophysi-
ological investigations are required to accurately outline the
physiological functions of these structures.

Basal Ganglia

The basal ganglia (BG) is composed of interconnected nuclei
including striatum, globus pallidus, subthalamic nucleus and
substantia nigra located at midbrain. The BG plays a signifi-
cant role in movement control, movement coordination, cog-
nitive tasks, and limbic functions via integrating information
from the cortical regions and conveying this information
back to the cortical regions [101].

BG activation during swallowing has been demonstrated
in several functional imaging studies [39, 51]. The brain
activity of 10 healthy volunteers was recorded via fMRI,
while drinking water in a study done by Hamdy et al. [39].
Although less consistent than that of the cerebral cortex,
swallow-related activation was still detected at the putamen
and caudate nucleus [39]. A study of pediatric brain activ-
ity found increased brain activity in both the putamen and
globus pallidus when swallowing [51]. A 2004 study found
activation of the right putamen and thalamus with voluntary
tongue elevation [54].



K.-C. Wei et al.: The Cortical and Subcortical Neural Control of Swallowing

189

Stroke patients with BG lesion were reported to have high
incidence of swallowing disturbance and altered swallow-
ing features. Suntrup et al. reported that 76.7% of patients
with acute striatocapsular hemorrhage suffer from dysphagia
[66]. The predominant feature of dysphagia was an impaired
oral swallowing phase with premature leakage to the val-
leculae and piriform sinus [66]. Similarly, Steinhagen et al.
found that basal ganglion infarctions were associated with
buccofacial apraxia, leading to oral-phase dysphagia [12].
Logemann et al. found significantly prolonged pharyngeal
transit time and less efficient swallowing among those with
left basal ganglion infarction and noted increased oral resi-
due and prolonged oral transit time [62]. Thus, impaired oral
motor control may be a feature of swallowing disturbance
among patients with BG lesions.

Dysphagia is highly prevalent among advanced PD
patients, whose swallowing disturbance is possibly caused
by BG dysfunction due to neuronal loss in the substantia
Nigra [6]. VFSS findings of PD patients were consistent
with the hallmark features of bradykinesia, hypokine-
sia, and difficulty in movement initiation [83], including
reduced velocity of hyoid movement, prolonged swallow-
ing time, and delayed airway closure [67, 69, 76]. Schiffer
et al. reported prolonged hyoid elevation, possibly caused by
delayed relaxation of suprahyoid muscle due to rigidity [77].
Moreover, increased peaks in the velocity curves of hyoid
movement were found by Kim et al., which might represent
incoordination of pharyngeal contractions [70]. While sev-
eral studies showed decreased hyoid displacement among
PD patients, the causal relationship between decreased hyoid
displacement and aspiration was not significant [69, 70, 76].
On the other hand, sluggish and incoordinate hyoid move-
ment might lead to aspiration in PD patients. [67, 83]

To sum up, BG controls and coordinates normal swallow-
ing and its dysfunction might cause swallowing disturbance
in both oral and pharyngeal phases.

Thalamus

The thalamus is responsible for relaying both sensory and
motor information between cortical and subcortical neural
structures and it is seen as contributing to sensory-motor
integration during swallowing [47]. In the BG-thalamo-
cortical loop, the sensory information of the swallowing
process is conveyed by thalamus, while the BG monitors
movement accuracy and progression [84, 85]. In a lesion-
symptom mapping study using repetitive saliva and modified
water swallowing tests, Maeshima et al. found that more
than half of patients with thalamic hemorrhage had impaired
swallowing efficiency or safety [68]. In 2017, Galovic et al.
found an association between impaired oral intake (indicated
by FOIS) lasting more than 7 days and the disrupted white
matter tract, especially the projections fibers connecting

thalamus and superior corona radiata [72]. Owing to the
possible sensory-motor disintegration caused by disrupted
thalamo-cortical fibers, prolonged oral phase of swallow-
ing occurred [72]. Wilmskoetter et al. further investigated
the relationship between acute stroke lesion locations and
impairments of specific events in oropharyngeal swallow-
ing evaluated by Modified Barium Swallow Study Impair-
ment Profile (MBSImP) in VFSS [5]. Significant association
between thalamic lesions and impaired anterior hyoid excur-
sion was found, possibly due to sensory-motor disintegration
caused by thalamic stroke [5].

In addition to the cortico-striato-thalamo-cortical loop,
the thalamus might also affect the swallowing process
through its connection with the cerebellum. The thalamus
and the cortical areas were connected with the cerebellum
via the cerebello-thalamo-cortical pathway. Deep brain
stimulation (DBS) to the ventral intermediate nucleus
could affect movement control of extremities and articula-
tion, leading to gait ataxia and ataxic dysarthria [102—104].
In addition, a recent study found that DBS of the ventral
intermediate nucleus could lead to dysphagic presentations
including poor bolus control and early bolus transition from
oral stage to pharyngeal stage [78]. These dysphagic pres-
entations were attributed to a lack of coordination of the
muscles of the oral cavity, possibly caused by stimulation
of cerebellar-thalamic afferent fibers. [78]

Periventricular White Matter

PVWM are white matter tracts lying adjacent to the lateral
ventricles of the brain. Bundles of white matter tracts that
convey both motor and sensory information to cerebrum
and spinal cord are contained in PVWM [105]. Currently,
the role or significance of PVWM in swallowing remains
unclear and there are few relevant studies. In 1992, Levine
et al. investigated the impact of PVWM lesion on swallow-
ing physiology, with VESS showing significantly longer total
swallowing duration and oral transit duration for semisolids
in subjects with more severe white matter lesions [45]. In
2010, Cola et al. reported PVWM lesions among more than
half of left subcortical stroke patients suffering from dys-
phagia [15]. Furthermore, Moon et al. suggest that PVWM
lesion could be a prognostic predictor of swallowing func-
tion in elderly patients with mild stroke [73]. The severity
of white matter lesions were graded using the Fazekas scale
to build a prediction model using linear logistic regression
analysis, with results indicating that Fazekas grade could
effectively predict prolonged oral transit time and pres-
ence of penetration [73]. In a similar study including 332
patients, Fandler et al. found a higher Fazekas grade and
pontine lesions to be risk factors for dysphagia [74]. Fur-
thermore, Moon et al. found that PVWM lesions involving
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the corticobulbar tract (CBT) are associated with insufficient
laryngeal elevation and prolonged pharyngeal transit time
[16]. Based on these study results, the location and severity
of PVWM lesions may determine the type of swallowing
disturbance. The abnormal VFSS findings of the pharyngeal
phase of swallowing are possibly caused by the disrupted
connections between the cortex and cranial nerve nuclei at
the brainstem.

Corona Radiata (CR)

The corona radiata is composed of both ascending and
descending fibers connecting the cortical area and internal
capsule. Several studies of stroke patients have shown that an
injured corona radiata could cause swallowing disturbance.
In 2016, Galovic et al. found that the superior corona radiata
was significantly associated with impaired oral intake [71].
A later another lesion mapping analysis done by the same
team found that CR lesions are associated with prolonged
impaired oral intake status as assessed by the FOIS scale
[72]. In addition, patients with a larger proportion of dam-
aged corona radiata were more likely to have impaired oral
intake, specifically, the majority of patients had impaired
oral intake when more than 50% of corona radiate were
involved in stroke [72].

Several studies have suggested a possible association
between the locations of CR lesions and specific impair-
ments in swallowing physiology as determined by VFSS.
However, the results of these studies have not been consist-
ent [5, 17, 18]. Wilmskoetter et al. reported that impaired
right superior CR was associated with impaired laryngeal
elevation and laryngeal vestibular closure, while right supe-
rior and posterior CR was associated with increased phar-
yngeal residue [5]. Lesions at the anterior corona radiata
beneath the right middle frontal gyrus were found to corre-
late significantly with cricopharyngeal dysfunction accord-
ing to Kim et al. [17]. Jang et al. analyzed the relationship
between brain lesion location and chronic dysphagia in
patients with supratentorial stroke, finding that delayed phar-
yngeal transit time correlated with lesions in right corona
radiata [18]. These findings could be explained by the poten-
tial role of the CR in coordinating the SCPG of the bulbar
swallowing center through integration of both central and
peripheral afferent signals [17].

In terms of prognosis, Lee et al. found that stroke lesions
at the bilateral corona radiata, along with bilateral BG and
internal capsules, were an indicator to predict 6-month swal-
lowing recovery [19]. The authors’ assumptions included
diminished compensatory reorganization from the undam-
aged brain side and disruption of bilateral corticobulbar
tracts, leading to possible severe pharyngeal paralysis [19].
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Internal Capsule (IC)

Ascending and descending fibers, including the corti-
cospinal tract and corticobulbar tracts extending caudally
from the corona radiata, were contained in a somatotopi-
cal arrangement in the IC, with corticospinal tract local-
ized at posterior limb and corticobulbar tract at genu of
IC [106]. Stroke patients with IC lesions were reported to
have a higher risk of swallowing disturbance. Gonzalez-
Fernandez et al. discovered a strong correlation between
IC stroke and dysphagia [8]. Galovic et al. reported that
damage at the internal capsule leads to increased risk of
acute aspiration after stroke [20]. In 2019, a MRI-based
lesion mapping analysis done by Wilmskoetter et al.
found an association between lesions at the right posterior
limb and retrolenticular part of the internal capsule and
increased pharyngeal residue [5]. Furthermore, as men-
tioned in the subsection Corona Radiata, bilateral lesions
at the internal capsule, basal ganglia, and corona radiata
significantly prognosticate 6-month swallowing recovery
[19]. Similarly, Kim et al. reported that stroke patients
with lesions at the posterior limb of the IC and caudate
nucleus required longer recovery time from dysphagia
[21]. Based on these data, the IC should be considered
an integral part of the complex swallowing neural net-
work. The connection between the cortex and cranial nerve
nuclei at the brainstem is disrupted with a lesioned inter-
nal capsule, leading to dysphagia.

Superior Longitudinal Fasciculus (SLF)

The SLF is an association tract connecting the frontal,
occipital, parietal, and temporal lobes and transmitting cor-
tical neural signals across long and short distances [107].
Through the connection between different cortical sensory-
motor regions (e.g., the supramarginal gyrus and premotor
and prefrontal regions) it might play a significant role in
motor control, including swallowing [13]. Currently, few
studies have examined the role of SLF in the swallowing
process. In 2015, Suntrup et al. evaluated the swallowing
function of 200 stroke patients with FEES within 96 h from
admission. 165 were diagnosed with dysphagia, with a sig-
nificant correlation with lesion at the SLF [10]. Galovic et al.
used voxel-based lesion-symptom mapping to investigate
the association between lesion pattern and dysphagia [71,
72]. Lesion at the SLF was found to be significantly associ-
ated with both acute tube dependency (within 48 h of stroke
onset) and persistence of impaired oral intake based on FOIS
scale after 7 days of stroke onset [71, 72]. More recently,
Wilmskoetter et al. investigated the relationship between
stroke lesions and swallowing physiology assessed by VFSS
using Modified Barium Swallow Study Impairment Profile
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(MBSImP). Voxels at the right SLF were associated with
impaired laryngeal elevation, increased pharyngeal residue,
and higher penetration—aspiration scale (PAS) score. [5]
Although the exact underlying mechanism is unclear,
dysphagia caused by impaired SLF might be the result of
disrupted signal transmissions from the temporal—parietal
swallowing regions to the frontal motor areas. [13]

External Capsule (EC)

The EC is composed of white matter fibers and is located
between the putamen and claustrum, with potentially diverse
physiological functions. Both cortico-cortical association
fibers and striatal fibers connecting the primary sensorimo-
tor cortex with the putamen were found in EC [86]. There-
fore, EC is considered to be a key connection between the
cortical motor regions and the basal ganglia, and it might
contribute to the engagement of the basal ganglia in motor
control. Several lesion-symptom mapping studies showed
the relationship between damaged EC and swallowing
impairment [5, 71, 72]. Galovic et al. found that lesion at
the EC was significantly associated with impaired oral intake
within 2 days or lasting more than one week [71, 72]. In
addition, Wilmskoetter et al. used VFSS to identify an asso-
ciation between injured EC and impaired laryngeal elevation
and impaired laryngeal vestibule closure [5].

Hemispheric Dominance of Swallowing
Control

Hemispheric dominance, or functional lateralization, plays
a crucial role in the efficient and rapid access of neural
resources for variable tasks, including swallowing, by pre-
venting interhemispheric neural conduction delay [108].
Studies using EEG, functional neuroimaging, and TMS have
reported hemispheric dominance of swallowing control,
with interhemispheric asymmetry of cortical representation
of mylohyoid, pharyngeal, and esophageal musculature on
the motor and premotor cortex [90, 109]. Both right and left
hemispheric dominance have been reported by functional
neuroimaging studies and the side of hemispheric domi-
nance was different among individuals [26, 30, 38, 47, 48,
52, 54, 60]. Furthermore, the presentation of hemispheric
dominance seemed related to the cortical regions activated
during swallowing [39]. Hamdy et al. found a clear asym-
metric activation of the right premotor cortex and insula dur-
ing volitional swallowing but a more bilateral activation of
sensorimotor areas [39]. Nonetheless, one functional near-
infrared spectroscopy study displayed no lateralization effect
during motor execution or in swallowing imagery [110].
Additionally, task-dependent hemispheric dominance of
swallowing control was revealed by several neuroimaging

studies [30, 47, 48, 56, 61, 111]. Kristine et al. showed that
the hemispheric dominance noted during dry or wet swal-
lows shifted alternatively between 6 out of 8 subjects [47]. In
another study, right hemispheric dominance of insula activa-
tion was found only during voluntary saliva swallowing but
not during naive saliva and water bolus swallowing [48].
Mistry et al. showed that the primary motor cortex, predomi-
nantly right lateralized, was strongly activated during water
swallowing [61]. By contrast, the activation of the premotor
cortex and supplementary motor cortex was predominantly
detected at the left hemisphere during tongue elevation and
saliva swallowing [61]. Lastly, Daniels et al. used a modified
dual-task paradigm to investigate whether the swallowing
performance would be affected by left hemisphere- or right
hemisphere-specific tasks [56]. The results showed that dif-
ferent components of swallowing showing differential lat-
eralization [56]. Left hemisphere tasks reduced the volume
of swallowing while right hemisphere tasks reduced the rate
of swallowing [56]. These results indicate a task-dependent
hemispheric dominance of swallowing control.

Furthermore, lesion-symptom mapping studies of stroke
patients have shown that the side of the lesioned hemisphere
is associated with the features or severity of dysphagia [5,
10, 11, 22, 63, 64, 75]. Right hemispheric stroke was pos-
sibly associated with impaired pharyngeal phase of swal-
lowing and more severe dysphagia while left hemispheric
stroke was associated with impaired oral phase [5, 63, 64,
75]. Nonetheless, impaired pharyngeal phase of swallow-
ing could still be detected in a right hemispheric stroke,
including increased pharyngeal stasis, delayed pharyngeal
swallow, and reduced hyoid elevation [63, 64, 75], suggest-
ing that both right and left cerebral networks are crucial for
neural control of swallowing [5].

Plastic Change Induced by Non-invasive
Brain Stimulation (NIBS) and Deep Brain
Stimulation (DBS) and the Corresponding
Clinical Implication

Neuroplasticity refers to the brain’s ability to adaptively
change its structure or function in response to intrinsic or
extrinsic stimuli [112]. Plastic change of the motor cortex at
the damaged hemisphere in stroke patients has been found
to enable the recovery of swallowing function [113]. Avail-
able evidence indicates that non-invasive brain stimulation
including repetitive TMS (rTMS) and transcranial direct cur-
rent stimulation (tDCS) could induce neural plastic change
in the pharyngeal motor cortex of normal subjects [57, 114,
115]. Furthermore, recently published meta-analysis has
disclosed the positive effect induced by NIBS on recovery
of dysphagia in stroke patients [116, 117]. Nonetheless, at
present there is no available standard protocol or guideline
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to provide the best treatment practices for patients suffering
from post-stroke dysphagia. High-frequency rTMS stimulat-
ing the affected or unaffected motor cortex could improve
swallowing function of patients with post-stroke dysphagia
[118-121]. In addition, some studies have revealed that
bilateral hemisphere high-frequency rTMS stimulation
outperforms unilateral stimulation in terms of improving
swallowing function [122, 123]. More specific investigation
about the effect of stimulation frequency and stimulation
hemisphere of unilateral rTMS for post-stroke dysphagia
was done by Cheng et al. in a recently published meta-anal-
ysis [124]. The effect size of high-frequency rTMS over
ipsilesional hemisphere was larger than low-frequency rTMS
over contralesional hemisphere and high-frequency rTMS
over contralesional hemisphere [124]. tDCS can improve
swallowing in post-stroke dysphagia but may be inferior to
rTMS in reducing aspiration risk [117]. The meta-analysis
done by Cheng et al. disclosed that the anodal stimulation
on contralesional hemisphere was superior to stimulation
on ipsilesional hemisphere [124]. The discrepancy of the
stimulation protocol between rTMS and tDCS could be
explained by the bimodal balance recovery model of post-
stroke neural plasticity [125]. In this model, if the damaged
hemisphere has low structural reserve due to more severe
damage, the input from the unaffected hemisphere is cru-
cial to compensate for the lost function. Therefore, stimula-
tory NIBS applied on the unaffected hemisphere could lead
to better functional outcome in this scenario [125]. On the
other hand, it is possible that stimulatory NIBS applied on
the damaged hemisphere or inhibitory NIBS applied on the
contralesional hemisphere will lead to better outcome if the
structural reserve is high [125, 126].

DBS has been applied in the treatment of various kinds
of CNS diseases, including PD, essential tremor, and Alz-
heimer disease [126]. In addition to immediate response,
DBS also produces persistent effects by inducing neuroplas-
ticity [127, 128]. However, few studies have investigated the
effects of DBS on swallowing function. A narrative review
summarized the effects of DBS on swallowing function in
PD patients [129], with a majority of the recruited stud-
ies showing positive effects of subthalamic nucleus (STN)
DBS [129]. Improvements in both oral and pharyngeal
phases were found. The possible underlying mechanism
might be direct activation of the nigrostriatal dopaminer-
gic pathway through activating the glutamatergic neurons
in the STN and subsequent stimulation of substantia Nigra
[130]. Other mechanisms, such as reversing the phenomenon
of excessive beta oscillations and extinction of theta and
gamma rhythms in the striatum through STN DBS, have also
been reported [131]. Furthermore, Agarwal et al. showed
that low-frequency STN DBS could disrupt the pathologi-
cal oscillations observed in the STN of PD patients, lead-
ing to a more reliable relay of cortical input to thalamic
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neurons [132]. The impact of different DBS locations and
frequencies on swallowing function of patients with differ-
ent movement disorders was investigated by Yu et al. [133].
While contradictory effects were found with high-frequency
STN DBS [133], a more consistent improvement was found
with low-frequency STN DBS in PD [133]. Xie et al. firstly
found that low-frequency bilateral STN DBS could reduce
aspiration frequency in PD and the beneficial effect could
last for an average of 6 weeks [134]. Nonetheless, when the
follow-up period was extended to approximately one year,
the beneficial effect of low-frequency STN over routine 130-
Hz stimulation in reducing aspiration frequency or swal-
lowing difficulty perception was not observed [135]. The
effect of globus pallidus internus (GPi) DBS on swallowing
function was compared with STN DBS in 2 studies of PD
patients [136, 137]. The retrospective chart review from Tro-
che et al. showed that the PAS worsened significantly in STN
DBS group but not in GPi DBS group [136]. Robertson et al.
found that STN DBS decreased voluntary jaw velocity in PD
patients, whereas GPi DBS had the opposite effect [137]. It
is important to note that DBS did not generate significant
beneficial effect on PD patients with dysphagia according
to a recently published meta-analysis [138]. However, only
3 DBS randomized controlled trials were recruited in the
subgroup analysis [138]. Therefore, further larger numbers
of randomized controlled trials are needed to elucidate the
effect of DBS on swallowing function of PD patients.

Both NIBS and DBS could induce neural plasticity. Pro-
viding more precise and individualized brain stimulation
requires the establishment of brain stimulation protocols
based on a comprehensive understanding of the neurophysi-
ology of swallowing and the pathophysiology of dysphagia,
given the variability of lesion patterns and the correspond-
ing clinical deficits in stroke patients and in patients with
movement disorders.

Conclusion

Swallowing is a sophisticated process relying on coordina-
tion and participation of various neural structures, includ-
ing the cerebral cortex, subcortical white and gray matters,
sCPG, brainstem nuclei, and peripheral cranial nerves.
Although the roles of both the cerebral cortex and subcorti-
cal neural structures are less well studied than brainstem
structures, understanding of the participation and specific
contribution of these neural structures in swallowing is
gradually improving with accumulating data from analysis
of altered swallowing performance in multiple neurologi-
cal diseases, especially the lesion mapping studies of stroke
patients, and the advancement of both structural and func-
tional neural image modalities [139]. However, the incon-
sistent results of lesion mapping studies have led to a poor
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definition of the relationship between lesion location and
specific impaired components of the swallowing process.
A more thorough understanding of the neurophysiology of
swallowing will help clinicians develop more individual-
ized and precise treatment protocols via non-invasive brain
stimulation, for example, rTMS or transcranial direct current
stimulation, or deep brain stimulation to induce neuroplas-
ticity and further improvement of swallowing performance.
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