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Abstract
Few research studies have investigated temporal kinematic swallow events in healthy adults to establish normative refer-
ence values. Determining cutoffs for normal and disordered swallowing is vital for differentially diagnosing presbyphagia, 
variants of normal swallowing, and dysphagia; and for ensuring that different swallowing research laboratories produce 
consistent results in common measurements from different samples within the same population. High-resolution cervical 
auscultation (HRCA), a sensor-based dysphagia screening method, has accurately annotated temporal kinematic swallow 
events in patients with dysphagia, but hasn’t been used to annotate temporal kinematic swallow events in healthy adults to 
establish dysphagia screening cutoffs. This study aimed to determine: (1) Reference values for temporal kinematic swallow 
events, (2) Whether HRCA can annotate temporal kinematic swallow events in healthy adults. We hypothesized (1) Our 
reference values would align with a prior study; (2) HRCA would detect temporal kinematic swallow events as accurately 
as human judges. Trained judges completed temporal kinematic measurements on 659 swallows (N = 70 adults). Swallow 
reaction time and LVC duration weren’t different (p > 0.05) from a previously published historical cohort (114 swallows, 
N = 38 adults), while other temporal kinematic measurements were different (p < 0.05), suggesting a need for further stand-
ardization to feasibly pool data analyses across laboratories. HRCA signal features were used as input to machine learning 
algorithms and annotated UES opening (69.96% accuracy), UES closure (64.52% accuracy), LVC (52.56% accuracy), and 
LV re-opening (69.97% accuracy); providing preliminary evidence that HRCA can noninvasively and accurately annotate 
temporal kinematic measurements in healthy adults to determine dysphagia screening cutoffs.
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Introduction

Establishing normative reference values for swallowing 
physiology across the lifespan is vital for understanding 
normal variation in swallowing, differentially diagnosing 
variants of normal swallowing such as presbyphagia vs. 
dysphagia, and characterizing swallowing impairments 
based on the underlying disease process that results in 
dysphagia [1, 2]. Reference values established on large 
sets of comparable data provide more robust assess-
ments of performance in the population of interest against 
which patient data can be compared to estimate impair-
ment severity. The variability of multiple exemplars of 
durational swallowing measures within subjects has been 
explored in middle-aged and older healthy adults [3] 
revealing nonsignificant but measurable differences in 
durational swallowing measures from swallow to swal-
low, highlighting the importance of obtaining multiple tri-
als for each swallow condition during videofluoroscopic 
swallow studies (VFSSs) to gain a more holistic under-
standing of swallow function [3]. Changes in durational 
swallowing measures due to aging (i.e., presbyphagia) 
have been examined and revealed that older healthy adults 
have longer stage-transition duration (also referred to in 
the literature as “pharyngeal delay time” and “swallow 
reaction time”), pharyngeal transit duration, duration of 
upper esophageal sphincter (UES) opening, duration of 
laryngeal vestibule closure (LVC), and total swallowing 
duration compared to younger adults, all of which are rec-
ognized as typical for that population [4–6].

Current normative reference values have been estab-
lished for temporal kinematic swallow measurements by 
having trained researchers/clinicians rate gold standard 
VFSSs using frame-by-frame analyses, or using clinical 
ratings tools (e.g., Modified Barium Swallow Impairment 
Profile [MBSImP], Penetration–Aspiration Scale [PAS]) 
[3, 4, 7–12]. While imaging methods are necessary to 
verify that specific impairments in temporal and spatial 
swallow kinematics are contributing to dysphagia, nonin-
vasive dysphagia screening and assessment methods that 
provide some level of insight into a patient’s swallowing 
physiology may be useful when VFSSs are delayed, are not 
available/feasible within certain clinical settings, and/or 
are undesired by the patient. VFSSs are not always feasible 
or readily available when they are considered necessary, 
leaving clinicians to resort to management based solely 
on clinical assessments and their inherent limitations. 
Therefore, a noninvasive dysphagia screening and diag-
nostic adjunct that offers information about swallowing 
physiology could assist clinicians in managing patients 
who are awaiting VFSSs, patients who do not have access 
to VFSSs, and/or determining patients that should be 

referred for an instrumental swallow evaluation. Likewise, 
VFSSs are somewhat invasive requiring patient exposure 
to radiation which constrains the duration of observation 
of swallow function. In addition to this, few clinicians are 
trained in accurately performing temporal swallow kin-
ematic measurements or have access to imaging software 
to perform these measurements, leading to more subjec-
tivity in judgments of temporal measures and in some 
cases, over- or under-identification of patients most in 
need of dysphagia services to mitigate adverse events. In 
fact, based on a survey from speech-language pathologists 
(SLPs), one-third of SLP respondents conducting VFSSs 
reported performing frame-by-frame analysis of VFSSs 
“never” with another one-third indicating they used this 
method less than half of the time [13]. Likewise, clini-
cal rating tools such as the MBSImP have shortcomings 
including time-consuming online training (20–25 h per 
the website) and an element of subjective judgment that is 
prone to drift in rater’s internal decision-making rules [8]. 
Although efforts are being made to establish cutoffs and 
severity classes using the MBSImP [14], a challenge of 
this rating scale is its categorical nature which introduces 
a degree of judgment subjectivity, and its limited ability 
to capture subtle changes or impairments due to broad rat-
ing categories (e.g., no movement, partial movement, or 
complete movement for anterior hyoid excursion).

Therefore, there is a need for a noninvasive, portable 
and feasible adjunct or needs-based surrogate to VFSSs 
that can also provide insight into physiological aspects of 
swallowing independent of a trained human rater. High-
resolution cervical auscultation (HRCA) is a noninvasive 
dysphagia screening method that has been under investi-
gation for several years that has demonstrated promise as 
a diagnostic adjunct to VFSSs. HRCA combines acoustic 
and vibratory signals from a contact microphone and a tri-
axial accelerometer with advanced signal processing and 
machine learning techniques to measure swallow function. 
Although HRCA does require the use of intricate machine 
learning methods, one distinct advantage of HRCA is that 
clinicians are not needed to perform or interpret the com-
plex signal feature analysis and machine learning algo-
rithms. In fact, the visual representation of the raw HRCA 
signals provides no valuable information for clinicians to 
interpret about swallowing. While the signal waveforms 
reflect signal amplitudes and durations that are familiar 
to clinicians using other sensor-based modalities such 
as sEMG and manometry, they also contain additional 
information beyond their appearances such as the char-
acteristics of the vibratory and acoustic energy generated 
during a swallow to that are used as inputs to the machine 
learning process and cannot be displayed visually because 
they are mathematical/statistical features of the raw signals 
without visual value. This line of research work represents 
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the unique intersection of two disciplines (e.g., speech-lan-
guage pathology and computer/electrical engineering) to 
characterize swallow function. Since HRCA is still being 
validated as a dysphagia screening and diagnostic adjunct 
to VFSSs, all swallow evaluations involve concurrent col-
lection of VFSS images and HRCA signals, so that all 
HRCA signal features interpretations can be compared to 
the “ground truth” (e.g., expert human rater judgments of 
swallow function based on VFSS images). To date, stud-
ies examining HRCA’s capabilities have found that HRCA 
can differentiate between safe and unsafe swallows based 
on the PAS [15–21], accurately track hyoid bone move-
ment [22, 23], identify specific temporal kinematic swal-
low events (e.g., UES opening, UES closure, LVC, LV 
re-opening) [24–27], classify swallows between healthy 
adults and patients post-stroke or with neurodegenerative 
diseases[28, 29], and classify swallows based on several 
MBSImP component scores [23, 26] with a high degree 
of accuracy in patients with suspected dysphagia using 
advanced signal processing and machine learning tech-
niques. While previous studies have tested established 
machine learning algorithms that were trained on patients 
with suspected dysphagia on a small subset of healthy 
swallows (n = 45–50) to assess generalization to an out-
side dataset [23–26], no one has specifically trained and 
tested on healthy data alone to establish dysphagia screen-
ing cutoffs.

Few studies have established normative reference values 
for temporal swallow kinematic events in healthy adults 
across the lifespan or compared similar measurements in 
analogous samples of a population across research labora-
tories to determine consistency of measurements for pooled 
analyses. In addition to this, while previous research stud-
ies have examined HRCA’s ability to annotate specific tem-
poral swallow kinematic events (e.g., LVC, UES opening 
duration) [24–27] in patients with suspected dysphagia, 
we have not previously examined HRCA’s ability to anno-
tate temporal swallow kinematic events in healthy adults 
across the lifespan. Therefore, this research study aimed to 
determine (1) Reference values for VFSS temporal swal-
low kinematic events based on human judgments of VFSS 
images and compare these results to previously published 
reference values for the same measurements; (2) Whether 
HRCA can accurately and autonomously annotate temporal 
swallow kinematic events in healthy community dwelling 
adults across the lifespan with similar accuracy as VFSS 
analyses. We hypothesized that our reference values for 
VFSS measurements of temporal swallow kinematic events 
would closely align with a prior study and that HRCA sig-
nals combined with machine learning techniques would 
accurately and independently identify the timing of UES 
opening, UES closure, LVC, and LV re-opening in healthy 
community dwelling adults across the lifespan.

Methods

Participants, Study Procedures, and Equipment

This prospective observational study was approved by 
our institution’s Institutional Review Board. Seventy 
healthy community dwelling adults (31 males, 39 females) 
enrolled in this study, provided written informed consent, 
and generated 659 thin liquid swallows (700 swallows 
accrued, 41 excluded due to missing/corrupt data) that 
were entered into the analyses. Participant ages ranged 
between 21 and 87 years old (mean age 62.66 ± 14.80) 
with an even distribution across age ranges. Participants 
were eligible to participate based on the following inclu-
sionary criteria (per participant report): no history of swal-
lowing difficulties, no history of a neurological disorder, 
no prior surgery to the head or neck region, no chance of 
being pregnant (if female).

Data were prospectively collected using simultane-
ous accrual of VFSS data from a standard fluoroscopy 
system (Precision 500D system, GE Healthcare, LLC, 
Waukesha, WI), and from both a tri-axial accelerometer 
(ADXL 327, Analog Devices, Norwood, Massachusetts) 
that was powered by a 3 V output (model 1504, BK Preci-
sion, Yorba Linda, California), and a contact microphone. 
Signals from the accelerometer and the microphone were 
bandpass-filtered, amplified (model P55, Grass Technolo-
gies, Warwick, Rhode Island), digitized via a data acqui-
sition device (National Instruments 6210 DAQ) through 
the Signal Express program in LabView (National Instru-
ments, Austin, Texas), and then down sampled from 
20 kHz to 4 kHz to smooth the transient (high frequency) 
noise components. All participants underwent standard-
ized VFSSs to minimize radiation exposure (average fluoro 
time 0.77 s. to accrue 10 swallows). VFSSs were per-
formed with concurrent HRCA and images were obtained 
in the lateral plane. VFSSs were conducted at a pulse rate 
of 30 pulses per second (PPS). Video signals and HRCA 
signals were captured at a higher sampling rate (73 frames 
per second) per Shannon’s sampling theorem [30] (AccuS-
tream Express HD, Foresight Imaging, Chelmsford, MA) 
and then later down sampled to 30 FPS. The noninvasive 
HRCA sensors were placed on the anterior laryngeal 
framework and can be viewed in Fig. 1 [15, 31]. VFSS 
procedures consisted of 10 thin liquid boluses of Varibar 
barium (Bracco Diagnostics, Inc., < 5 cPs viscosity; Inter-
national Dysphagia Diet Standardization Initiative level 
0). Five boluses were 3 mL by spoon and 5 boluses were 
self-selected comfortable cup sips in a randomized order. 
When presented thin liquid boluses by spoon, participants 
were instructed to “Hold the liquid in your mouth and 
wait until I tell you to swallow it.” When presented thin 
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liquid boluses by cup, participants were given a graduated 
cylinder containing 60 mL and were instructed to “Take a 
comfortable sip of liquid and swallow it whenever you’re 
ready.” VFSS recording durations spanned from the onset 
of oral transit through bolus clearance through the UES 
and the return to rest of the hyolaryngeal complex, while 
HRCA continuously recorded signals during and between 
swallows to ensure that all components of all swallow seg-
ments were accrued. Bolus characteristics for all swallows 
included in the data analyses for this study can be viewed 
in Table 1. Average cup sip volume for comfortable cup 
sips was 16.05 mL (± 9.21).

Historical Cohort Comparison Data

We used a subset of data from a recent publication examin-
ing temporal swallow kinematic events in healthy commu-
nity dwelling adults using thin to extremely thick liquids as 
comparison data [12].Since the dataset from our lab included 

only thin liquid swallows, we included only the thin liquid 
swallows from this historical cohort (38 participants—19 
each females and males, 114 swallows). The age of par-
ticipants in this study ranged from 21 to 58 years of age 
(mean 34). Participants swallowed three thin liquid boluses 
by comfortable cup sip from a cup containing 40 mL with 
an average sip volume of 12.13 mL (± 6.68). Cup weight 
was taken before and after sips and was used to calculate sip 
volume in milliliters.

Temporal Swallow Kinematic Analyses

Trained raters underwent standardized training and subse-
quent inter and intra-rater reliability tests returning intra-
class coefficients (ICCs)[32] of at least 0.9 before conduct-
ing temporal swallow kinematic analyses. Temporal swallow 
kinematic measurements for this study included recording 
the digital timer values for the following events: bolus passes 
the mandible, onset of maximal hyoid excursion (labeled in 
other studies as “hyoid burst”), hyoid return to rest, onset of 
UES opening, onset of UES closure, LVC onset, and LV re-
opening onset. The definition for all temporal swallow kin-
ematic events coded can be viewed in Table 2. Two trained 
raters conducted temporal swallow kinematic measurements 
on all swallows included for data analyses with ongoing test-
ing of intra-rater reliability within a three-frame tolerance 
(0.1 s). Intra-rater reliability was maintained throughout 
analyses of this large dataset by randomly selecting one 
swallow to re-code every ten swallows. A third trained rater 

Fig. 1  Placement of HRCA sensors during data collection

Table 1  Bolus characteristics for swallows from the healthy commu-
nity dweller participants

All thin by spoon swallows were 3 mL. Thin by comfortable cup sip 
swallows ranged from 2 to 60 mL

Bolus condition Number of swallows Percentage 
of swallows

Thin liquid by spoon 322 48.86%
Thin liquid by comfortable cup 

sip
337 51.14%
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performed inter-rater reliability on 10% of swallows with 
ICCs of 0.992.

Data Analyses

A biostatistician (SP) fit a linear mixed model to determine 
statistical significance, and calculated effect sizes to deter-
mine clinical significance using a variation of Cohen’s d to 
compare the average magnitude of the temporal swallow 
kinematic measures to the historical cohort’s temporal swal-
low kinematic measures.

HRCA Signal Features Analysis and Machine 
Learning Algorithms

While our lab always obtains both acoustic and vibratory 
signals from the contact microphone and tri-axial acceler-
ometer during data collection because they have been shown 
to contribute different and complementary information, we 

do not always use both acoustic and vibratory signals for 
analyses [33]. For example, in the present study we devel-
oped the machine learning algorithm for UES opening and 
UES closure using only the accelerometer HRCA signal 
features, while for the LVC machine learning algorithm we 
used HRCA signal features from the contact microphone and 
the accelerometer because they produced superior alignment 
with the human judgments.

To determine when UES opening and UES closure 
occurred during the swallow using HRCA, we built a convo-
lutional recurrent neural network (CRNN) with two convolu-
tional layers, two max pooling layers, three recurrent neural 
network layers, and 4 fully connected layers. The CRNN 
used the accelerometer signals as input. A summary of the 
HRCA signal features extracted can be viewed in Table 3. 
The specific details of this network are described in our 
previous publications [25–27]. The dataset was randomly 
divided into 10 equal groups to evaluate the CRNN using 
a tenfold cross-validation scheme. Therefore, the data was 

Table 2  Definitions of temporal swallow kinematic events

Swallow kinematic event Definition

Bolus crosses mandible The first frame in which the organized bolus head first reaches or crosses the plane of the ramus of the mandi-
ble and is associated with oral propulsion

Onset of hyoid movement The first movement of hyoid leading to maximal hyolaryngeal excursion
Maximal hyoid displacement The first frame in which the hyoid is at its maximally displaced position (superior and anterior) during the 

pharyngeal phase
Offset of hyoid movement The first frame in which the hyoid is clear and in a stable position for at least two frames after descent at the 

end of the swallow (the bolus will typically have passed through the UES)
Laryngeal vestibular closure The first frame in which no air or barium contrast is seen in the collapsed laryngeal vestibule
Laryngeal vestibular re-opening The first frame in which the laryngeal vestibule reopens
UES opening The first frame in which separation of the posterior and anterior walls of the UES has begun
UES closure The first frame in which no column of air or barium contrast is seen separating the posterior and anterior walls 

of the UES
Swallow reaction time Duration between the bolus crossing the mandible and hyoid onset
Hyoid onset to UES opening Duration between hyoid onset and UES opening
Duration of UES opening Duration between UES opening and UES closure
LVC reaction time Duration between hyoid onset and LVC
LVC duration Duration between LVC and LV re-opening

Table 3  Features extracted from 
the HRCA signals (tri-axial 
accelerometer and contact 
microphone)

Feature What it measures

Standard deviation Reflects the signal variance around its mean value
Skewness Describes the asymmetry of amplitude distribution around mean
Kurtosis Describes the “peakness” of the distribution relative to normal distribution
Lempel–Ziv complexity Describes the randomness of the signal
Entropy rate Evaluates the degree of regularity of the signal distribution
Peak frequency (Hz) Describes the frequency of maximum power
Spectral centroid (Hz) Evaluates the median of the spectrum of the signal
Bandwidth (Hz) Describes the range of frequencies of the signal
Wavelet entropy Evaluates the disorderly behavior for nonstationary signal
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divided into 10 groups of ~ 66 swallows each. Nine groups 
were used to train the CRNN (~ 593 swallows) and one 
group was used to test the CRNN (66 swallows). This pro-
cess was repeated until each group of swallows was used for 
testing at least once. The accuracy, sensitivity, and specific-
ity of the CRNN was determined by calculating the differ-
ence between the CRNN’s predicted measurements and the 
“ground truth” (human measurements of UES opening and 
closing using VFSS images) (See Fig. 2).

To determine when LVC and LV re-opening occurred 
during the swallow, a CRNN model was built with two con-
volutional neural network layers, two max pooling layers, 
two recurrent neural network layers, 3 fully connected layers 
for decision making, using the HRCA signals as input. The 
specific details of this CRNN are described in our previous 
publication [24]. Similar to the UES opening and closing 
CRNN, the LVC and LV re-opening CRNN used tenfold 
cross-validation for training and testing the performance of 
the CRNN. The accuracy, sensitivity, and specificity of the 
CRNN was determined by calculating the difference between 
the CRNN’s predicted measurements and the “ground truth” 
(human measurements of LVC and LV re-opening using 
VFSS images) (See Fig. 3).

Results

Comparison to previously published historical healthy 
cohort:

Results revealed that measurements of swallow reaction 
time and LVC duration from our lab were not significantly 
different (p > 0.05) from the previously published histori-
cal cohort. There were statistically significant differences 
between measurements from our lab and the historical cohort 
for hyoid onset to UES opening, duration of UES opening, 
and LVC reaction time (p < 0.05). Small effect sizes were 
found for hyoid onset to UES opening and LVC duration 
(d = 0.290 and 0.103 respectively), a moderate effect size 
(d = 0.495) was found for swallow reaction time, a moderate-
large effect size for duration of UES opening (d = 0.702), 
and a large effect size (d = 2.40) for LVC reaction time. A 
summary of the descriptive statistics for the temporal swal-
low kinematic measures for our lab and the historical cohort 
and the complete results of the linear mixed model and effect 
size results can be viewed in Tables 4 and 5.

HRCA and Machine Learning Algorithm Results

Across the entire healthy community dwelling adult dataset, 
the CRNN for UES opening and closure performed with 
88.53% accuracy, 88.37% sensitivity, and 89.44% specificity. 
When comparing the performance of the CRNN to human 
measurements of VFSS images, the CRNN identified UES 
opening within a 3-frame tolerance for 69.96% of swallows 
and UES closure for 64.52% of swallows (See Figs. 4 and 
5). When examining the CRNN for LVC and LV re-opening 
across the entire healthy community dwelling adult data-
set, the CRNN performed with 81.14% accuracy, 76.83% 

Fig. 2  Evaluation procedure for 
comparing the accuracy of (a) 
human measurements of UES 
opening and closure and (b) the 
CRNN measurements of UES 
opening and closure by (c) cal-
culating the difference between 
human measurements and the 
CRNN measurements. TN true 
negative, FP false positive, TP 
true positive
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sensitivity, and 85.45% specificity. Compared to human 
measurements of LVC and LV re-opening based on VFSS 

images, the CRNN identified LVC within a 3-frame toler-
ance for 52.56% of swallows and LV re-opening for 69.97% 
of swallows (See Figs. 6 and 7).

Discussion

This research study found that some of our lab’s tempo-
ral swallow kinematic reference values closely matched 
the reference values of a historical cohort [12] and that our 
machine learning algorithms that used only HRCA signal 
features as input could autonomously identify the onsets of 
UES opening, UES closure, LVC, and LV re-opening with 
similar accuracy as human VFSS judgments of these tem-
poral kinematic events in a group of healthy community 
dwelling adults across the lifespan. The accuracy of HRCA 
analyses combined with machine learning algorithms is 
made more attractive as a potential surrogate to VFSS due 
to its efficiency compared to traditional judgment by human 

Fig. 3  Evaluation procedure for 
comparing the accuracy of (a) 
human measurements of LVC 
and LV re-opening and (b) the 
CRNN measurements of LVC 
and LV re-opening by (c) cal-
culating the difference between 
human measurements and the 
CRNN measurements. TN true 
negative, FP false positive, TP 
true positive

Table 4  Comparison of temporal swallow kinematic measures in mil-
liseconds from our lab and from the historical cohort (Steele et  al., 
2019) using a linear mixed model (ignoring multiple swallows from 
the same person)

Bold indicates that p < 0.05
All thin liquid swallows for both sets of data

Study Data 
(ms)

Steele et al. 
2019 data 
(ms)

Temporal measure Mean SD Mean SD p value

Swallow reaction time 78 95 109 177 0.133
Hyoid onset to UES opening 216 1130 116 48 0.024*
Duration of UES opening 711 1151 458 63  < 0.001*
LVC reaction time 386 161 179 100  < 0.001*
LVC Duration 384 483 436 108 0.204

Table 5  Comparison of 
temporal swallow kinematic 
measures in milliseconds from 
our lab and from the historical 
cohort (Steele et al., 2019) using 
a variant of Cohen’s d after 
averaging multiple swallows 
from the same person

All thin liquid swallows for both sets of data

Study data (ms) Steele et al. 2019 data (ms)

Temporal measure Mean SD Mean SD Cohen’s d

Swallow reaction time 76 66 109 177 0.495
Hyoid onset to UES opening 215 342 116 48 0.290
Duration of UES opening 711 360 458 63 0.702
LVC reaction time 384 86 179 100 2.40
LVC Duration 404 313 436 108 0.103
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judges, particularly when VFSS or other imaging-based gold 
standard testing is unavailable. For example, the CRNN 
for UES opening and closure can analyze 150 swallows in 
approximately 42 s compared to a human judge that would 
take approximately 2 min per swallow for a total of 5 h. 
While we found differences in hyoid onset to UES opening, 
duration of UES opening, and LVC reaction time (p < 0.05) 
between our lab’s dataset and the historical cohort’s data-
set, it is likely these differences may have occurred due to 
age differences between the two groups or due to differ-
ences in methods (i.e., starting cup volume of 60 mL vs. 

40 mL). This is in line with previous studies that have found 
that older adults exhibit longer durations for temporal swal-
low kinematic events and greater variability for swallow-
ing [4–7]. Alternatively, these differences may exist due to 
differences in coding temporal kinematic measurements 
between research labs. This highlights a need for increased 
transparency between research labs in order to standardize 
measurements and terminology to allow for equivalent com-
parisons across research studies for pooled data analyses in 
similar samples.

Fig. 4  Accuracy of the CRNN 
for detecting UES opening 
within a 3-frame (0.1 s toler-
ance) compared to human meas-
urements of UES opening for 
the healthy community dweller 
dataset

Fig. 5  Accuracy of the CRNN 
for detecting UES closure 
within a 3-frame (0.1 s toler-
ance) compared to human 
measurements of UES closure 
for the healthy community 
dweller dataset
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In addition to this, the high accuracy of the machine 
learning algorithms we deployed using HRCA signals alone 
as input, add to a growing body of literature demonstrating 
HRCA’s promise as a dysphagia screening method and diag-
nostic adjunct to VFSSs [15–26, 28, 29]. Despite nonsignifi-
cantly but better performance of the HRCA algorithms that 
were trained and tested in previous studies of patients with 
dysphagia [24–26] compared to our current results derived 
from the healthy community dwelling adult dataset, both 
machine learning algorithms correctly identified temporal 
kinematic events (e.g., UES opening, UES closure, LVC, LV 

re-opening) with remarkably high accuracy given that they 
identified these events using HRCA signals alone and with-
out any human supervision. In fact, we anticipated better 
performance accuracy on the patient dataset compared to the 
healthy community dweller dataset, because machine learn-
ing algorithms perform more robustly with large sets of vari-
able data in which more impairments are present throughout 
the dataset. In addition to this, the CRNN for UES opening 
and closure had better accuracy than the CRNN for LVC 
and LV re-opening. These findings are in line with previous 
results from our lab that trained and tested these machine 

Fig. 6  Accuracy of the CRNN 
for detecting LVC within 
a 3-frame (0.1 s tolerance) 
compared to human measure-
ments of LVC for the healthy 
community dweller dataset

Fig. 7  Accuracy of the CRNN 
for detecting LV re-opening 
within a 3-frame (0.1 s toler-
ance) compared to human meas-
urements of LV re-opening for 
the healthy community dweller 
dataset
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learning algorithms on patients with dysphagia [24–27, 
34]. There are several potential reasons for this discrepancy 
in performance accuracy. Human ratings of LVC and LV 
re-opening within our lab tend to have greater inter and 
intra-rater variability than ratings of UES opening and clo-
sure, which may impact the accuracy of the CRNNs since 
machine learning algorithms are dependent on the training 
data provided and are compared to the “ground truth” for 
accuracy (in this case, human ratings of VFSS images). On 
the other hand, machine learning algorithms tend to perform 
more accurately with more chaos and increased variability 
in the data. As such, it’s possible that there was greater vari-
ability in measurements of UES opening and closure than 
in measurements of LVC and LV re-opening for this group 
of healthy adults, leading to improved performance of the 
machine learning algorithm of UES opening and closure. 
Additionally, the durations of these two events (e.g., duration 
of UES opening, LVC duration) are both quite short, which 
leaves little room for error when humans (or machines) judge 
temporal kinematic swallow events. Further, LVC duration 
is briefer than the duration of UES opening, introducing 
greater opportunity for error.

Despite some of these limitations, the results of this 
research study expand upon previous findings in our lab by 
demonstrating that HRCA combined with signal processing 
and machine learning techniques can not only accurately 
annotate specific temporal swallow kinematic events in 
healthy community dwelling adults and patients with sus-
pected dysphagia, but it can do so with greater efficiency 
than traditional analysis methods without compromising 
accuracy. The current results from healthy participants 
adds to the ability of HRCA to classify typical vs. atypical 
swallow physiology in people with dysphagia when deploy-
ing HRCA within clinical settings in the future. While our 
research lab is eager to deploy HRCA as a dysphagia screen-
ing and diagnostic adjunct to VFSSs within clinical settings, 
it is important to note that we are still in the process of 
miniaturizing our HRCA system and finalizing all machine 
learning algorithms so that HRCA is an easily transport-
able evaluation tool that efficiently provides results to clini-
cians via everyday devices such as tablets and smart phones. 
Additionally, while HRCA does involve the collection of 
raw acoustic and vibratory signals from a contact micro-
phone and a tri-axial accelerometer, the visual inspection 
of these raw waveforms does not have any clinical utility. 
Our HRCA system does not depend on the interpretation 
of swallowing sounds by human judges. In fact, we do not 
use the raw acoustic and vibratory signals for interpreting 
swallowing events at all. As described in the methods sec-
tion of our paper, we filter and amplify aspects of the raw 
HRCA signals before extracting statistical features from the 
signals that are used for analyses (see Table 3). After feature 
analyses are performed, we use the HRCA signal features as 

input to machine learning algorithms to detect swallowing 
events. Therefore, in the future when HRCA is deployed 
within clinical settings, clinicians will not be responsible 
for visual inspection and interpretation of HRCA signals 
like they are when they perform VFSSs. Instead, clinicians 
will place the sensors on patients and receive the HRCA 
results of the autonomous machine learning algorithms on 
their smart phone or tablet.

Future work should expand upon the findings from this 
research study by establishing normative reference values for 
temporal swallow kinematic events in healthy community 
dwelling adults using additional bolus viscosities (e.g., thick 
liquids, puree, regular texture solids). In addition to this, 
future studies may aim to determine normative reference 
values for spatial swallow kinematic events in healthy com-
munity dwelling adults (e.g., hyoid bone and laryngeal dis-
placement, UES diameter). Future studies should include a 
larger sample of swallows accrued from multiple sites using 
identical methods to assist in enhancing the performance 
of the machine learning algorithms and should investigate 
the efficacy of utilizing HRCA contemporaneously in clini-
cal settings that require immediate dysphagia screening and 
diagnostic output.

Limitations

We prospectively collected and compared the temporal 
swallow kinematic measures from our lab to a historical 
cohort of data, which is an imperfect comparison since 
using historical data can introduce bias or confounding 
variables. While we attempted to control for confound-
ing variables that could result in differences between our 
dataset and the historical cohort dataset (e.g., bolus vis-
cosity), the methods of these two studies were not exactly 
the same (i.e., starting cup volume of 60 mL vs. 40 mL 
for comfortable cup sips, command swallows and com-
fortable cup sips in our dataset). In addition to this, the 
healthy community dwelling adults enrolled in our study 
were older on average (62.66 ± 14.80) than the historical 
cohort (34). These methodological and individual partici-
pant differences may have contributed to the differences 
and large effect sizes we observed in some temporal kin-
ematic swallow measurements since healthy older adults 
have been shown to have longer durations and greater vari-
ability in swallowing than healthy younger adults [4–7]. In 
addition to this, we conducted standardized VFSSs with 
only thin liquid boluses to minimize radiation exposure 
for healthy community dwelling adults. This limits the 
generalizability of our findings to other bolus conditions 
and clinical settings since our normative reference values 
were established using a set protocol of only thin liquid 
swallows. Likewise, the machine learning algorithms for 
UES opening, UES closure, LVC, and LV re-opening 



674 C. Donohue et al.: Establishing Reference Values for Temporal Kinematic Swallow Events…

1 3

were established on a dataset of only thin liquid swallows. 
While we included a relatively large dataset of swallows 
for this preliminary research study, it will be important 
to replicate this work with various bolus viscosities to 
establish normative reference values and to ascertain that 
the machine learning algorithms remain consistent across 
bolus conditions. Furthermore, while the CRNNs we 
developed identified temporal swallow kinematic events 
with an overall high degree of accuracy, machine learning 
performance improves with greater variability/chaos and 
more data. Therefore, it is vital to continue to improve 
the algorithms we have developed by adding swallows 
to our database from healthy community dwelling adults 
and patients across the lifespan. This will assist us as 
we explore the ability to deploy these machine learning 
algorithms in clinical settings in real-time to differentiate 
between patients with normal or disordered swallowing.

Conclusion

This study found that some of the temporal swallow kin-
ematic reference values from our lab closely matched the 
reference values from a historical cohort. It also expanded 
upon previous research studies in our lab by providing 
preliminary evidence that HRCA signals combined with 
advanced machine learning techniques can accurately 
identify specific temporal swallow kinematic events 
(e.g., UES opening, UES closure, LVC, LV re-opening) 
in healthy community dwelling adults across the lifes-
pan. Developing CRNNs that can accurately differenti-
ate between swallows from healthy community dwelling 
adults vs. swallows from patients with dysphagia using 
cutoffs for specific temporal swallow kinematic events will 
be a useful enhancement to current dysphagia screening 
methods within clinical settings. Future studies should rep-
licate and expand upon this work to generate a large data-
base of healthy swallows across the lifespan to assist in 
differentially diagnosing presbyphagia and dysphagia. In 
addition to this, future studies should aim to improve the 
accuracy of the machine learning algorithms for detecting 
temporal swallow kinematic events and should investigate 
the ability to provide dysphagia screening results in real-
time at the bedside within a variety of clinical settings.
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