
DOI: 10.1007/s004540010058

Discrete Comput Geom 24:35–48 (2000) Discrete & Computational

Geometry
© 2000 Springer-Verlag New York Inc.

Minimal Simplicial Dissections and Triangulations
of Convex 3-Polytopes∗

A. Below,1 U. Brehm,2 J. A. De Loera,3 and J. Richter-Gebert1

1Institut für Theoretische Informatik, ETH-Z¨urich,
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Abstract. This paper addresses three questions related to minimal triangulations of a
three-dimensional convex polytopeP.

• Can the minimal number of tetrahedra in a triangulation be decreased if one allows
the use of interior points ofP as vertices?
• Can a dissection ofP use fewer tetrahedra than a triangulation?
• Does the size of a minimal triangulation depend on the geometric realization ofP?

The main result of this paper is that all these questions have an affirmative answer. Even
stronger, the gaps of size produced by allowing interior vertices or by using dissections may
be linear in the number of points.

1. Introduction

LetA be a point configuration inRd with its convex hullconv(A) having dimensiond.
A set ofd-simplices with vertices inA is adissectionof A if no pair of simplices has a
common interior point and their union equalsconv(A). A dissection is atriangulation

∗ Most of the results of this paper had been obtained and presented [6] by the second author around
1992, but remained unpublished. The remaining authors solved these problems independently after several
researchers brought them to their attention. Here we present a joint final version.
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of A if in addition any pair of simplices intersects in a common face. Following the
standard terminology in the literature (see, for instance, [15]), we say that a triangulation
(dissection) of a convex polytopeP is a triangulation (dissection) of the vertices of
P. Notice that in this definition no additional points are allowed. In contrast to this,
we are interested in triangulations of point sets with additional interior points besides
the vertices ofP and call themtriangulations of P with interior points. Thesizeof a
dissectionD is the number ofd-simplices it contains and we denote it by #D. We call a
triangulation or a dissectionminimal/maximalwhen its size is the smallest/largest among
all triangulations or respectively all dissections. Note that dissections form simplicial
complexes precisely if they are triangulations.

In this paper we solve three questions about triangulations and dissections, and present
several relevant consequences.

In Section 3 we investigate how the size of a minimal triangulation changes under
the addition of new interior points. Independently B¨ohm [5] and Gritzmann and Klee
[11] raised the issue that possibly using auxiliary interior points the size of a minimal
triangulation of the new set of points could be smaller than a minimal triangulation
of the original set. As pointed out in Section 8.4 of [11], this question is relevant in
the study of complexity classes of basic problems in computational convexity. In this
article we exhibit a family of three-dimensional polytopes that indeed have this property.
This behavior is reminiscent of the fact that adding points can also reduce the size of a
Delaunay triangulation [3], [7].

We show in Section 3 that dissections can require fewer simplices than triangulations.
We show that a linear difference between the size of a minimal triangulation and a minimal
dissection is possible. The question whether this could happen had been raised several
times [5], [8], [13], [11]. The solution of the questions depends on two simple geometric
lemmas that will be useful throughout the paper. They are proved in Section 2. The main
results of Section 3 can be stated as follows:

Theorem 1.1. There is a family of simplicial convex3-polytopes Pm with the following
properties:

(1) All triangulations of Pm are larger than a triangulation with one interior point.
This gap can be linear in the number of vertices.

(2) All triangulations of Pm are larger than the minimal dissections of Pm. This gap
can be linear in the number of vertices.

It should be pointed out that after the proof of Theorem 1.1 we construct a “twisted”
version ofPm, Pm,α, for which it is clear to see (with essentially the same proof) that
dissections are also smaller than triangulations ofPm,α with interior points.

Moreover, we show that the approximate shape of the polytope can be prescribed and
still have interesting behavior:

Theorem 1.2.

(1) Given three numbers h0 ≥ 1, k ≥ 1, ε > 0 and a convex body K⊆ R3 there is
a simplicial convex3-polytope P withδ(K , P) < ε (Hausdorff distance) such
that every triangulation of P, with up to h0 − 1 interior points, has at least k
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tetrahedra more than a triangulation of P with h0 suitably chosen additional
interior points.

(2) For a 3-polytope P, if adding n′ new interior points allows for a smaller trian-
gulation than a minimal triangulation of P, then n′ < ei where ei is the number
of interior edges in a minimal triangulation of P. In particular, it is impossible
to have such behavior for3-polytopes whose minimal triangulations use one or
no interior edges.

A famous open question in computational geometry asks for the computational com-
plexity of finding minimal triangulations of convex polyhedra [2]. A related problem is
whether the smallest size of a triangulation of a convex polytope is determined by the
face lattice or if it can change with the coordinates. We present the negative answer in
Section 4:

Theorem 1.3. The minimal size of a triangulation of a convex3-polytope isnot an
invariant of the face lattice. There is a simplicial convex3-polytope with10 vertices
for which the minimal number of tetrahedra possible in a triangulation depends on its
coordinates. The example is smallest possible in dimension and number of vertices.

The theory of universal polytopes [4], [9] implies that if two polytopes have the
same oriented matroid generated by their convex hull vertices, then not only are their
face lattices the same but also their set of triangulations (without interior points) are
identical. In contrast to this Brehm has proved that in fact, if additional interior points
are allowed the minimal number of tetrahedra of a dissection or triangulation is not an
invariant of the oriented matroid of the vertices in the convex hull. Details on this result
will appear elsewhere.

2. Two Useful Lemmas

The following elementary formula shows that many of the arguments about the num-
ber of tetrahedra in a triangulation can be reduced to the study of the number of
interior edges. Similar formulas have already been stated many times in the litera-
ture (see, for instance, Lemma 2.1 in [10] or [17]). The proof is a simple applica-
tion of Euler’s formula for triangulated 2-spheres and 3-balls and we omit the easy
details.

Lemma 2.1. Let P be a3-polytope with n boundary vertices and n′ interior auxiliary
vertices. For a triangulation T of P that uses the n′ interior points, the number of
tetrahedra in T is related to the number of interior edges ei of T by the formula

#T = ei + n− 3− n′.

We now present a lemma that showcases the main nontrivial effect we use in all the
examples. The lemma shows that a certain substructure in the face lattice of a polytope
forces certain interior edges to appear in triangulations of sufficiently small size.
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Fig. 1. The key structure of Lemma 2.2.

Lemma 2.2. Let P be a convex3-polytope on n vertices, that contains the following
collection of triangular facets: [a,qi ,qi+1] and[b,qi ,qi+1] for i = 0, . . . ,m(see Fig. 1),
with the additional restrictions that conv{a,b} does not intersect conv{q0, . . . ,qm+1}.
Then for each triangulation of P that does not use the edge(a,b) the number of interior
edges ei is at least m.

Proof. Sinceconv{q0,qm+1} is in the interior ofP, we obtain the following simple fact:
for all |i − j | ≥ 2, if qi qj is an edge of a triangulation, it will also be an interior edge. The
proof of the lemma proceeds by induction onm. The lemma is clearly true form = 1.
Call (*) the assumption that all verticesqi , with 1 ≤ i ≤ m, are incident to at least
one interior edge of the triangulationT . We now show how to invoke induction in case
(*) does not hold: A vertexqi untouched by an interior edge belongs to the tetrahedra
σi,a = (a,qi−1,qi ,qi+1) and σi,b = (b,qi−1,qi ,qi+1). This is because the triangle
(a,qi ,qi+1) is in some simplex, and if the fourth point is some other vertex besidesqi−1

or b we have an interior edge touchingqi . Furthermore, the fourth point cannot beb
since in this case the edgeab would be present. By chopping off these two tetrahedra
together with the vertexqi (i.e., considering the convex hull of all ofP’s vertices except
qi ) we can apply induction to guarantee that the remaining triangulationT\σi,a, σi,b has
at leastm−1 interior edges. Together with the edgeqi−1qi+1 they account form interior
edges inT .

If (*) holds we will show the claim directly; we set up a one-to-one map from the
set{q1, . . . ,qm} to a subset of the interior edges that touch them: The verticesqi come
along a polygonal curve in a canonical order which is reflected by their indices. We mark
or orient the interior edgesqi v that touch a vertexqi as follows: Ifv 6∈ {q0, . . . ,qm+1},
we call the edgeqi v special, otherwise we orient it from smaller to larger index. For the
verticesqi with special edges incident to them, we mapqi to one of those. If a vertex
qi has no special edges, but has outgoing interior edges, we map it to the outgoing edge
qi qk with the smallest indexk. We are left with the case of those verticesqi that have
only incoming interior edges incident toqi . Consider the triangle(a,qi ,qi+1). It has to
be in some tetrahedron ofT whose fourth point is bound to be aqja with ja < i . Likewise
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(b,qi ,qi+1) is in a tetrahedron with fourth pointqjb with jb < i . If both ja = jb = i −1,
there can be no interior edges incident toqi (see above), a contradiction to (*). Letj be
any of ja, jb such thatj < i − 1. Mapqi to qj qi+1.

We claim that the given map is one-to-one. If some vertexqi maps to the special
edgeqj v, then necessarilyi = j . There are potentially two vertices that can be mapped
to an interior edgeqj qk with j < k: qj whenqj qk is the chosen outgoing edge ofqj

andqk−1, in caseqk−1 has only incoming edges. In the latter case one of the tetrahedra
(a,qj ,qk−1,qk) and(b,qj ,qk−1,qk) has to be in the triangulation, andqj will be mapped
to the smaller indexed edgeqj qk−1. This is an interior edge sincej < k−2, soqj cannot
also be mapped toqj qk. The injectivity of the map is proven.

Roughly speaking the purpose of Lemma 2.2 is the possibility to force the occurrence
of many interior edges when other interior edges are absent. Our solutions to the open
questions rely on a combination of this effect with a famous example, Sch¨onhardt’s
example of a nontriangulable nonconvex polyhedron (see [15]–[16], [18], and [19]).
The example, obtained from “twisting” a triangular prism and allowing that the three
diagonals bend in, has the property that it cannot be triangulated or dissected unless we
add a new point and then the triangulation is unique. A variation of the same example is
a triangulation of the boundary of a triangular prism that chooses boundary edges in a
“cyclic” manner. Such triangulation of the boundary cannot be extended to a triangulation
of the convex hull.

3. Adding Points or Dissecting Can Reduce the Size

Proof of Theorem1.1. Consider a triangular prism with bottom triangle(A1, A2, A3)

and top triangle(B1, B2, B3) where both triangles are congruent, parallel, equilateral,
and vertexAi lies directly below vertexBi . Denote byni, j the inner normal to the quadri-
lateral facet(Ai , Aj , Bi , Bj ). In each of its quadrilateral facets we will putm points fol-
lowing a diagonalAi Bj but slightly lifted to be in a parabola. The points we add will have
coordinates along three parabolic curvesC1,2, C2,3, andC3,1. Let p(λ) = (λ− 1

2)
2− 1

4,
andε > 0 a sufficiently small number, we define

C1,2 = λA1+ (1− λ)B2+ εp(λ)n1,2,

C2,3 = λA2+ (1− λ)B3+ εp(λ)n2,3,

C3,1 = λA3+ (1− λ)B1+ εp(λ)n3,1.

Note that the curveCi, j joins the verticesAi andBj . The pattern of the curves follows
cyclically arranged diagonals as in the case of Sch¨onhardt’s polytope. Takempoints along
each of the curvesC1,2, C2,3, C3,1 that we denote byq1(Ci, j ),q2(Ci, j ), . . . ,qm(Ci, j ). We
will take those points such that all the triangles(qk(C1,2), B2, B3) are pierced by the edge
B1A2, the triangles(qk(C2,3), B3, B1) are pierced by the edgeB2A3, and similarly the
triangles(qk(C3,1), B1, B2) are pierced by the edgeB3A1. Thesepiercing conditionsare
easily achieved by accumulating the points low enough toward the triangle(A1, A2, A3).
We observe that each of the sequences of points produces, when taking the convex hull,
2(m+ 1) triangular facets,m+ 1 on each side of the prism. This is exactly the situation
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Fig. 2. The polytopeP5 and its Schlegel diagram.

of Lemma 2.2. The resulting 3-polytope, containing 3m+6 vertices, will be denoted by
Pm. The polytopePm is the union of the original prism with three “caps” placed on top
of the quadrilateral facets. We show in Fig. 2 the case form= 5.

Now we construct a triangulationTv of Pm that uses an auxiliary interior pointvwithin
the prismconv(A1, A2, A3, B1, B2, B3). At each cap of the polytopePm we triangulate
in a “stacked” way, namely, by choosing the tetrahedra of the form(qk(Ci, j ),qk+1(Ci, j ),

Bi , Aj ). For each curveCi, j we getm+1 tetrahedra. Complete the triangulation by coning
fromv to the eight triangles that triangulate the boundary ofconv(A1, A2, A3, B1, B2, B3).
We have a triangulation, using the interior pointv, with 3m+ 11 tetrahedra.

We now construct a dissectionD of Pm. We do not use any interior points. Triangulate
the three caps as before in a stacked way, then for the interior of the prism triangulate
arbitrarily. All triangulations of the prism are combinatorially the same and have three
simplices. The dissectionD has size 3m+ 6.

From Lemma 2.2 we have that triangulations that do not use all the edgesB1A2,
B2A3, or B3A1 will have at leastm interior edges. In this case Lemma 2.1 implies that
the number of tetrahedra will be at least 4m+ 3. On the other hand, we claim that it is
impossible to have a triangulation that uses those three edges simultaneously. The reason
is that the triangular face(B1, B2, B3) must belong to a certain tetrahedron, and if the
fourth point is along one of the curvesCi, j , then, by the piercing conditions, there is a
bad intersection with one of the edgesB1A2, B2A3, or B3A1. Hence, the only hope is
that the fourth point is another of the pointsAl , but this is impossible in a triangulation
as two edges will intersect improperly. In conclusion, any triangulation ofPm that does
not use interior points is larger than the triangulationTv and larger than the dissectionD
for m> 8.

Before we come to the proof of Theorem 1.2, we present some observations on
a twisted version of polytopePm. We will patch several copies of this new polytope
onto simplicial polytopes when constructing the examples of Theorem 1.2. We start
with a triangular prism such that the bottom triangle(A1, A2, A3) and the top triangle
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Fig. 3. A twisted version ofPm, based on Sch¨onhardt’s example.

(B1, B2, B3) are equilateral, and their barycenters are vertically on top of each other.
The bottom triangle should be somewhat larger than the top triangle. We twist the top
triangle by an angle ofα degrees creating a Sch¨onhardt style nonconvex polyhedron.
Then we patch the sides again with copies of the caps introduced in Lemma 2.2. We call
the resulting convex polytopePm,α. Therefore the original examplePm of Theorem 1.1
is isomorphic toPm,0 (see Fig. 3). The copies will again have the pointsqk(Ci, j ) close to
the bottom triangle to guarantee the piercing conditions as in the proof of Theorem 1.1.
The numberε should be small enough for the pointsqk(Ci, j ) to lie vertically above the
bottom triangle. Byvertically above(below) we mean that a line going vertically down
(up) from any of those points pierces(A1, A2, A3).

When the angleα is greater than zero, we are in the situation that the dissectionD
we described becomes impossible, but one can still use an interior pointv to create a
triangulationTv with an interior point, smaller than any triangulation of the polytope.
The proof is identical to the one we discussed for Theorem 1.1.

An important difference from the example of Theorem 1.1 is that now the set of
possible interior pointsv to constructTv is restricted by the twisting angleα. We call
theset of visibilityof Pm,α all points p which are below the plane spanned by the top
triangle and satisfy the following condition: the tetrahedron spanned byB1, B2, B3, and
p does not intersect the edgesB1A2, B2A3, or B3A1. It is easy to check that the set of
visibility is the union of the following four sets (see Fig. 3): the tetrahedronS0 bounded
by the planesB1B2B3, B1A1B3, B2A2B1, andB3A3B2; the coneS1, with apexB1 lying
between the planesB1B2B3, B1A1B3, andB1A3B2; as well as the analogous conesS2

andS3 with apexesB2 andB3. The reason we want the piercing conditions is exactly to
avoid this set of visibility.

By symmetry, the three planesB1A1B3, B2A2B1, andB3A3B2 intersect in a pointp
which lies on the vertical line connecting the barycenters of the bottom and top faces.
If the twisting angleα = π/3, then p is the intersection of edgesB1A2, B2A3, and
B3A1. By continuity of the rotation, ifα = π/3− δ for small δ > 0, the pointp is
still above the bottom triangle. ThereforeS0 has no points vertically below(A1, A2, A3).
Note that the setsS1, S2, S3 do not contain points vertically below the bottom
triangle.
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In conclusion, for a suitable twisting angleα the polytopePm,α will have four prop-
erties: (1) it contains only points in and vertically above its bottom face, (2) there are no
points of visibility vertically below the bottom triangle, (3) insidePm,α there is a point
which can “see” the top and (by an analogous argument) the bottom triangular faces, and
(4) a new auxiliary interior pointv used in a smaller triangulationTv must lie strictly in
the set of visibility ofPm,α.

Imagine now a polytopeQ, with facet(A1, A2, A3), lying vertically below this facet.
ThenQ∪Pm,α is a convex polytope. There is a triangulation ofQ∪Pm,α using an interior
point in Pm,α which does not useA1B3, A2B1, A3B2, but there is no such triangulation
if we do not allow extra interior points withinPm,α. Via a projective transformation
we can transform any polytopeQ′ with a specified triangular facet(A′1, A′2, A′3) to
such a polytopeQ. We can even arrange for the preimage ofPm,α under this projec-
tive transformation to be as “flat” as we want it to be. Hence we can patch arbitrarily
flat isomorphic copies ofPm,α to any triangular facet ofQ′ still obtaining a convex
polytope.

Proof of Theorem1.2(1). Approximate the convex bodyK with a simplicial 3-polytope
Q0, with at leasth0 facets, that is close to it in the Hausdorff distance (see [12] for
references on approximation by polytopes). Onh0 of the triangular facets ofQ0 we
stack polytopesY1,Y2, . . . ,Yh0 where eachYi is an isomorphic copy of a polytopePm,α

andQ1 = Q0∪Y1∪Y2∪ · · · ∪Yh0 is a convex polytope stillε-close toK . This stacking
procedure is possible by the above discussion.

If one triangulatesYi with an interior point that lies in its visibility set one finds a
very small triangulation, but the auxiliary point is forced to lie in the visibility sets by
construction of each copyYi . Moreover, the visibility sets of differentYi ,Yj are disjoint
from each other and fromQ0. The rest ofQ1 is the original polytopeQ0 which we
triangulate minimally.

A simple calculation shows that in the case where we use allh0 interior points the
triangulation can be done with at mostC(3m+ C′) tetrahedra. Otherwise, if we do not
use allh0 additional interior points, any triangulation of the polytopeQ1 requires at least
m additional tetrahedra (in the aboveC, C′ are constants). Thus if we addh0 points to
the interior ofQ1 we can produce a triangulation that has at leastk fewer tetrahedra
since for large enoughm we can surpass any valuek we are given.

Proof Theorem1.2(2). We use the equation #T = ei + n − 3− n′ from Lemma 2.1
where #T denotes the number of tetrahedra inT , n (n′) equals the number of boundary
(interior) vertices, andn′ = 0 before we add interior points.

If using then′ interior auxiliary points reduces the size of the triangulation, then we
get the inequalitye∗i +n−3−n′ < ei +n−3, wheree∗i is the number of interior edges
in the new triangulationT ′ that uses interior vertices. Notice that since every interior
point is in at least four interior edges, 4n′ ≤ 2e∗i . In conclusionn′ < ei . The rest of the
statement follows immediately.

Note that if in the triangulationTv of Theorem 1.1 we take the new pointv not
in the interior of Pm, but rather on the relative interior of(A1, A2, A3), then there is
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an even bigger difference between the size ofTv and any triangulation ofPm because
there are at least three fewer interior edges. Hence we conclude that triangulating a
convex polytope using new auxiliary boundary points can result in smaller triangu-
lations as well. Similarly, adding exterior points, placed beyond a facet, could also
help to reduce the size of a minimal triangulation (place the new point point beyond
(A1, A2, A3)).

Remarks. (1) In his investigations Brehm introduced two interesting notions [6]:
An f -simplicial dissectionof a polytopeP is a collection of simplices that forms
a simplicial complex (every pair of simplices intersects in a common face, possi-
bly empty), the union of the simplices equalsP, but at the same time some of the
simplices may be “degenerate.” Degenerate means that theird + 1 vertices may not
be affinely independent. For example, a regular octahedron has anf -simplicial dis-
section with five tetrahedra, one of them degenerate. The other notion is theexcess.
The excess of a triangulation or dissectionD of a polytopeP is defined as #D −
#vertices(P) + 3. In this way, the excess is zero for a minimal triangulation of a
stacked polytope and from Lemma 2.1 it coincides with the number of interior edges
minus the number of interior vertices in the triangulation. The excess can be thought
of as a measure of how simple a dissection, triangulation, orf -simplicial dissection
can be. It is interesting to see how the excess of a dissection, triangulation, orf -
simplicial dissection changes (is reduced) by adding points in the interior or the bound-
ary. One can observe also changes in the excess between the examplePm and its twisted
version

(2) Our paper suggests a new definition of minimal triangulation of a convex polytope.
Rather than prescribing the vertices in advance, one can define it as an intrinsic property
of the convex body itself allowing the possibility of new interior points. We did not take
this point of view in the statements of results because it is traditional in the literature
of triangulations of polytopes to fix the point set in advance (in this way the set of all
possible triangulations is a finite set).

4. Minimal Triangulations and Coordinate Changes

A natural question is whether the size of a minimal triangulation could be an invariant
of the face lattice. We present the smallest example of a polytope where this invariance
fails to exist. This implies that any algorithm to compute minimal triangulations of
3-polytopes must take into account the coordinates of the polytope, not only its face
lattice.

Proof of Theorem1.3. The example is given by the 3-polytope with 10 vertices shown
in Fig. 4. The polytope is made by superimposing two copies of the combinatorial
structure used in Lemma 2.2. If the pointsA, B, C, D are coplanar, then one of the edges
AB or C D cannot be in a triangulation at the same time. Hence by Lemmas 2.1 and 2.2,
any triangulation has at least 10 simplices.

On the other hand, one can arrange thez-coordinates ofA, B, C, andD in such a
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Fig. 4. A view of the polyhedron with variable minimal triangulation.

way that the edgeAB is above the edgeC D. This way it has a unique minimal trian-
gulation with nine simplices:(A,C, D, H), (A, B,C, D), (A, B, E, F), (A, B, D, E),
(C, D, I , J), (A, B,C,G), (C, D, H, I ), (A, B, F,G), (B,C, D, J). The triangula-
tion above is possible since the tetrahedron(A, B,C, D) is nondegenerate and does not
intersect the other simplices.

The fact that this example is minimal in dimension and number of vertices is a
consequence of the following lemmas:

Lemma 4.1. If a triangulation T of a3-polytope P uses at most one interior edge,
then for any polytope P′ with the same face lattice, the set of simplices T′ corresponding
to T is still a triangulation.

Proof. We have to show two things: First, thatT ′ still defines a simplicial complex,
i.e., the tetrahedra ofT ′ are all full-dimensional and intersect properly. Second, that all
points ofP′ belong to one of the tetrahedra ofT ′.

Changing the coordinatization ofP to the coordinates ofP′ while maintaining the
face lattice gives us a bijectionf of the vertices ofP and of P′. In our proof we
refer to the vertices ofP′ by primed letters, e.g.,f (v) = v′ for v a vertex of P.
The bijection f can be canonically extended to mapT to T ′, or, for that matter,
(abstract) faces of simplices inT to (abstract) faces of simplices inT ′. Note that in-
terior edges inP are always mapped to interior edges inP′, and that edges on the
boundary will stay on the boundary. For the proof of the lemma we use that the ver-
tices in P′ lie in convex position and that the simplices inT ′ use at most one interior
edge.

We prove now that the tetrahedra ofT ′ are all full-dimensional. Any simplex inT ′

uses at most one interior edge. It has therefore verticesv1, v2, andv3 which are connected
by edges which lie on the boundary. If the fourth point had collapsed into a coplanarity
with the other three points, it is forced, byv1v2, v2v3, v1v3 being boundary edges, to lie
in conv(v1, v2, v3). This contradicts its being an extreme point in the convex hull. Hence
all simplices ofT ′ are full-dimensional.
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Fig. 5. Possible bad intersections of faces of tetrahedra.

Suppose two simplices inT ′ intersect improperly; that is, not in a common face. Such
a bad intersection occurs if a pair of faces ofT ′ forms a new minimal Radon partition
(their relative interiors intersect) or in oriented matroid terminology a circuit [21]. In
three dimensions the only five possible circuits are presented in Fig. 5. Obviously, the
cases (A), (B), and (C) change the face lattice when they occur because a vertex becomes
an interior point.

Consider now the pair of edges related to case (D). At least one of them is exterior
since we only have one interior edge insideT . Their intersection point is therefore on the
boundary ofP′. Hence both edges have to be exterior edges lying in a common two-face
of P′. This implies that their preimages inP already intersected improperly which is
impossible sinceT was a triangulation. Case (D) is forbidden.

For case (E) note that if the edgea′b′ intersects the triangle(x′y′z′) in P′, then
a′b′ is interior; leaving the other three edgesx′y′, x′z′, y′z′ to be exterior. This is also
true for their preimages. This forces that, for the old coordinates whenrelint(ab) and
relint(xyz) were disjoint, the verticesa, b were in the same side of the hyperplane
spanned byx, y, andz; otherwise one of the edgesxy, xz, yz is also interior. Finally,
the verticesx, y, z form a cut of the graph of the polytope because their edges are all
in the boundary. However, then the face lattice was changed when going from the old
to the new coordinates because the cut leaves the pointsa, b on the same side of the
hyperplane but later they lie on opposite sides.

We have shown that the simplices inT ′ form a simplicial complex. Finally, we
show that every point ofP′ belongs to one simplex ofT ′. Denote by|T ′| the point set⋃
σ ′∈T ′ σ (similarly for |T |). We can assume the bijectionf is extended to a one-to-one

point map f : |T | = P 7→ |T ′|, and it can be made continuous, e.g., by taking the
canonical affine map on each simplex given by the values of the vertices of that sim-
plex. Note that the boundary ofP is mapped bijectively to the boundary ofP′. If there
were points inP′ which are not any simplex ofT ′, they have to be in the interior ofP′.
Hence, the set of all those points equalsint (P′)\|T ′|which is an open set. Actually, so is
int(P′)∩|T ′| since the boundary of|T ′| is by continuity and bijectivity off the boundary
of P′. This would imply having a partition ofint(P′) into two open sets which contra-
dicts the connectivity ofint(P′) in a topological sense. This concludes the proof of the
lemma.

Lemma 4.2. For convex3-polytopes with up to nine vertices, the smallest possible
number of tetrahedra in a triangulation is determined by the face lattice.
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Proof. First we give necessary bounds for the number of verticesn and number
of tetrahedrat in a minimal triangulation that is not present in every coordinatiza-
tion.

From Lemma 2.1 we know that a triangulation of a polytope with fewer thann− 1
tetrahedra has at most one interior edge. By the previous lemma, those triangulations are
invariant under coordinate changes, hencet ≥ n− 1.

A triangulation that exists for all coordinatizations can be made as follows: select a
vertexv, triangulate all facets ofP that do not containv. The tetrahedra of the triangula-
tion of P are those formed byv and a triangle in the boundary not in a facet containingv.
This procedure is called coning from vertexv or triangulating by pulling, see [15] or [4]
and [14]. The number of tetrahedra in this triangulation is the number of triangles in the
triangulated boundary minus the number of triangles in the faces that touchv. The first
number is 2n− 4 by Euler’s formula. The second number is the degree ofv in the graph
Gface consisting of the vertices ofP and all edges between vertices lying in a common
face. This graph contains the graphG′ of any triangulation of the boundary. By Euler’s
formula,G′ has 3n− 6 edges, hence the maximal degree inG′ (and therefore inGface)
is at leastd2 · ((3n− 6)/n)e.

We showed that pulling from a vertexv with maximal degree inGface gives an
invariant triangulation with at mosts(n) := 2n − 4 − d2 · ((3n − 6)/n)e tetrahe-
dra. A noninvariant minimal triangulation must havet < s(n) tetrahedra. Solving for
the equationsn − 1 ≤ t < s(n) for n = 4, . . . ,9 gives only the solutionn = 9,
t = 8.

Consider a convex polytope with nine vertices. We show that either no triangulation
of size eight is possible or it allows for an invariant triangulation of size eight or less. We
can dispose of the case whenP has a vertexv of degree three. The reason is such a vertex
can be chopped off, the convex hull of the remaining eight points can be triangulated
using an invariant triangulation of size no more thans(8) ≤ 7 by our previous discussion.
These at most seven tetrahedra plus the tetrahedron containingv give a size≤ 8 invariant
triangulation ofP.

In the graphGface there could be a vertex with degree more than five, but then our
pulling procedure yields an invariant triangulation of at most eight simplices. Hence the
only remaining case is that the triangulated planar graph of the triangulated boundary
of P has only vertices of degree four or five. Ifni denotes the number of vertices of
degreei , we have that twice the number of edges is 2· (3 ·9−6) = 42= 5n5+4n4 and
n5 + n4 = 9. The only nonnegative integer solution isn5 = 6 andn4 = 3. From these
degree restrictions and an easy case analysis, it can be seen that the only triangulated
planar graph for the boundary is given in Fig. 6.

We claim that all triangulations that extend this triangulation of the boundary ofP, will
have three or more interior edges and then have nine or more tetrahedra by Lemma 2.1.
Assume this is not true. Every boundary triangle is in a tetrahedron. The fourth point
of the tetrahedron is in an adjacent triangle, otherwise instantly three interior edges are
produced. However, the tetrahedra that cover the triangles(A, B, X), (A, F,Y), and
(B, F, Z) will still induce three distinct interior edges.

Remark. Computer experiments showed that often an optimal minimal triangulation
of a simplicial polytope is obtained by a pulling triangulation. This has also been ob-
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Fig. 6. Unique triangulated planar graph withn5 = 6 andn4 = 3.

served for topological triangulations that extend a triangulated sphere into a triangulated
3-ball (see Section 3.5 of [20]). Our example for Theorem 1.3 (see Fig. 4) shows that
this is not always the case.
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