
DOI: 10.1007/s004540010060

Discrete Comput Geom 24:721–733 (2000) Discrete & Computational

Geometry
© 2000 Springer-Verlag New York Inc.

Lower Bounds for Kinetic Planar Subdivisions∗

P. K. Agarwal,1 J. Basch,2 M. de Berg,3 L. J. Guibas,2 and J. Hershberger4

1Center for Geometric Computing, Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA
pankaj@cs.duke.edu

2Computer Science Department, Stanford University,
Stanford, CA 94305, USA
{jbasch, guibas}@cs.stanford.edu

3Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
markdb@cs.uu.nl

4Mentor Graphics Corp., 8005 SW Boeckman Road,
Wilsonville, OR 97070-7777, USA
john hershberger@mentorg.com

Abstract. We revisit the notion of kinetic efficiency for noncanonically defined discrete
attributes of moving data, like binary space partitions and triangulations. Under reasonable
computational models, we obtain lower bounds on the minimum amount of work required
to maintain any binary space partition of moving segments in the plane or any Steiner
triangulation of moving points in the plane. Such lower bounds—the first to be obtained in
the kinetic context—are necessary to evaluate the efficiency of kinetic data structures when
the attribute to be maintained is not canonically defined.

∗ Part of this work was done while P.A. and M.d.B. were visiting Stanford University. Work by P.A. was
supported by Army Research Office MURI Grant DAAH04-96-1-0013, by NSF Grants EIA-9870724, and
CCR-9732787, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.–Israeli Binational Science
Foundation. Work by J.B. was supported by Army Research Office MURI Grant DAAH04-96-1-0013. Work
by L.G. was supported by National Science Foundation Grant CCR-9623851 and by U.S. Army Research
Office MURI Grant DAAH04-96-1-0007.

722 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

1. Introduction

Given a setSof n pairwise-disjoint polygonal objects in the plane, aconstrained convex
subdivisionof the plane is a convex subdivision5 = 5(S)of the entire plane so that each
face of5 either lies inside an object ofSor lies in the common exterior of the objects in
S. Such subdivisions arise in several applications, most notably computer graphics and
collision detection. For example, a common approach to answering ray-tracing queries
amidst a set of polygons is to compute a constrained triangulation5 and trace each query
ray ρ through5, visiting only those triangles of5 that intersectρ [1]. In many cases
(e.g., answering point-location queries), we want5 to be hierarchical in the sense that
5 is constructed by starting with the entire plane as a single polygon and subdividing
a face of the current subdivision intoO(1) convex faces until a constrained subdivision
is obtained. Examples of hierarchical constrained subdivision include quad-trees [12],
kd-trees [8], and binary space partitions (BSP) [18]. Motivated by various applications,
constrained subdivisions have been extensively studied in computational geometry and
related application areas [9], [17].

In a growing number of applications, we do not have a single setS because the
objects move over time. This is the case, for instance, in video games, virtual reality, and
dynamic simulations. The setS is now replaced by a continuous familyS(t) indexed
by time. A constrained subdivision5 computed for the initial sceneS(0) cannot be
guaranteed to remain valid as the objects move, and it becomes necessary tomaintaina
subdivision5(t) over time. As objects move or deform continuously, we expect that a
fixed subdivision (or, rather, its combinatorial description based on the objects’ features)
will change only at discrete time instances. The maintenance of a subdivision should
therefore proceed in discrete steps.

Relatively scant attention has been paid so far in the literature on maintaining a
constrained subdivision. In the case of BSPs, which are widely used in graphics, most
existing work is based on using dynamic BSPs. These approaches discretize time into
short intervals of fixed duration1t . At the end of each interval, they delete the moving
objects from the structure and re-insert them in their new positions; see, for example,
[10], [15], and [19].

In the case of triangulations, the Arbitrary Eulerian–Lagrangian method [11] provides
a way to integrate the motion of fluids and solids within a moving finite-element mesh.
Here again, time is discretized and the mesh vertices are moved between each time step so
as to respect the interfaces between the different media. Numerical problems arise when
the mesh becomes too distorted. It is therefore necessary to check its consistency every
1t , for an appropriately chosen time interval1t . Different techniques can be used to cor-
rect the distortions, ranging from completely rebuilding the mesh with interpolation [20]
to more economical node relocation and multilevel mesh methods [13].

All these approaches suffer from the fundamental problem that it is difficult to choose
the length of the discretization interval. If1t is too small, then the subdivision does not
change combinatorially, and the deletion/re-insertion (for the BSP) or the consistency
check (for the moving mesh) are just wasted computations; if1t is too large, important
changes to the subdivision can be missed, with ill effects on applications using the sub-
division. This problem is further exacerbated because the rate of change can vary across
the subdivision, thus making it impossible to find a time step size that is globally good.

Lower Bounds for Kinetic Planar Subdivisions 723

Combinatorial descriptions of subdivisions are discrete attributes of the input set, and
it is natural to consider the problem of their maintenance in the context of kinetic data
structures.

The kinetic approach of Basch et al. [7] is a general method to maintain a discrete
attribute of objects in predictable motion. It avoids a discretization of time in fixed
intervals. It takes advantage of the temporal coherence induced by the continuity as-
sumption. The kinetic approach to maintain a given attributeA(t) for a continuously
changing sceneS(t) is as follows: at a given timet , we create a proof of correctness
of the attribute. This proof is based on elementary tests calledcertificates. For each
certificate, we compute the time at which it fails and put it in a global event queue. As
the attribute cannot change while all tests remain valid, it is unnecessary to perform any
computation until the first certificate fails. When a certificate fails (anevent), the discrete
attribute is updated if it needs to be, and a new proof of correctness is constructed by
making some modifications to the previous proof of correctness. This is known as a
kinetic data structure(KDS). The strength of the kinetic model is that it is on-line (some
objects may change their motion), and allows us to perform a rigorous combinatorial
time-cost analysis in the spirit of Atallah [5], with no need to assume any bounds on
the velocities. The most important aspect of this analysis is the efficiency of a KDS.
For a given class of motions (in general, low-degree polynomial or pseudopolynomial
functions of time), we can compute the worst-case number of changes to the discrete
attribute we wish to maintain, and the worst-case processing time spent to maintain the
kinetic structure. If these quantities are comparable, the kinetic structure is said to be
efficient. (See [5], [14], and [16] for some other models addressing problems involving
motion.1)

In the context of constrained subdivisions, the kinetic approach has been success-
fully applied by Agarwal et al. [4] for maintaining a valid BSP of segments moving
in the plane. (This work is extended to triangles moving in space in [2].) Basch et al.
[6] obtain kinetic solutions to the problem of collision detection between two polygons
by maintaining a “pseudo-triangulation” of their convex hull. In both cases, however,
the notion of efficiency is not clear, as there is no canonical discrete attribute against
which to compare the performance of the KDSs. In the context of kinetic BSPs, Agar-
wal et al. [4] specify a static algorithm and ensure that at every moment the BSP they
maintain is precisely the same as the one that the static algorithm would have com-
puted for the current position of the input objects. They show that for any “pseudo-
algebraic motion,” the number of events is quadratic in the worst case and that this
bound is optimal for their model. However, this model is not completely satisfactory.
For instance, in Fig. 1, some points move horizontally: the left cylindrical BSP under-
goesÄ(n2) changes while the right one does not undergo any combinatorial change. It
would be better to prove efficiency of a kinetic BSP by comparing it against all possi-
ble methods that maintain a valid BSP, and not just the ones constructed by a specific
algorithm.

The main difficulty in proving a lower bound on constrained subdivisions, in general,
is that they are notcanonicallydefined. The purpose of this paper is to show that it is

1 Atallah [5] and Ottmann and Wood [16] study kinetic geometric problems in an off-line setting, and
Kahan [14] studies some problems under the assumption that the speed of the objects is bounded.

724 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

Fig. 1. For n points moving horizontally, the cost of maintaining a cylindrical BSP with vertical separating
lines is roughly quadratic, whereas it is zero if the separating lines are horizontal.

nevertheless possible to prove nontrivial lower bounds on the worst-case processing cost
of a whole class of constrained subdivisions. For a given class of constrained subdivisions,
our method carefully constructs a set of moving points for which the kinetic maintenance
of any constrained subdivision of the class will have a high processing cost. We illustrate
this with two important examples: the class of all BSPs and the class of all triangulations.
The models we use to capture these classes are interesting in their own right.

We first prove lower bounds on the number of changes required on a BSP of a set
S of n points, each moving with fixed velocity. In Section 2 we exhibit a scenario ofn
moving points for which any kinetic BSP has to processÄ(n

√
n) events.

We now consider triangulations of a set of moving points described at any time by
S(t). If we do not allow Steiner points, then whenever a new vertex appears on the
convex hull boundary ofS(t) or an existing vertex disappears from it, any triangulation
of S has to change. Since it is possible to construct a set ofn points, each moving at
constant velocity, so that their convex hull changesÄ(n2) times [3], any KDS maintaining
a triangulation has to update the triangulationÄ(n2) times. This argument, however,
does not apply if we allow Steiner points, that is, additional moving points that are not
part of the original point set, as we can enclose the moving points in a big “bounding
box” such that the convex hull never changes. It seems plausible that Steiner points
can decrease the number of times a triangulation becomes invalid. See Fig. 2 for a
simple example. Globally, it seems that if we create a very fine mesh of the plane
around the original point set, the subdivision will behave more like a flexible piece
of cloth that can adapt to many movements of the original moving points without any
combinatorial change. Of course, we might need an enormous amount of Steiner points,

Fig. 2. A triangulation of four points is forced to change when a point appears on the convex hull. With the
introduction of one moving Steiner point, we obtain a triangulation that never changes.

Lower Bounds for Kinetic Planar Subdivisions 725

and the trajectory of each one might be quite intricate. Since memory limitations are
often the most limiting aspect of an actual program, we focus on triangulations that use
only O(n) Steiner points. In Section 3 we present a scenario in which any KDS for
maintaining a triangulation ofn moving points withO(n) moving Steiner points has to
performÄ(n2) updates.

Our models are general enough to encompass all kinetic BSPs and kinetic Steiner
triangulations. This is the first time nontrivial lower bounds are obtained that apply to a
whole class of kinetic data structures at once.

2. Lower Bounds for Binary Space Partitions

A BSPT for a setSof segments inR2 is a binary tree with the following properties. A
nodeν of T is associated with an open convex polygon1ν , called thecell of ν, and with
the set of segments clipped within that cell. Ifν is a leaf, no segment ofS intersects its
cell. If ν is an internal node, it is also associated with asplitting line`ν that partitions1ν

in two cells. The cell of the left (resp. right) child ofν is the intersection of1ν with the
negative (resp. positive) half-space bounded by`ν . The nodeν also stores any part of a
segment that lies on the line segment`ν ∩1ν . If some of the segments inSare moving,
at every momentt we want to maintain avalid BSPT (t) of S(t).

In the lower bound we present below, the segments degenerate into points. We can
also use tiny segments or any other type of tiny objects. For our purposes, we modify
the model slightly so as never to store points at internal nodes: if a point belongs to the
splitting line at a node, it is arbitrarily passed to the left child of the node. A leaf now
contains at most one point or can be empty. Given a subset of pointsS′ ⊂ S, we say that
the deepest node ofT whose cell containsS′ is thesplitting nodeof S′. This means that
the splitting line of this node will be the first one along the tree not to leave all points of
S′ on the same side.

In this section we construct a scenario with a setS of n points moving at constant
velocity such that any BSP defined over these points will have to be modifiedÄ(n

√
n)

times in order to remain correct. To obtain this result, we rely only on the general
definition of a BSP given at the beginning of this section. In particular, we neither as-
sume that the splitting lines have a finite number of possible directions, nor that they
have to pass through any point ofS. We also let the BSP use as much information
about the motion as it likes, and let it reorganize itself arbitrarily when an event hap-
pens.

We consider only the case of disjoint objects, as intersecting objects add some static
complexity that can arbitrarily raise the kinetic complexity; in our setting this means that
we do not allow collisions between the points.

To prove a lower bound on the number of changes a BSPT for Smust undergo, we
proceed as follows. We show that there arek disjoint time intervals(t0, t1), (t1, t2), . . . ,
(tk−1, tk) such that the BSP must change during each time interval (we call this abreaking
interval). This proves that the BSP must undergo at leastk changes.

Our lower-bound construction is based on the following simple observation: suppose
that we have three moving pointsp,q, r , and that at timet , pointq passes through the
segmentpr . Let ν be the splitting node of{p,q, r } at timet− (i.e., just before timet).

726 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

Fig. 3. A motion that forces a change to any kinetic BSP.

If ν` separatespr from q at t−, then the kinetic BSP needs to be updated, as no line can
separatepr from q at t . In this case, we say thatpr captures q.

For instance, here is a way to create a breaking interval: by lettingq weave through
pr during an interval [t1, t2] as in Fig. 3. Indeed, each of the three ways to split{p,q, r }
before timet2 is incompatible with one of the three collinearities. If we createn pairs like
pr and “shoot”n points likeq that weave between eachpr pair, we obtain a quadratic
number of breaking intervals. However, such a scenario requires that the motions be
described by polynomials of unbounded degree, which is unrealistic.

We describe below a pattern consisting of eight points moving at constant velocity.
In this pattern, certain pairs capture certain points, so as to create a breaking interval.
We show how we can repeat this pattern2(n

√
n) times with onlyO(n)moving points.

The Local Pattern. Let δ > 0 be a parameter to be determined later, andε = δ/8.
The individual pattern involves eight points moving in pairs. Each pair consists of two
vertically aligned points at distanceδ from each other.

Figure 4 shows the position of the points at timet = 0. The exact coordinates as a
function of time are:

p(t) = (0,0),
a(t) = (−ε + t,−δ/4),
c(t) = (−3δ/2− ε + t, δ/4),
r (t) = (ε,−3δ/4+ t),

(1)

and the other four points are placedδ above their associated point (Fig. 4(a)).
The points move as follows. The pairp,q is stationary, the pairr, s moves upward

with unit speed, and the pairsa,b andc,d move to the right with unit speed. With this

Fig. 4. (a) The configuration at timet = 0. The four pairs are shown as segments, which do not exist as
objects in the construction. (b) The table shows some of the captures that happen during the motion between
time 0 and 2δ.

Lower Bounds for Kinetic Planar Subdivisions 727

setup, Fig. 4(b) shows a number of captures that occur between timet = 0 and time
t = 2δ. For instance, the reader can verify thatb,q, r become collinear att1 ≈ 0.14δ
andt2 ≈ 1.73δ (with our choice ofε = δ/8). The first time,b is captured byqr , and the
second time,r is captured bybq. There are more captures than indicated in the table,
but these are the ones we exploit later.

Lemma 2.1. The interval[0,2δ] is a breaking interval for any kinetic BSP over a point
set that includes the points{p,q, r, s,a,b, c,d}.

Proof. Consider a BSPT at timet = 0. Letν be the splitting node of our set of eight
points. The split partitions{p,q, r, s,a,b, c,d} into two nonempty subsets: a red and a
blue.

We can restate our earlier observation in terms of colors: if a point is captured by two
red points, then either it is red or the BSP changes at the time of capture. The same is
true for blue points.

We will show that ifT does not change between 0 and 2δ, all the points are of the
same color, which is a contradiction by the choice ofν.

We assume without loss of generality thatq is red. Asbd capturesq, eitherb or d is
red. Ifb is red, thenr is also red as it is captured bybq. Thenqr capturesa, abcaptures
p ands, pq capturesc, and finallypscapturesd. Hence all points are of the same color
and we have a contradiction. Similarly, ifd is red,dq capturesr , qr capturesb, and the
rest follows as above, leading to a contradiction again.

The Global Construction. Next we describe a set of2(n) moving points for which
the above event sequence happens2(n

√
n) times. Each point either moves at constant

velocity or is stationary.
The idea is to repeat the local pattern on a

√
n×√n grid. Each cell of the grid contains

a staticpq pair. Each column contains anrs pair that moves up, and each row contains
cd andab pairs that move right. The grid is spaced and the initial positions of all pairs
are chosen so that the local pattern is repeated in each cell at distinct times (Fig. 5). In
this scenario, a kinetic BSP has to change linearly many times. As thepq pairs are static,
we can repeat the same scenario later in time with2(

√
n) freshab, cd, andrs pairs.

With
√

n repetitions of this scenario, we still use only linearly many moving points, and
we have2(n

√
n) distinct breaking intervals.

Here are the details of the construction. We assume thatn is a perfect square and let
M = √n+ 1. We haven stationary pairs:

pi j = (i, j M),

qi j = pi j + (0, δ), 0≤ i, j <
√

n.

The distance between consecutive pairs in a row is 1, and the distance between consec-
utive rows isM .

The events happen in
√

n batches, each consisting ofn events—one per pairi, j .
Batchk involves

√
n pairsr k

i , s
k
i and

√
n pairsak

j ,b
k
j andck

j ,d
k
j . Restarting from (1),

728 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

Fig. 5. A global view of the lower bound construction for the BSP.

we set
ak

j (t) = a(t)+ (− j M − 2kn, j M),

ck
j (t) = c(t)+ (− j M − 2kn, j M),

r k
i (t) = r (t)+ (i,−i − 2kn),

andbj , cj , sj are placedδ units above their associated point.
The pointsak

j ,b
k
j , c

k
j ,d

k
j are moving right at unit speed, andr k

i , s
k
i are moving up

at unit speed. Hence, they form the local pattern withpi j ,qi j in the time interval
[2kn + j M + i,2kn + j M + i + 2δ]. If we take δ < 1

2, we obtainn
√

n disjoint
breaking intervals.

Theorem 2.1. There is a set of n points moving with constant velocities such that any
BSP on that set of points undergoesÄ(n

√
n) changes over the course of the motion.

3. Lower Bounds for Triangulations

In this section we present lower bounds for the worst-case processing cost of a kinetic
Steiner triangulation. Our model assumes unit cost for the insertion or deletion of an
edge, or the insertion or deletion of a Steiner point. Note that an implicit representation
of the triangulation could allow the change of the endpoint of linearly many edges in
constant time, but we do not allow that in our model. When processing an event, a kinetic
Steiner triangulation can perform as many elementary operations as it desires, but we
assume that once the event is processed, the updated structure is still a triangulation.
The other assumption we make about our kinetic triangulation is that it has linearly
many Steiner points at any time. We do not assume anything about the total number of

Lower Bounds for Kinetic Planar Subdivisions 729

Steiner points that ever arise, and each Steiner point is free to move along an arbitrary
(continuous) path.

In this model we construct a scenario ofO(n) points in linear motion such that any
linear-space kinetic Steiner triangulation requires a processing cost ofÄ(n2).

A technique of Agarwal et al. [3] (described later in this section) allows us to simulate
a circular motion with linearly moving points, in the following sense: We can create a set
Sof points with positionsS(t) at timet , such that each point moves at constant velocity,
and the set is always cocircular along a circle of fixed center (but with varying radius).
For ease of exposition, we present the scenario with circular motion around fixed circles,
and we restrict the motion to span a quarter of a circle so that the conversion can be made
to linear motion.

We consider three concentric circles: thered circleof radius 1, theinner blue circle
of radius 1− ε, and theouter blue circleof radius 1+ ε. Here,ε is a small quantity that
depends onn. We use polar coordinates to specify the position of a point, but we use a
unit of π/2n radians so that a point in the upper-right quadrant corresponds to angles
between 0 andn, i.e., when we say that a pointp is at position(r, α), we mean thatp is
at distancer from the originO and that the vectorOp makes an angle ofα(π/2n) with
the horizontal axis.

We have a family of 2n+ 1 red points on the red circle. Their time-dependent coor-
dinates are, in our normalized polar coordinates,

ri (t) = (1, i + t), i = −n, . . . ,n.

We also have a family ofn static blue points, staggered on the inner and the outer blue
circles:

b2i (t) = (1+ ε,2i),
b2i+1(t) = (1− ε,2i + 1),

i = 0, . . . , bn/2− 1c.

Hence, the red points move counterclockwise, andr0 passes close tobi exactly at
time i (Fig. 6). We chooseε very small, e.g.,ε = 1/n3. In this case, at timei + 1

2 for
any integeri , the two families of points form a convex chain of alternating red and blue
vertices (on the region of overlap).

We first review informally the idea of the construction. Consider a snapshot at a
certain timet , and choose a path betweenb0 andb1 in the Steiner triangulation. This
path crosses the red circle. Now, if the triangulation does not change betweent andt+τ ,
the path, defined combinatorially, deforms continuously. Asτ red points pass the pair
b0b1 during that time, the path is “dragged along,” and should consist of many edges to

Fig. 6. The static blue points (hollow) and the moving red points (filled). In reality, the inner and outer blue
circles are very close to each other, and the blue points form a convex chain.

730 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

Fig. 7. As time increases, the sleeve path is deformed, but it does not sweep over any blue point as its
combinatorial description is fixed.

be able to weave between the red and the blue points (Fig. 7). Conversely, the existence
of a short path betweenb0 andb1 implies that the triangulation will need to be updated
before too much time passes. We now need to find enough short paths to prove our lower
bound.

Consider the situation at timet0 = 1
2. We have a certain current triangulation at that

instant. Theright sleeve pathof a pair of consecutive blue pointsbi bi+1 is defined as
follows: consider all the edges of all the triangles that intersect the segmentbi bi+1, and
keep only those that are to the right of the oriented linebi bi+1 and that are shared by
only one triangle (see, e.g., the thick polygonal path in Fig. 8). In a triangulation, we
haven− 1 right sleeve paths, one for each pair of consecutive blue points.

Lemma 3.1. At time t= 1
2, the right sleeve path of bi bi+1 crosses the red circle between

ri−1 and ri or between ri and ri+1.

Proof. Let ` be the oriented line frombi to bi+1. As the right sleeve path connects a
point inside the disk bounded by the red circle to a point outside that disk, it crosses
the red circle at least once. By definition, the right sleeve path is fully contained in the
half-space to the right of̀. It therefore crosses the red circle to the right of`.

As noted earlier, the red and blue points form a convex chain at a half-integer time.
Hence all these points except one (the red pointri) are to the left of̀ . Thus the points
of the red circle that are to the right of` are all betweenri−1 andri+1.

Lemma 3.2. At t = 1
2, an edge of the triangulation belongs to at most two sleeve paths.

Proof. An edge is adjacent to two triangles. Consider a specific edgee adjacent to
a triangle1. If e belongs to the sleeve path of a segmentbi bi+1 because1 intersects

Fig. 8. The right sleeve path ofbi bi+1.

Lower Bounds for Kinetic Planar Subdivisions 731

bi bi+1, then the two other edges of1 crossbi bi+1. Suppose these two edges of1 intersect
another segmentbj bj+1. Since the blue vertices are in convex position, edgee lies to the
left of the oriented linebj bj+1, and therefore does not belong to its right sleeve path.

Lemma 3.3. Let τ > 0 be a constant and i< n− τ − 4. If π is the right sleeve path
of bi bi+1 at time1

2 and it hasτ edges, then at least one edge ofπ disappears before time
τ + 4.

Proof. Suppose the right sleeve path remains valid until timeτ+4. At time 1
2, the sleeve

path intersects the red circle betweenri−1 andri or betweenri andri+1 (Lemma 3.1). At
time τ + 4, we have a pathπ ′ that has the same combinatorial description asπ (i.e., it
passes through the same vertices, although these vertices may have moved). The angular
span ofπ ′ is at leastτ + 3 units as it passes within one unit ofri (τ + 4). By continuity,
the area delimited byπ ′ and the segmentbi bi+1 is homotopic to a path containing the
portion of the red circle [i, i + τ + 3], and not containing any blue point. Hence,π ′

intersectsbj bj+1 twice for all j ∈ {i + 2, . . . , i + τ + 2}. As the blue points form a
convex chain that can be intersected at most twice by each edge ofπ ′, the pathπ ′ (and
henceπ) should have at leastτ + 1 edges, a contradiction.

Lemma 3.4. Let λ ≥ 1 be a constant and let T be a triangulation at time1
2 with

(λ−1)n Steiner points. Then at least n/4−τ/2−2 edges have to be deleted to maintain
T between time0 and timeτ + 4, whereτ = 12λ.

Proof. As we haveλn vertices, we have at most 3λn edges inT . Each edge of the
triangulation at time1

2 belongs to at most two right sleeve paths by Lemma 3.2. Hence
there aren/2 right sleeve paths that have at mostτ = 12λ edges. Lemma 3.3 applies to
at leastn/2− τ − 4 of those, all of which have to change before timeτ + 4.

As edge deletion can affect at most two right sleeve paths, at leastn/4− τ/2− 2
edge deletions have to be performed between time1

2 and timeτ + 4 to maintain the
triangulation.

This implies that at leastÄ(n) elementary operations have been performed on the
triangulation between12 and τ + 4. As τ is a constant, we can repeat this argument
bn/(τ + 4)c times, at times{k(τ + 4)+ 1

2 | k = 0 · · · bn/(τ + 4)− 1c}, restarting each
time from a new snapshot of the triangulation.

Finally, we show how we can modify this construction to obtain the same effect with
points moving at constant velocity. To this end, we use the linearization technique of
Agarwal et al. [3]. If we letc̄(θ) = (cosθ, sinθ), a point p moving along a chord of a
circle of radiusρ from angleα to angleα + ϕ at constant velocity has coordinates

p(t) = ρ(1− t)c̄(α)+ ρt c̄(α + ϕ) .
By rotational invariance and symmetry, it follows that the distance ofp(t) to the origin
does not depend onα nor on the sign ofϕ. Hence, if a number of moving points move
along chords of equal angular width (in absolute value), they will remain cocircular
during the whole motion.

732 P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger

In our case, we can take our red points to move counterclockwise and our blue points
to move clockwise, along chords of equal angular width, but with starting and ending
points on circles of slightly different radii as described earlier. In conclusion:

Theorem 3.1. There exists a set of n points moving at constant velocity so that any
kinetic Steiner triangulation of linear size requiresÄ(n2) elementary changes over the
course of the motion.

Remark 3.1. The above argument can be generalized to Steiner triangulations with
more vertices: if we allowO(n f (n)) vertices at any one time, then we can find linearly
many sleeve paths of sizeO(f (n)). A path of this size will break afterO(f (n)) time,
and each broken edge belongs to at most two paths, so the number of changes is at least
Ä(n2/ f (n)).

4. Conclusion

In this paper we have presented kinetic lower bounds for the number of changes of two
noncanonically defined combinatorial structures: BSPs and triangulations. Each lower
bound presents room for improvements and variations.

In the case of the BSP, we would like to obtain a local pattern that can be repeated
quadratically many times with linearly many points, so as to bridge the gap between our
current lower bound and what we believe is the correct answer. It might be the case that
our model gives too much power to the adversary (who is allowed to reconstruct the BSP
completely at each event) and that the right bound for this computational model is not
quadratic.

In the case of Steiner triangulations, our proof relies on the fact that we add only
linearly many Steiner points. Indeed, does the lower bound hold if an arbitrary number
of Steiner points is allowed? The answer to this question might turn out to be negative
in our model, but not necessarily in a model where we request that each Steiner point
has a motion of constant description complexity. What if curved boundaries are allowed
in the triangulation (but of bounded algebraic degree)?

It is also worth noticing that the models for the BSP and the triangulation are of a very
different nature. The BSP can be completely rewritten when an event occurs, whereas
the triangulation is charged for each insertion or deletion of an edge or vertex, which is
more realistic. Moreover, our BSP model encodes only the hierarchical partition of the
point set, and not any geometric information about the cells defined by the partition lines.
If the geometry of a cell changes, an event is processed in existing methods [2], [4] but
not in our model for lower bounds. We were not able to define a more constrained model
of computation for the BSP that could give better bounds. Moreover, although there is
clearly a relation between BSPs and Steiner triangulations (a BSP is a subdivision of the
plane defined with some vertices in addition to the original data, even though the cells
might not be triangular), we were not able to use our proof technique for the Steiner
triangulation and adapt it to obtain a quadratic bound for the BSP.

Our lower bounds do not say anything about what happens for “natural” scenarios.
Clearly natural point motions are not random and exhibit various degrees of coherence.

Lower Bounds for Kinetic Planar Subdivisions 733

Is there an intuitive measure of how coherent the motion of a point set is? Can we get
coherence-sensitive algorithms for this problem? Given, say, the knowledge that a kinetic
BSP with few changes exists, is it possible to find it or get an approximation?

References

1. P. K. Agarwal and J. Erickson, Geometric range searching and its relatives. InAdvances in Discrete and
Computational Geometry(B. Chazelle, J. E. Goodman and R. Pollack, eds.), AMS Press, Providence, RI,
1998, pp. 1–56.

2. P. K. Agarwal, J. Erickson, and L. Guibas. Kinetic binary space partitions for triangles. InProc. 9th
ACM–SIAM Sympos. Discrete Algorithms, 1998, pp. 107–116.

3. P. K. Agarwal, L. J. Guibas, J. Hershberger, and E. Veach. Maintaining the extent of a moving set of points.
In Proc. 5th Workshop Algorithms Data Structures, 1997, pp. 31–44.

4. P. K. Agarwal, L. J. Guibas, T. M. Murali, and J. S. Vitter. Cylindrical static and kinetic binary space
partitions.Comput. Geom. Theory Appl., 16 (2000), 103–127.

5. M. J. Atallah. Some dynamic computational geometry problems.Comput. Math. Appl., 11 (1985), 1171–
1181.

6. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision detection for two simple
polygons. InProc. 10th Sympos. Discrete Algorithms, 1999, pp. 102–111.

7. J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data.J. Algorithms, 31 (1999), 1–28
8. J. L. Bentley. Multidimensional binary search trees used for associative searching.Comm.ACM,18(1975),

509–517.
9. M. Bern. Triangulations. InHandbook of Discrete and Computational Geometry(J. E. Goodman and

J. O’Rourke, eds.), CRC Press LLC, Boca Raton, FL, 1997, pp. 413–428.
10. Y. Chrysanthou. Shadow Computation for 3D Interaction and Animation. Ph.D. thesis, Queen Mary and

Westfield College, University of London, 1996.
11. J. Donea.Computational Methods for Transient Analysis, volume 1. North-Holland, Amsterdam, 1983,

chapter 10: Arbitrary Eulerian–Lagrangian methods.
12. R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite keys.Acta Inform.,

4 (1974), 1–9.
13. S. Ghosh and S. Raju. R-S adapted Arbitrary Lagrangian–Eulerian finite element method for metal-forming

problems with strain localization.Internat. J. Numer. Methods Engrg., 39 (1996), 3247–3272.
14. S. Kahan. A model for data in motion. InProc. 23th Annu. ACM Sympos. Theory Comput., 1991, pp. 267–

277.
15. B. F. Naylor. Interactive solid geometry via partitioning trees. InProc. Graphics Interface ’92, 1992,

pp. 11–18.
16. T. Ottmann and D. Wood. Dynamical sets of points.Comput. Vision Graph. Image Process., 27 (1984),

157–166.
17. H. Samet.The Design and Analyses of Spatial Data Structures. Addison-Wesley, Reading, MA, 1989.
18. R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for Applying Computer-Generated Images

to Visual Simulation. Technical Report AFHRL–TR–69–14, U.S. Air Force Human Resources Laboratory,
1969.

19. E. Torres. Optimization of the binary space partition algorithm (BSP) for the visualization of dynamic
scenes. InProc. Eurographics ’90, 1990, pp. 507–518.

20. H. T. Y. Yang, M. Heinstein, and J.-M. Shih. Adaptive 2d finite element simulation of metal forming
processes.Internat. J. Numer. Methods Engrg., 28 (1989), 1409–1428.

Received June10, 1999,and in revised form March9, 2000.Online publication August21, 2000.

