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Abstract The objectives of this study are to investigate

swallowing and its coordination with respiration in patients

with obstructive sleep apnea (OSA). This is a prospective

cohort study conducted in a tertiary referred Medical

Center. A non-invasive method of assessing swallowing

was used to detect the oropharyngeal swallowing parame-

ters and the coordination with respiration during swal-

lowing. The system used to assess swallowing detected: (1)

movement of the larynx using a force-sensing resistor; (2)

submental muscle activity using surface electromyography;

and (3) coordination with respiration by measuring nasal

airflow. Five sizes of water boluses (maximum 20 mL)

were swallowed three times, and the data recorded and

analyzed for each participant. Thirty-nine normal controls

and 35 patients with OSA who fulfilled the inclusion cri-

teria were recruited. The oropharyngeal swallowing

parameters of the patients differed from the controls,

including longer total excursion duration and shorter

duration of submental muscles contraction. A longer

swallowing respiratory pause (SRP), temporary coordina-

tion with respiration during swallowing, was demonstrated

in the patients compared with the controls. The frequency

of non-expiratory/expiratory pre- and postswallowing res-

piratory phase patterns of the patients was similar with the

controls. There was significantly more piecemeal degluti-

tion in OSA patients when clumping 10- and 20-mL water

boluses swallowing together (p = 0.048). Oropharyngeal

swallowing and coordination with respiration affected

patients with OSA, and it could be detected using a non-

invasive method. The results of this study may serve as a

baseline for further research and help advance research

methods in obstructive sleep apnea swallowing studies.

Keywords Obstructive sleep apnea � Swallowing and

respiration coordination � Total excursion time � Force-
sensory resister � Deglutition � Deglutition disorders

Introduction

Obstructive sleep apnea (OSA) is a common disorder and a

major public health problem due to potentially serious

health consequences. OSA is reported to affect about

9–15 % of middle-aged adults and is more common in men
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[1]. It is characterized by repetitive episodes of partial or

complete obstruction of the upper airway during sleep [2].

The clinical manifestations of OSA include snoring, noc-

turnal gasping, choking, nocturia, and other symptoms due

to fragmented sleep [3, 4]. In addition, choking during

sleep is a symptom of spontaneous swallowing impairment.

Sensation in the oropharynx and upper airway in

patients with OSA has been proven to be impaired by nerve

damage [5–7]. In addition, the absence of a gag reflex in

severe OSA and the absence of palatal reflex in moderate

OSA have been reported [8]. One study demonstrated that

the patients with OSA had impaired swallowing reflex,

longer latent time, and shorter inspiratory suppression time

[9]. Another study reported that swallowing latency was

shorter in patients with OSA [7]. Furthermore, Valbuza

et al. used nasal fibroscopy to detect abnormalities in

subclinical swallowing in patients with OSA which were

shown to be due to premature oral leakage and pharyngeal

stasis after swallowing (55 %), but not penetration or

aspiration [10]. In contrast, none of these presentations

were found in the control group [10]. Accordingly, the

impact of OSA on swallowing function is still inconclu-

sive, and the pathophysiology of subclinical swallowing

disorders in OSA is still unclear. In recent decades, the role

of the coordination of respiration with swallowing to

ensure safe swallowing without aspiration has been

emphasized [11–16]. However, this finely tuned mecha-

nism is not completely understood in OSA.

To objectively analyze swallowing and coordination

with respiration, invasive and non-invasive methods of

studying swallowing including videofluoroscopic swallow

study (VFSS), pharyngeal manometry [17–19], surface

electromyography (sEMG) [20, 21], and swallowing

sounds [22, 23] which simultaneously detect nasal airflow

or respiration have been developed. The current trend of

swallowing studies is toward the use of non-invasive and

radiation free modalities, and non-invasive methods com-

bining submental sEMG with piezoelectric sensors to

indirectly characterize cricopharyngeal sphincter activity

of normal and neuromuscular dysphagic swallowing

movements have been demonstrated [24, 25]. Such novel

non-invasive instruments have been used in combination

with respiratory monitoring to analyze impairments in

swallowing and coordination with respiration in studies on

neuromuscular dysphagia [26] and aging [27]. Recently,

new sensors such as bend sensors [28] and force-sensing

resistors (FSRs) [29] have been used to detect thyroid

cartilage excursion during swallowing. Therefore, the aim

of the present study was to characterize physiological

changes in swallowing–respiration coordination in patients

with OSA using a non-invasive monitoring modality.

Materials and Methods

Patient Selection

This study was designed as a prospective cohort study in a

tertiary referral medical center. Two questionnaires (Ep-

worth Sleepiness Scale [30] and Snore Outcomes Survey

[31]) were completed to exclude OSA or snoring symptoms

in the control group. The exclusion criteria were a past

history of dysphagia, cardiopulmonary disease, neurologi-

cal disease, indigestion disorders, cancer, disease of the

head and neck, and currently taking medications with

known effects on swallowing or breathing. Ethics approval

was granted by the Institutional Review Board of the

Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan

(no. 103-0910C). Each participant was able to understand

verbal instructions and signed informed consent prior to

participation.

Non-invasive Assessment of Swallowing

and Respiration Coordination (Fig. 1)

In this study, we used the same electrophysiological

monitoring system (BIOPAC MP100 system, BIOPC

System, Goleta, CA, USA) which is designed to record

biological signals to assess swallowing and respiration as

we used in our previous studies [27, 32]. Two surface

electrodes were adhered at both sides of the midline under

the chin for recording of submental muscles activities. For

thyroid cartilage excursion, a FSR was attached to an air-

filled plastic bulb onto an elastic belt which was placed

around the subject’s neck (Fig. 1) [29]. The thyroid carti-

lage level at which to place the sensor was chosen

according to our previous studies [27, 32]. Respiratory

signals were detected by nasal airflow sensor transducing

through nasal cannula which had been used to detect res-

piratory pause during sequential water swallowing previ-

ously [33].

The participants were first shown the equipment and

given instructions about the study procedure. Each par-

ticipant was then instructed to swallow five sizes (1, 3, 5,

10, and 20 mL) of water bolus, with each bolus being

swallowed three consecutive times and recorded individ-

ually. The participants were blinded to the size of each

bolus. The study procedure was similar to our previous

studies [27, 32, 34]. Data were recorded using

AcqKnowledge software (version 3.9.1a; BIOPAC Sys-

tems) for later off-line analysis. Software based on

MatLab (version 2010; MathWorks, Natick, MA, USA)

was used to analyze the parameters of oropharyngeal

swallowing and respiration.
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Definitions of the Parameters of Swallowing

and Respiration (Fig. 2)

Latency and Duration of Oropharyngeal Swallowing

The submental sEMG and FSR signals were integrated for

temporal analysis. The onset of the oral phase of swal-

lowing was defined as the beginning of submentalis

activity. The onset latency (OL) of laryngeal excursion was

determined as the time from the onset of submentalis

contraction to the onset of laryngeal excursion. For the

laryngeal excursion signals, an asymmetric ‘‘W’’-shaped

waveform with a notch between the smaller first and larger

second waveform was recorded [32]. The laryngeal

excursion time (ET) was defined as the duration of the first

wave representing the laryngeal upward excursion. The

duration of the second wave represents the laryngeal

downward excursion to return to the initial resting position.

The total excursion time (TET) was calculated as the sum

of the ET and 2nd deflection (Fig. 2) [25]. Such definitions

of laryngeal excursions detected by sensors have previ-

ously been validated [24, 28, 35]. The motion of the hyoid

bone is an important bony landmark for swallowing anal-

ysis in radiological VFSS studies [36, 37], and it has been

observed to be positively correlated to [38] or synchronized

with thyroid cartilage [39]. A recent study reported the use

of a bend sensor to monitor thyroid cartilage motion

[28, 40], and the waveforms detected by the bend sensor

were correlated with hyoid bone movements by VFSS.

However, a non-invasive method has the potential to be an

auxiliary method to VFSS in the diagnosis of dysphagia in

anatomically intact patients [28].

Respiratory Phase Patterns Pre- and Postswallowing

We defined four pre- and postswallowing respiratory phase

patterns, including expiration–expiration (EX/EX), expi-

ration–inspiration, inspiration–expiration, and inspiration–

inspiration [17]. As the EX/EX pattern is the major pattern

and the only physiologically protective respiratory phase

pattern [21, 41, 42], we grouped the other three minor

patterns into a non-EX/EX pattern [17, 27, 32, 43].

Fig. 1 a Schematic diagram for

the measuring system. b Throat

belt for force-sensing resistor

(FSR) fixation

Fig. 2 Definition of oropharyngeal swallowing and respiration

parameters. Amp amplitude; D-SRPO-2nd DO duration from swal-

lowing respiratory pause onset to 2nd deflection onset; OL onset

latency; SRP swallowing respiratory pause; SRPO-L swallowing

respiratory pause onset latency; sEMG surface electromyography;

TET total excursion time
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Swallowing Respiratory Pause (SRP)

SRP represents the duration of a stopped breath due to

airway closure during swallowing and is a necessary pro-

tective respiratory phenomenon to allow for safe swal-

lowing without aspiration [41]. This protective respiration

pause is under central neural regulation, and it has been

shown to be preserved in patients after laryngectomy dur-

ing swallowing [41, 44].

Swallowing Respiratory Pause Onset Latency (SRPO-L)

SRPO-L is the duration from the onset of submentalis

activity at the beginning of lingual motion for bolus

propulsion to the swallowing respiratory pause onset

(SRPO), and it is an important physiological event in

swallowing–respiration coordination [45].

Duration from SRPO to 2nd Deflection Onset (D-SRPO-

2nd DO)

D-SRPO-2nd DO is the duration between SRPO and onset

of 2nd deflection. This time period indirectly represents the

latent period between airway closure and the onset of

cricopharyngeal sphincter relaxation from bolus arrival to

passage [46].

Dysphagia Limit and Piecemeal Deglutition

The maximum volume of a bolus that can be swallowed is

defined as the ‘‘dysphagia limit.’’ When the size of the

bolus placed in the mouth is larger than the dysphagia

limit, it is necessary to divide the bolus into smaller pieces

(piecemeal) which are then swallowed successively in

multiple swallows. A dysphagia limit of less than 20 mL

indicates inconspicuous dysphagia in neurogenic disorders

[47].

Statistical Analysis

All statistical analyses were performed using SPSS soft-

ware version 12.0 (SPSS Inc., Chicago, IL). The data

obtained from the three separately recorded swallowing

trials of each bolus size those without piecemeal were

averaged. Two-way repeated measures ANOVA (RMA-

NOVA) tests were used. The independent variables were

oropharyngeal parameters and SRP, and the groups and

volume of boluses were two dependent variables to

examine the interaction effect and main effect. For num-

bers and frequencies, the Chi-square test was used between

groups. The level of a was selected at 0.05. A p value less

than 0.05 was considered to be statistically significant.

Results

Characteristics of Subjects

Thirty-nine normal males (controls) and 35 male patients

with OSA referred from our Department of Otorhino-

laryngology-Head and Neck Surgery (age: 37.5 ± 6.0 vs.

39.1 ± 9.4 years, p = 0.41; body mass index: 24.1 ± 2.5

vs. 27.3 ± 3.9 kg/m2, p = 0.054) with no history of dys-

phagia were recruited (Table 1).

Parameters of Swallowing and Respiration

In a two-way RMANOVA model, OL showed no significant

differences between groups of the patients with OSA and the

normal controls (F = 1.802, p = 0.186). The OL differed

among the five bolus type (F = 7.513, p B 0.001) (Fig. 3a).

There was no significant interaction between group and

bolus type. However, the TET was significantly longer in the

OSA patients than in the controls (F = 10.042, p = 0.002).

The TET also showed significant difference for the five

boluses (F = 4.083, p = 0.008) (Fig. 3b). There was no

interaction between group and bolus type. Differences in ET

between OSA patients and controls were not statistically

significant (F = 0.277, p = 0.601) and also did not differ

among five boluses within group (F = 2.188, p = 0.90)

(Fig. 3c). There was no interaction between group and bolus

type. In addition, a borderline statistic difference of groups

was found (F = 3.882, p = 0.055), which indicates that the

duration of submental sEMG contraction was shorter in the

patients than in the controls. There was no significant effect

for sizes of water bolus within group (F = 0.912,

p = 0.458) and also no interaction between groups and sizes

of water bolus. (Figure 3d). The amplitude of the submental

sEMG in the patients and in the controls showed no sig-

nificant difference (F = 0.462, p = 0.500) and also no

effect by sizes of water bolus within group (F = 0.939,

p = 0.408). There was no interaction between group and

bolus size (Fig. 4a). In summary, for the temporal parame-

ters of oropharyngeal swallowing, the patients with OSA

had no delay in the onset of latency, but a longer duration of

thyroid cartilage excursion than the normal controls. For

submental sEMG, the duration of contraction was shorter in

the patients but the amplitude showed no significant

difference.

A main effect of groups was found (F = 4.902,

p = 0.032), which indicates that the SRP was longer in the

patients than in the controls. There was also a main effect

for sizes of water bolus (F = 5.396, p = 0.002), but no

interaction between groups and sizes of water bolus

(Fig. 4b). The duration of D-SRPO-2nd DO in the patients

and controls showed no statistical significance (F = 0.980,

774 C.-M. Wang et al.: Non-invasive Assessment of Swallowing and Respiration…

123



Fig. 3 Comparisons the

obstructive sleep apnea (OSA)

patients with the normal

controls. a Onset latency.

b Total excursion time.

c Excursion time. d Submental

sEMG duration

Fig. 4 Comparisons the

obstructive sleep apnea (OSA)

patients with the normal

controls. a Submental sEMG

amplitude. b Swallowing

respiratory pause. c Duration

from swallowing respiratory

pause onset to 2nd deflection

onset. d Swallowing respiratory

pause onset latency

Table 1 Characteristics of subjects

Normal (no: 39) OSA (no: 35) p value

Age (year) 37.5 ± 6.0 39.1 ± 9.4 0.409

Height (cm) 172.1 ± 5.4 170.1 ± 5.3 0.127

Weight (kg) 71.4 ± 9.5 79.1 ± 12.9 0.005

BMI (kg/m2) 24.1 ± 2.5 27.3 ± 3.9 0.054
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p = 0.327) and no effect by sizes of water bolus

(F = 1.566, p = 0.205). There was no significant interac-

tion between group and bolus size (Fig. 4c). There were no

significant differences in the SRPO-L between the patients

and controls (F = 0.010, p = 0.919) but had significant

effect by sizes of water bolus (F = 5.463, p B 0.001).

There was no interaction between group and bolus size

(Fig. 4d).

Respiratory Phase Patterns Pre- and Postswallowing

There were no significant differences in the number of

swallows in pre- and postswallowing respiratory phase

patterns between the patients and controls under each size

of water bolus and all boluses clumped together (Table 2).

Piecemeal Deglutition

There was no significant difference in the piecemeal deg-

lutition of neither 10 nor 20-mL water boluses between the

patients and controls. However, significant difference was

shown when clumped two boluses conditions together

(p = 0.048) (Table 3).

Discussion

Dysphagia may cause dehydration, malnutrition, aspira-

tion, pneumonia, and even fatal infection [48, 49].

Accordingly, understanding the pathophysiology of swal-

lowing disorder and normal physiology of swallowing are

both crucially important. There were less non-invasive

tools used in the studying of OSA swallowing physiology.

Accordingly, the purpose of this study was to detect the

temporal parameters of oropharyngeal swallowing and its

coordination with respiration in OSA using non-invasive

method. This study demonstrated that subclinical dyspha-

gia OSA patients had delayed pharyngeal phase presented

by longer TET and coordinated with longer duration of

SRP. The duration of submental sEMG contraction was

shorter in the OSA patients. However, the frequency of

pre- and postswallowing respiratory phase patterns was not

significantly different between OSA patients and controls.

A non-invasive study tool using a piezoelectric sensor

has been used with the sensor placed at the thyroid carti-

lage level [34] to examine the coordination of swallowing

and respiration in three different age groups, and demon-

strated worse coordination in older age groups [27]. In

addition, differences in swallowing–respiration coordina-

tion have been reported in patients with a unilateral stroke

compared with normal controls [32]. The results of the

present study showed that a non-invasive method using a

FSR to assess thyroid cartilage excursion can detect devi-

ations in swallowing–respiration coordination in patients

with OSA. This non-invasive method of assessing swal-

lowing and respiration may be useful for follow-up after

therapy for head and neck lesions in which dysphagia may

be a related symptom. In addition, using this non-invasive

method to compare the effectiveness of surgical treatment

on swallowing or complicated dysphagia of head and neck

surgery may be possible. Furthermore, this method may be

used for long-term telemonitoring at home or institute for

dysphagia in head and neck disorders [50].

To analyze the amplitude and contraction duration of

submental sEMG in swallowing function is emphasized,

currently. Peak amplitude of submental sEMG was iden-

tified to have weak-negative correlation with manometric

pressure in normal healthy controls [51]. However,

Table 2 Pre- and postswallowing respiratory phase pattern

Water bolus Group Ex–Ex Non-Ex–Ex p value

1 mL Normal controls (n = 39) 81 (70 %) 34 (30 %) 0.138

OSA patients (n = 35) 56 (62 %) 34 (38 %)

3 mL Normal controls (n = 39) 81 (74 %) 29 (26 %) 0.335

OSA patients (n = 35) 65 (77 %) 19 (23 %)

5 mL Normal controls (n = 39) 82 (75 %) 27 (25 %) 0.526

OSA patients (n = 35) 63 (76 %) 20 (24 %)

10 mL Normal controls (n = 39) 73 (75 %) 24 (25 %) 0.457

OSA patients (n = 35) 58 (73 %) 21 (27 %)

20 mL Normal controls (n = 39) 55 (86 %) 9 (14 %) 0.195

OSA patients (n = 35) 39 (78 %) 11 (22 %)

Total Normal controls (n = 39) 372 (75 %) 123 (25 %) 0.44

OSA patients (n = 35) 281 (73 %) 105 (27 %)

Ex–Ex expiratory–expiratory; OSA obstructive sleep apnea
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decreases in submental muscle activity were not evident in

Huntington’s disease (HD) patients during saliva and water

swallowing, tasks at 25 % of maximum expiratory pressure

(EMT) recordings except during EMT at 75 %. The rela-

tive submental muscle weakness was observed only during

a high-intensity task in early to mid-stage HD patients

using the sEMG activities of submental muscles [52]. Kim

et al. demonstrated that patients with unilateral middle

cerebral artery (MCA) infarction within 2 months of stroke

onset showed shorter duration of submental sEMG activity

compared with those in healthy volunteers [53]. These

findings in HD and unilateral MCA infarction are similar to

our findings of shorter duration but no decrease amplitude

of submental sEMG during water swallowing in subclinical

dysphagia OSA patients.

Involuntary rhythmic breathing originates in the brain

stem, and voluntary control of respiration is vital during

swallowing [54, 55]. During swallowing, voluntary respi-

ration suppresses involuntary respiration, and this fine-tuned

interaction between voluntary and involuntary respiration is

subconsciously coordinated in the brain stem in normal

swallowing. However, preliminary data have demonstrated

subclinical dysphagia with penetration using VFSS in OSA

[10]. In the present study, we used a non-invasive method

without radiation to assess parameters including OL, SRP,

SRPO-L, D-SRPO-2nd DO, and pre- and postswallowing

respiratory phase patterns, all of which are essential for safe

swallowing. Our results suggested that the coordination of

respiration with swallowing was affected in patients with

OSA. However, there were no significant differences

between subclinical dysphagic patients with OSA and nor-

mal controls in OL and SRPO-L, and future studies with a

larger sample size or patients with clinically severe dys-

phagia may be needed to identify differences from normal

controls using this non-invasive method. Also, D-SRPO-2nd

DO is a hypothetical value used in our study that would be

better to use the cricopharyngeal sphincter EMG directly

[24, 35] in future studies.

A previous study has reported respiratory phase patterns

of spontaneous swallowing in patients with OSA during

sleep [56]. However, no previous studies have reported

swallowing respiratory phase patterns in patients with OSA

during voluntary swallowing. Our results revealed a similar

frequency of respiratory phase pattern in the patients with

OSA to the controls during voluntary swallowing, and the

protective EX/EX respiratory phase pattern was the most

common pre- and postswallowing respiratory phase pattern

in both the controls and patients. One previous study

reported no significant changes in respiration pattern and

swallowing after total laryngectomy, suggesting that res-

piration is controlled by a generator center [44].

Swallowing is initiated orally and is coordinated with

breathing mostly in the expiratory final phase. SRP is an

important breathing pause that starts just before and per-

sists through the pharyngeal phase [41]. To the best of our

knowledge, there are limited preliminary reports of SRP in

patients with OSA [57]. In the present study, we found a

longer duration of SRP in the patients with OSA. A pro-

longed SRP has also been reported in elderly, amyotrophic

lateral sclerosis (ALS), multiple sclerosis (MS), and

hemispheric stroke patients [27, 32, 33, 58, 59]. A longer

excursion time of thyroid cartilage movement was com-

pensated by a prolonged SRP to secure the airway for the

delayed pharyngeal phase.

Piecemeal deglutition is a protective phenomenon that

allows for safe swallowing when the bolus volume exceeds

a person’s swallowing limit. Previous studies have

demonstrated that assessment of the swallowing limit can

objectively and sensitively detect dysphagia in neurologi-

cal diseases [25, 47, 60]. However, piecemeal deglutition

has not been reported in patients with OSA, and to the best

of our knowledge, this is the first study to demonstrate an

increase in the probability of piecemeal deglutition in

patients with OSA who have subclinical dysphagia,

although the increase was only modestly significant.

Piecemeal deglutition and a longer SRP are both con-

sidered to be protective phenomena to allow for safety

swallowing without aspiration. Our results showed a pro-

longed SRP in the patients with OSA in all bolus sizes, but

not in piecemeal deglutition. Accordingly, we hypothesize

Table 3 Piecemeal of 10 and 20 mL water bolus swallowing

Water bolus Group No piecemeal Piecemeal p value

Piecemeal 10 mL Normal controls 97 (86 %) 16 (14 %) 0.082

OSA patients 79 (76 %) 25 (24 %)

Piecemeal 20 mL Normal controls 64 (57 %) 48 (43 %) 0.273

OSA patients 50 (49 %) 52 (51 %)

Total (10 ? 20 mL) Normal controls 161 (72 %) 64 (28 %) 0.048

OSA patients 129 (63 %) 77 (37 %)

Normal controls (n = 39); OSA patients (n = 35)

OSA obstructive sleep apnea
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that patients with OSA and subtle dysphagia used as a

prolonged SRP as compensation before piecemeal deglu-

tition. We also found similar results in our previous uni-

lateral stroke study [32]. Clinically, we suggest that feeding

with a small bolus is safer, and that the non-invasive

method used in this study can be used to detect swallowing

limits.

The deviations in respiratory–swallowing coordination

patterns shown in this study have also been demonstrated

in neurological diseases [23, 32, 61, 62]. We suggest that

the non-invasive method we used to monitor swallowing

and respiration parameters in patients with OSA may be

useful for future research studies. The non-invasiveness of

this modality has advantages for longitudinal follow-up

and treatment outcome studies which need multiple

assessments. Moreover, this non-invasive method can be

used for various foods with different tastes, volumes, and

consistency of the bolus in swallowing studies that can be

performed without exposure to radiation for otolaryngo-

logic patients including those with OSA. Further studies

are required on swallowing–respiration coordination to

enable greater understanding of the effect of OSA and the

effectiveness of treatment for swallowing–respiration

coordination in patients with OSA.

Our results suggest that this non-invasive tool is useful

to uncover subclinical dysphagia of OSA patients. Of

future application, it may be used clinically to assess the

dysphagia limit and timed tests for swallowing capacity

and speed in patients with OSA, and also in otolaryngo-

logic disorders such as head and neck lesions to assess

dysphagia even in subclinical or mild cases. The devel-

opment of wearable, portable, or telemetering applications

is currently underway [29, 50].

However, this non-invasive method is not without lim-

itation. It is not well suited to determine the safety of

swallowing, due to this instrumental test cannot detect

pharyngeal residue, penetration, and aspiration [63, 64].

Besides, it can observe neither the tongue movements of

oral phase nor the esophageal phase of swallowing.

Moreover, the defects of anatomical structures over head

and neck regions, at the locations for sensors placements,

will make this examination difficulty in data recording.

Conclusion

Subclinical dysphagia in patients with OSA was detected

using a non-invasive swallowing and respiration assess-

ment tool, which also showed that oropharyngeal swal-

lowing and its coordination with respiration was affected.

In future, more voluntary swallowing studies in patients

with OSA and otolaryngologic disorders can be performed

using this method.
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