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Abstract. This paper addresses three questions related to minimal triangulations of a
three-dimensional convex polytofe

e Can the minimal number of tetrahedra in a triangulation be decreased if one allows
the use of interior points dP as vertices?

e Can a dissection dP use fewer tetrahedra than a triangulation?

e Does the size of a minimal triangulation depend on the geometric realizati®f of

The main result of this paper is that all these questions have an affirmative answer. Even
stronger, the gaps of size produced by allowing interior vertices or by using dissections may
be linear in the number of points.

1. Introduction

Let A be a point configuration iR? with its convex hullcon\.4) having dimensiorl.
A set ofd-simplices with vertices it is adissectiorof A if no pair of simplices has a
common interior point and their union equaisny.4). A dissection is driangulation

* Most of the results of this paper had been obtained and presented [6] by the second author around
1992, but remained unpublished. The remaining authors solved these problems independently after several
researchers brought them to their attention. Here we present a joint final version.
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of A if in addition any pair of simplices intersects in a common face. Following the
standard terminology in the literature (see, for instance, [15]), we say that a triangulation
(dissection) of a convex polytope is a triangulation (dissection) of the vertices of

P. Notice that in this definition no additional points are allowed. In contrast to this,
we are interested in triangulations of point sets with additional interior points besides
the vertices ofP and call thentriangulations of P with interior pointsThe sizeof a
dissectionD is the number ofl-simplices it contains and we denote it bip #\We call a
triangulation or a dissectianinimal/maximalwheniits size is the smallg$argestamong

all triangulations or respectively all dissections. Note that dissections form simplicial
complexes precisely if they are triangulations.

In this paper we solve three questions about triangulations and dissections, and present
several relevant consequences.

In Section 3 we investigate how the size of a minimal triangulation changes under
the addition of new interior points. IndependentlgtBri [5] and Gritzmann and Klee
[11] raised the issue that possibly using auxiliary interior points the size of a minimal
triangulation of the new set of points could be smaller than a minimal triangulation
of the original set. As pointed out in Section 8.4 of [11], this question is relevant in
the study of complexity classes of basic problems in computational convexity. In this
article we exhibit a family of three-dimensional polytopes that indeed have this property.
This behavior is reminiscent of the fact that adding points can also reduce the size of a
Delaunay triangulation [3], [7].

We show in Section 3 that dissections can require fewer simplices than triangulations.
We showthatalinear difference between the size of a minimal triangulation and a minimal
dissection is possible. The question whether this could happen had been raised several
times [5], [8], [13], [11]. The solution of the questions depends on two simple geometric
lemmas that will be useful throughout the paper. They are proved in Section 2. The main
results of Section 3 can be stated as follows:

Theorem 1.1. There is a family of simplicial convéxpolytopes R with the following
properties

(1) All triangulations of R, are larger than a triangulation with one interior point
This gap can be linear in the number of vertices

(2) Alltriangulations of B, are larger than the minimal dissections of, Prhis gap
can be linear in the number of vertices

It should be pointed out that after the proof of Theorem 1.1 we construct a “twisted”
version of Py, P, for which it is clear to see (with essentially the same proof) that
dissections are also smaller than triangulationB@f, with interior points.

Moreover, we show that the approximate shape of the polytope can be prescribed and
still have interesting behavior:

Theorem 1.2.

(1) Given three numbersgh> 1,k > 1,¢ > 0and a convex body K- R? there is
a simplicial convex3-polytope P withs (K, P) < ¢ (Hausdorff distancesuch
that every triangulation of Pwith up to iy — 1 interior points has at least k
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tetrahedra more than a triangulation of P with Isuitably chosen additional
interior points

(2) For a 3-polytope R if adding i new interior points allows for a smaller trian-
gulation than a minimal triangulation of Rhen i < ¢ where ¢ is the number
of interior edges in a minimal triangulation of .Bn particular, it is impossible
to have such behavior f@-polytopes whose minimal triangulations use one or
no interior edges

A famous open question in computational geometry asks for the computational com-
plexity of finding minimal triangulations of convex polyhedra [2]. A related problem is
whether the smallest size of a triangulation of a convex polytope is determined by the
face lattice or if it can change with the coordinates. We present the negative answer in
Section 4:

Theorem 1.3. The minimal size of a triangulation of a conv@ypolytope isnot an
invariant of the face latticeThere is a simplicial conveR-polytope with10 vertices

for which the minimal number of tetrahedra possible in a triangulation depends on its
coordinatesThe example is smallest possible in dimension and number of vertices

The theory of universal polytopes [4], [9] implies that if two polytopes have the
same oriented matroid generated by their convex hull vertices, then not only are their
face lattices the same but also their set of triangulations (without interior points) are
identical. In contrast to this Brehm has proved that in fact, if additional interior points
are allowed the minimal number of tetrahedra of a dissection or triangulation is not an
invariant of the oriented matroid of the vertices in the convex hull. Details on this result
will appear elsewhere.

2. Two Useful Lemmas

The following elementary formula shows that many of the arguments about the num-
ber of tetrahedra in a triangulation can be reduced to the study of the number of
interior edges. Similar formulas have already been stated many times in the litera-
ture (see, for instance, Lemma 2.1 in [10] or [17]). The proof is a simple applica-

tion of Euler’'s formula for triangulated 2-spheres and 3-balls and we omit the easy
details.

Lemma 2.1. Let P be a3-polytope with n boundary vertices andinterior auxiliary
vertices For a triangulation T of P that uses the imterior points the number of
tetrahedra in T is related to the number of interior edgesfel by the formula

#T =g +n—-3—-n’.

We now present a lemma that showcases the main nontrivial effect we use in all the
examples. The lemma shows that a certain substructure in the face lattice of a polytope
forces certain interior edges to appear in triangulations of sufficiently small size.
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Fig. 1. The key structure of Lemma 2.2.

Lemma 2.2. Let P be a conve8-polytope on n verticeghat contains the following
collection of triangular facetga, q;, gi+1] and[b, g, gi+1] fori =0, ..., m(seeFigl),
with the additional restrictions that cofa, b} does not intersect cofay, .. ., Omy1}-
Then for each triangulation of P that does not use the €dgb) the number of interior
edges gis at least m

Proof.  Sincecon{qo, gm+1} is in the interior ofP, we obtain the following simple fact:
forall |i —j| > 2,if giq; is an edge of a triangulation, it will also be an interior edge. The
proof of the lemma proceeds by induction mn The lemma is clearly true fan = 1.

Call (*) the assumption that all verticep, with 1 < i < m, are incident to at least
one interior edge of the triangulatidn We now show how to invoke induction in case
(*) does not hold: A vertex} untouched by an interior edge belongs to the tetrahedra
Oia = (&,G-1,0Gi,0+1) andop = (b, G-1, 0, +1). This is because the triangle
(a, gi, gi+1) is in some simplex, and if the fourth point is some other vertex besjdes

or b we have an interior edge touchimg Furthermore, the fourth point cannot be
since in this case the edgd would be present. By chopping off these two tetrahedra
together with the verteg; (i.e., considering the convex hull of all &'s vertices except

gi) we can apply induction to guarantee that the remaining triangul&tion,, oi » has

at leasim — 1 interior edges. Together with the edge1q; 1 they account fom interior
edges inT.

If (*) holds we will show the claim directly; we set up a one-to-one map from the
set{qs, ..., gm} to a subset of the interior edges that touch them: The ventjcesme
along a polygonal curve in a canonical order which is reflected by their indices. We mark
or orient the interior edgeg v that touch a verter; as follows: Ifv & {qo, . . ., Om+1},
we call the edge; v special otherwise we orient it from smaller to larger index. For the
verticesq; with special edges incident to them, we ngo one of those. If a vertex
g has no special edges, but has outgoing interior edges, we map it to the outgoing edge
gi gk with the smallest indek. We are left with the case of those vertiaggghat have
only incoming interior edges incident tp. Consider the triangléa, g, gi+1). It has to
be in some tetrahedron Bfwhose fourth point is bound to bejg with j, < i. Likewise
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(b, g, gi+1) is in a tetrahedron with fourth poinf, with j, <i.Ifboth j; = j, =i —1,
there can be no interior edges incidentjtgsee above), a contradiction to (*). Lebe
any of ja, jp such thatf <i — 1. Mapg; to ;i ;1.

We claim that the given map is one-to-one. If some vederaps to the special
edgeq; v, then necessarily= j. There are potentially two vertices that can be mapped
to an interior edgey;g¢ with j < k: g; wheng;qgy is the chosen outgoing edge qf
andqk_1, in casegk_1 has only incoming edges. In the latter case one of the tetrahedra
(@, qj, Ok—1, Ok) and(b, d;, gk—1, dk) has to be in the triangulation, agpwill be mapped
to the smaller indexed edggax—1. This is an interior edge singe< k — 2, sog; cannot
also be mapped tg 0. The injectivity of the map is proven. O

Roughly speaking the purpose of Lemma 2.2 is the possibility to force the occurrence
of many interior edges when other interior edges are absent. Our solutions to the open
guestions rely on a combination of this effect with a famous exampleordehrdt's
example of a nontriangulable nonconvex polyhedron (see [15]-[16], [18], and [19]).
The example, obtained from “twisting” a triangular prism and allowing that the three
diagonals bend in, has the property that it cannot be triangulated or dissected unless we
add a new point and then the triangulation is unique. A variation of the same example is
a triangulation of the boundary of a triangular prism that chooses boundary edges in a
“cyclic” manner. Such triangulation of the boundary cannot be extended to a triangulation
of the convex hull.

3. Adding Points or Dissecting Can Reduce the Size

Proof of Theoreni.1. Consider a triangular prism with bottom trianghs;, A,, Az)

and top trianglg By, By, B3) where both triangles are congruent, parallel, equilateral,
and vertexA; lies directly below vertexg;. Denote byn; ; the inner normal to the quadri-
lateral facet A, A, Bi, Bj). In each of its quadrilateral facets we will putpoints fol-
lowing a diagonald; By but slightly lifted to be in a parabola. The points we add will have
coordinates along three parabolic cur@as, C, 3, andCs 1. Let p(1) = (A — %)2 — %1,
ande > 0 a sufficiently small number, we define

Ci2 = AAL+ (A —X1)Ba+ep()ny o,
Co3 = AA2+ (1 — 1) Bz + ep(A)ny 3,
C3,1 = A3+ (1 —-1B1 + ep(A)nz 1.

Note that the curv€; j joins the verticeg\; andB;. The pattern of the curves follows
cyclically arranged diagonals as in the case ofdttairdt’s polytope. Tak®a points along
each of the curve8 », C; 3, C3 1 that we denote by (C; j), 02(Ci j), ..., dm(Ci j). We
will take those points such that all the triang(gg(C1.2), B2, Bs) are pierced by the edge
B1 A, the trianglesak(C2.3), Bs, By) are pierced by the edd®, Az, and similarly the
triangles(ak(Cs.1), B1, By) are pierced by the edd® A;. Thesepiercing conditiongre
easily achieved by accumulating the points low enough toward the trigAgled,, As).
We observe that each of the sequences of points produces, when taking the convex hull,
2(m+ 1) triangular facetsn + 1 on each side of the prism. This is exactly the situation
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Fig. 2. The polytopePs and its Schlegel diagram.

of Lemma 2.2. The resulting 3-polytope, containimg-3 6 vertices, will be denoted by
Pmn. The polytopePy, is the union of the original prism with three “caps” placed on top
of the quadrilateral facets. We show in Fig. 2 the caserfes 5.

Now we construct a triangulation, of Py, that uses an auxiliary interior pointvithin
the prismconu Ay, Az, As, B1, By, B3). At each cap of the polytopE;,, we triangulate
in a “stacked” way, namely, by choosing the tetrahedra of the fortC; ), 0k+1(Ci j),

Bi, A)). Foreach curv€; ; we getm+1 tetrahedra. Complete the triangulation by coning
fromv tothe eighttriangles that triangulate the boundagooi A;, Az, Az, B1, By, Bs).
We have a triangulation, using the interior pointwith 3m + 11 tetrahedra.

We now construct a dissectidhof P,,. We do not use any interior points. Triangulate
the three caps as before in a stacked way, then for the interior of the prism triangulate
arbitrarily. All triangulations of the prism are combinatorially the same and have three
simplices. The dissectioD has size &+ 6.

From Lemma 2.2 we have that triangulations that do not use all the dgigles
B, As, or Bz A; will have at leastn interior edges. In this case Lemma 2.1 implies that
the number of tetrahedra will be at least4- 3. On the other hand, we claim that it is
impossible to have a triangulation that uses those three edges simultaneously. The reason
is that the triangular facéBs, B,, B3) must belong to a certain tetrahedron, and if the
fourth point is along one of the curv€ j, then, by the piercing conditions, there is a
bad intersection with one of the edgBsA,, B, As, or BzA;. Hence, the only hope is
that the fourth point is another of the poirs, but this is impossible in a triangulation
as two edges will intersect improperly. In conclusion, any triangulatiof,pfhat does
not use interior points is larger than the triangulafigrand larger than the dissecti@n
form > 8. |

Before we come to the proof of Theorem 1.2, we present some observations on
a twisted version of polytop®,. We will patch several copies of this new polytope
onto simplicial polytopes when constructing the examples of Theorem 1.2. We start
with a triangular prism such that the bottom trianghe, A,, Az) and the top triangle
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Az

Fig. 3. Atwisted version ofPy,, based on Sarihardt’s example.

(B1, By, B3) are equilateral, and their barycenters are vertically on top of each other.
The bottom triangle should be somewhat larger than the top triangle. We twist the top
triangle by an angle of degrees creating a Sahfiardt style nonconvex polyhedron.
Then we patch the sides again with copies of the caps introduced in Lemma 2.2. We call
the resulting convex polytopen, . Therefore the original exampk, of Theorem 1.1
is isomorphic toPm, o (See Fig. 3). The copies will again have the pom(C; ;) close to
the bottom triangle to guarantee the piercing conditions as in the proof of Theorem 1.1.
The numbee should be small enough for the poimgC; ;) to lie vertically above the
bottom triangle. Byertically abovgbelow) we mean that a line going vertically down
(up) from any of those points piercéd;, A, Az).

When the angle is greater than zero, we are in the situation that the disseEtion
we described becomes impossible, but one can still use an interioriptontreate a
triangulationT, with an interior point, smaller than any triangulation of the polytope.
The proof is identical to the one we discussed for Theorem 1.1.

An important difference from the example of Theorem 1.1 is that now the set of
possible interior points to constructT, is restricted by the twisting angte. We call
the set of visibilityof Py, all points p which are below the plane spanned by the top
triangle and satisfy the following condition: the tetrahedron spannegh b,, Bz, and
p does not intersect the edgBsA,, By Ag, or B3A;. It is easy to check that the set of
visibility is the union of the following four sets (see Fig. 3): the tetrahed&pbounded
by the plane®; B, B3, B; A; B3, B, A,B;, andB3; A3B;; the coneS,, with apexB; lying
between the planeB; B,Bs, B; A; B3, andB; Az B;; as well as the analogous congs
andS; with apexesB, andBs. The reason we want the piercing conditions is exactly to
avoid this set of visibility.

By symmetry, the three pland A; B3, BoA; By, and B3 A3 B; intersect in a poinp
which lies on the vertical line connecting the barycenters of the bottom and top faces.
If the twisting anglea = 7/3, thenp is the intersection of edgeB; A;, B, Az, and
BsA;. By continuity of the rotation, ix = 7/3 — § for small§ > 0, the pointp is
still above the bottom triangle. TherefdBghas no points vertically belogA;, Az, Asz).
Note that the setsS, $, S do not contain points vertically below the bottom
triangle.
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In conclusion, for a suitable twisting anglethe polytopeP,, , will have four prop-
erties: (1) it contains only points in and vertically above its bottom face, (2) there are no
points of visibility vertically below the bottom triangle, (3) insidRs, ., there is a point
which can “see” the top and (by an analogous argument) the bottom triangular faces, and
(4) a new auxiliary interior point used in a smaller triangulation, must lie strictly in
the set of visibility ofPy, .

Imagine now a polytop®, with facet(A;, Ay, A3z), lying vertically below this facet.
ThenQU P o is @ convex polytope. There is a triangulatior@¥ Py, , using an interior
point in Py, which does not usé, B;, A,B1, A3By, but there is no such triangulation
if we do not allow extra interior points withifPy .. Via a projective transformation
we can transform any polytop@’ with a specified triangular facgtA], A,, A3) to
such a polytope. We can even arrange for the preimageRaf, under this projec-
tive transformation to be as “flat” as we want it to be. Hence we can patch arbitrarily
flat isomorphic copies oPny, to any triangular facet ofQ’ still obtaining a convex
polytope.

Proof of Theoreni.2(1). Approximate the convex bo#tywith a simplicial 3-polytope
Qo, with at leasthy facets, that is close to it in the Hausdorff distance (see [12] for
references on approximation by polytopes). @nof the triangular facets oy we
stack polytope¥, Y, ..., Yn, Where eacly; is an isomorphic copy of a polytogé, ,
andQi1 = QoUY1UY,U---UYy, is a convex polytope still-close toK . This stacking
procedure is possible by the above discussion.

If one triangulatesy; with an interior point that lies in its visibility set one finds a
very small triangulation, but the auxiliary point is forced to lie in the visibility sets by
construction of each copy;. Moreover, the visibility sets of differenf, Y; are disjoint
from each other and fron®@o. The rest ofQ; is the original polytopeQo which we
triangulate minimally.

A simple calculation shows that in the case where we uskyatterior points the
triangulation can be done with at m&&t3m + C’) tetrahedra. Otherwise, if we do not
use allhy additional interior points, any triangulation of the polytdperequires at least
m additional tetrahedra (in the abo@ C’ are constants). Thus if we adlg points to
the interior of Q; we can produce a triangulation that has at léafgwer tetrahedra
since for large enougim we can surpass any vallkeve are given. O

Proof Theorem..2(2). We use the equatioTf#= ¢ + n — 3 —n’ from Lemma 2.1
where # denotes the number of tetrahedralinn (n’) equals the number of boundary
(interior) vertices, and’ = 0 before we add interior points.

If using then’ interior auxiliary points reduces the size of the triangulation, then we
get the inequalitg® +n—3—n" < g +n— 3, wheree® is the number of interior edges
in the new triangulatiorT’ that uses interior vertices. Notice that since every interior
point is in at least four interior edgesy’4< 2€. In conclusiom’ < &. The rest of the
statement follows immediately. O

Note that if in the triangulatiorT, of Theorem 1.1 we take the new pointnot
in the interior of Py, but rather on the relative interior A1, Ay, As), then there is
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an even bigger difference between the siz& pfnd any triangulation oP,, because

there are at least three fewer interior edges. Hence we conclude that triangulating a
convex polytope using new auxiliary boundary points can result in smaller triangu-
lations as well. Similarly, adding exterior points, placed beyond a facet, could also
help to reduce the size of a minimal triangulation (place the new point point beyond
(A1, Az, Az)).

Remarks. (1) In his investigations Brehm introduced two interesting notions [6]:
An f-simplicial dissectionof a polytopeP is a collection of simplices that forms
a simplicial complex (every pair of simplices intersects in a common face, possi-
bly empty), the union of the simplices equdPs but at the same time some of the
simplices may be “degenerate.” Degenerate means thatdheid vertices may not
be affinely independent. For example, a regular octahedron hdssamplicial dis-
section with five tetrahedra, one of them degenerate. The other notion éx¢bes
The excess of a triangulation or dissectibnof a polytopeP is defined as B —
#verticegP) + 3. In this way, the excess is zero for a minimal triangulation of a
stacked polytope and from Lemma 2.1 it coincides with the number of interior edges
minus the number of interior vertices in the triangulation. The excess can be thought
of as a measure of how simple a dissection, triangulationf,-eimplicial dissection
can be. It is interesting to see how the excess of a dissection, triangulatidn, or
simplicial dissection changes (is reduced) by adding points in the interior or the bound-
ary. One can observe also changes in the excess between the eRgrapieits twisted
version

(2) Our paper suggests a new definition of minimal triangulation of a convex polytope.
Rather than prescribing the vertices in advance, one can define it as an intrinsic property
of the convex body itself allowing the possibility of new interior points. We did not take
this point of view in the statements of results because it is traditional in the literature
of triangulations of polytopes to fix the point set in advance (in this way the set of all
possible triangulations is a finite set).

4. Minimal Triangulations and Coordinate Changes

A natural question is whether the size of a minimal triangulation could be an invariant
of the face lattice. We present the smallest example of a polytope where this invariance
fails to exist. This implies that any algorithm to compute minimal triangulations of
3-polytopes must take into account the coordinates of the polytope, not only its face
lattice.

Proof of Theoren1.3. The example is given by the 3-polytope with 10 vertices shown
in Fig. 4. The polytope is made by superimposing two copies of the combinatorial
structure used in Lemma 2.2. If the poi#tsB, C, D are coplanar, then one of the edges
AB or CD cannot be in a triangulation at the same time. Hence by Lemmas 2.1 and 2.2,
any triangulation has at least 10 simplices.

On the other hand, one can arrange zkmordinates ofA, B, C, andD in such a
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Fig. 4. A view of the polyhedron with variable minimal triangulation.

way that the edg@\B is above the edg€ D. This way it has a unique minimal trian-
gulation with nine simplicesA, C, D, H), (A, B,C, D), (A, B, E, F), (A, B, D, E),
(C,D,1,J3), (A, B,C,G), (C,D,H, I, (A,B,F,G), (B,C, D, J). The triangula-
tion above is possible since the tetrahedfénB, C, D) is nondegenerate and does not
intersect the other simplices.

The fact that this example is minimal in dimension and number of vertices is a
consequence of the following lemmas:

Lemma4.l. If a triangulation T of a3-polytope P uses at most one interior edge
then for any polytope Rwith the same face lattigéhe set of simplicescorresponding
to T is still a triangulation

Proof. We have to show two things: First, that still defines a simplicial complex,
i.e., the tetrahedra o’ are all full-dimensional and intersect properly. Second, that all
points of P’ belong to one of the tetrahedraBf.

Changing the coordinatization & to the coordinates o’ while maintaining the
face lattice gives us a bijectiof of the vertices ofP and of P’. In our proof we
refer to the vertices oP’ by primed letters, e.g.f (v) = v’ for v a vertex of P.
The bijection f can be canonically extended to mapto T’, or, for that matter,
(abstract) faces of simplices ih to (abstract) faces of simplices . Note that in-
terior edges inP are always mapped to interior edgesPr, and that edges on the
boundary will stay on the boundary. For the proof of the lemma we use that the ver-
tices in P’ lie in convex position and that the simplicesTn use at most one interior
edge.

We prove now that the tetrahedra™df are all full-dimensional. Any simplex i’
uses at most one interior edge. It has therefore vertiges, andvs which are connected
by edges which lie on the boundary. If the fourth point had collapsed into a coplanarity
with the other three points, it is forced, byvs, vovs, v1v3 being boundary edges, to lie
in con(vy, v2, v3). This contradicts its being an extreme point in the convex hull. Hence
all simplices ofT’ are full-dimensional.
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Fig. 5. Possible bad intersections of faces of tetrahedra.

Suppose two simplices il intersect improperly; that is, not in a common face. Such
a bad intersection occurs if a pair of facesTdfforms a new minimal Radon partition
(their relative interiors intersect) or in oriented matroid terminology a circuit [21]. In
three dimensions the only five possible circuits are presented in Fig. 5. Obviously, the
cases (A), (B), and (C) change the face lattice when they occur because a vertex becomes
an interior point.

Consider now the pair of edges related to case (D). At least one of them is exterior
since we only have one interior edge insideT heir intersection point is therefore on the
boundary ofP’. Hence both edges have to be exterior edges lying in a common two-face
of P’. This implies that their preimages i already intersected improperly which is
impossible sincd was a triangulation. Case (D) is forbidden.

For case (E) note that if the edg&y intersects the triangléx'y’z) in P/, then
a’b’ is interior; leaving the other three edge'y’, x'Z, y'Z' to be exterior. This is also
true for their preimages. This forces that, for the old coordinates wéleri(ab) and
relint(xy2 were disjoint, the verticea, b were in the same side of the hyperplane
spanned by, y, andz; otherwise one of the edgeay, xz, yzis also interior. Finally,
the verticesx, y, z form a cut of the graph of the polytope because their edges are all
in the boundary. However, then the face lattice was changed when going from the old
to the new coordinates because the cut leaves the paift®n the same side of the
hyperplane but later they lie on opposite sides.

We have shown that the simplices T form a simplicial complex. Finally, we
show that every point oP’ belongs to one simplex df’. Denote by T’| the point set
U, e o (similarly for |T|). We can assume the bijectidnis extended to a one-to-one
point mapf: |T| = P — |T’|, and it can be made continuous, e.g., by taking the
canonical affine map on each simplex given by the values of the vertices of that sim-
plex. Note that the boundary & is mapped bijectively to the boundary Bf. If there
were points inP’ which are not any simplex of’, they have to be in the interior ¢¥'.
Hence, the set of all those points equals P’)\| T’| which is an open set. Actually, so is
int(P)N|T’| since the boundary ¢T’| is by continuity and bijectivity off the boundary
of P’. This would imply having a partition dght(P’) into two open sets which contra-
dicts the connectivity oint(P’) in a topological sense. This concludes the proof of the
lemma. O

Lemma 4.2. For convex3-polytopes with up to nine verticethe smallest possible
number of tetrahedra in a triangulation is determined by the face lattice
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Proof. First we give necessary bounds for the number of verticesd number
of tetrahedrat in a minimal triangulation that is not present in every coordinatiza-
tion.

From Lemma 2.1 we know that a triangulation of a polytope with fewer thanl
tetrahedra has at most one interior edge. By the previous lemma, those triangulations are
invariant under coordinate changes, heheen — 1.

A triangulation that exists for all coordinatizations can be made as follows: select a
vertexv, triangulate all facets dP that do not contaim. The tetrahedra of the triangula-
tion of P are those formed byand a triangle in the boundary not in a facet containing
This procedure is called coning from vertewr triangulating by pulling, see [15] or [4]
and [14]. The number of tetrahedra in this triangulation is the number of triangles in the
triangulated boundary minus the number of triangles in the faces that toddte first
number is & — 4 by Euler’'s formula. The second number is the degraeinthe graph
Gtace CONsisting of the vertices d® and all edges between vertices lying in a common
face. This graph contains the gra@hof any triangulation of the boundary. By Euler’s
formula, G’ has 3 — 6 edges, hence the maximal degre&in(and therefore iGyyce)
is at least2- ((3n — 6)/n)].

We showed that pulling from a vertex with maximal degree inGs,ce gives an
invariant triangulation with at most(n) := 2n — 4 — [2 - ((3n — 6)/n)] tetrahe-
dra. A noninvariant minimal triangulation must have< s(n) tetrahedra. Solving for
the equation;y — 1 <t < s(n) forn = 4,...,9 gives only the solutiom = 9,
t=8.

Consider a convex polytope with nine vertices. We show that either no triangulation
of size eight is possible or it allows for an invariant triangulation of size eight or less. We
can dispose of the case whBrhas a vertex of degree three. The reason is such a vertex
can be chopped off, the convex hull of the remaining eight points can be triangulated
using an invariant triangulation of size no more tsé) < 7 by our previous discussion.
These at most seven tetrahedra plus the tetrahedron contaigivega size< 8 invariant
triangulation ofP.

In the graphGice there could be a vertex with degree more than five, but then our
pulling procedure yields an invariant triangulation of at most eight simplices. Hence the
only remaining case is that the triangulated planar graph of the triangulated boundary
of P has only vertices of degree four or five.rnf denotes the number of vertices of
degred, we have that twice the number of edges i$2 9 — 6) = 42 = 5n5 + 4n,4 and
ns + ngs = 9. The only nonnegative integer solutiomis = 6 andn, = 3. From these
degree restrictions and an easy case analysis, it can be seen that the only triangulated
planar graph for the boundary is given in Fig. 6.

We claim that all triangulations that extend this triangulation of the boundd?ywfil
have three or more interior edges and then have nine or more tetrahedra by Lemma 2.1.
Assume this is not true. Every boundary triangle is in a tetrahedron. The fourth point
of the tetrahedron is in an adjacent triangle, otherwise instantly three interior edges are
produced. However, the tetrahedra that cover the triangle®, X), (A, F,Y), and
(B, F, Z) will still induce three distinct interior edges. O

Remark. Computer experiments showed that often an optimal minimal triangulation
of a simplicial polytope is obtained by a pulling triangulation. This has also been ob-
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Fig. 6. Unique triangulated planar graph with = 6 andns = 3.

served for topological triangulations that extend a triangulated sphere into a triangulated
3-ball (see Section 3.5 of [20]). Our example for Theorem 1.3 (see Fig. 4) shows that
this is not always the case.
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