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Abstract. This article concerns two measures of central symmetry that characterize cones
as the most asymmetric convex bodies. Stability estimates are established that provide
information on the deviation of a convex body from a cone if the corresponding measure of
symmetry is close to its maximum value.

The survey article [6] of Grfibaum shows convincingly that a large variety of results
in the theory of convex sets can be viewed as statements regarding certain measures
of symmetry (or asymmetry). We consider here two such measures that attain their
minimum if the bodies are centrally symmetric and their maximum if the bodies are
cones. Our primary objective is to establish stability estimates concerning the max-
imum value of these measures. In other words, we seek estimates for the deviation
of a convex body from a cone if its measure of symmetry is close to its maximum
value.

The following definitions and notations are used consisteRfigenotes the euclidean
n-dimensional space, where it is always assumedrthat2. We leto denote the origin
of R", and S~ the (n — 1)-dimensional unit sphere iR" (centered ab). The class
of convex bodies iR", that means the compact convex subsetR"rwith nonempty
interior, is denoted byC". A denotes the symmetric difference metric/6fh. Thus, if
K,L € K", thenA(K, L) = v(K UL) —v(K NnL), wherev signifies the volume in
R". Instead of “hyperplane” we simply say “plane.”Bfis a compact convex subset of
aplane inrR" and p is a point inR", then the convex hull oB U { p}, if it has nonempty
interior, is called aonewith baseB and apexp, and it is denoted bg (p, B). For any
K e K" we letz(K) denote the centroid & andHg (u) the support plane df in the
directionu. The distance betweer{K) and Hk (u), that is, the support function df
with respect to the centroid, is denotedtny(u).
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As our first measure of symmetry we define
n(K) = supthk (W)/hx (—u): u e S,

Clearly,
n(K) > 1, D

andn(K) = 1 holds exactly ifK is centrally symmetric. Minkowski already showed
that, for allK € K",

n(K) =n. 2

Furthermore, itis easy to see thakifis a cone, then(K) = n, and thahy (u)/ hx (—u)
attains the value if u is an inner normal vector df at its base. For references and
historic comments regardingK) and related functions see [6].

We now can formulate our first result.

Theorem 1. Let there be given a ke K" and ane > 0. If n(K) > n — ¢ there exists
a cone C such that

4
AK,C) <
( )_n+1

v(K)e. €]
We add some relevant remarks concerning this theorem.

1. Lettinge = n — n(K), which is admissible because of (2), we obtain from (3) the
following statement;

For any K € K" there is a cone C such that

n+1

This is a sharpened version of (2). Combined with the previous remark concerning the
occurrence of the equality(K) = n one infers that this equality holds if and onlyKf
is a cone.

2. For the inequality (1), where equality holds exactlKifis centrally symmetric,
one can also establish a corresponding stability result. To see this, assume that, for some
>0,

n(K) <1l+e.
Then /(1 +¢) < hi(u)/hk(—u) < 1+ ¢ (for all u ¢ 1) and therefore

l’ hK(U) ¢

|hk (u) = 3(hk (W) + he ()| = 5 he (w0

2
whereD denotes the diameter &f. Thus, lettingk* denote the convex body obtained
from K by central symmetrization (with respectz¢K)), ands the Hausdorff metric
on K" we have justified the following statement:

- 1' lhk (W] < 2+ D
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If n(K) < 1+ ¢ there exist a centrally symmetric convex bodydch that

nD
S(IK, K" < ——— ¢,
R (FETE

Similarly as in the previous statement this can also be written as an improved version of
(1), namely,

2(n+ 1) .
n(K)y =1+ TS(K’ K*).

We also remark that it is not particularly important whether such results are stated in
terms of the symmetric difference or the Hausdorff metric since there exist inequalities
that allow the transition from one of these metrics to the other (see [4]).

Our second result concerns a theorem that was first publishedumpb@&uin [5]. In
this article one also can find further references. As before let there be gikea &"
with centroidz(K ). Furthermore, IeE " (u) denote the half-space whose boundary plane
containsz(K) and hasi as an interior normal vector. Define

Ky, = K NE*(u)
and
0(K) = suplv(Ky)/v(K_y): ue S

Similarly asn(K) the function6(K) can be conceived as a measure of symmetry.
Obviously,f(K) > 1 and equality holds iK is centrally symmetric. IK is a cone and
u an outer normal vector df at its base, then

v(Ke) (o 1\
oKy (”ﬁ) -t

The theorem just mentioned states that this is actually the extremal situation. In other

words, if we define
1 n
en = <1 + —) _— 1,
n

0(K) < 6, )

then

with equality if K is a cone. Our second theorem establishes a stability result for this
inequality.

Theorem 2. Let there be given a ke K" and ane > 0. There exists a constait,,
depending on n on)yguch that the inequality(K) > 6, — ¢ implies that K contains a
cone C with the property that

A(K, C) < Aqu(K)el/2", (5)
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Again, we add several pertinent remarks.

1. The proof will show that it would be possible to explicitly determine a suitah)e
but the additional technical details would require substantially more space.

2. Similarly as in the case of the first remark to Theorem 1 the above result can also
be formulated as a sharpened version of (4), namely,

2n?
9(K)§9n—( A(K,C)) ;

Anv(K)
and similarly as before one can state th@t ) = 6, holds if and only ifK is a cone.

3. Although it is obvious that for a centrally symmetic we haved(K) = 1, it is
not obvious, but true, that this equality holds only in this case. For a detailed study of
the equalityy (K) = 1, including pertinent stability results, see Section 5.6 of [3].

Proof of Theorenl. If ¢ > (n+ 1)/4, then (3) is trivially true for any inscribed cone
C in K. Consequently it can be assumed that
n+1

£<—7— (6)

SinceK is supposed to be given and fixed we frequently simplify the notation by writing
H andh instead ofHx andhy, respectively. It suffices to consider only the casi) =

n — ¢ since, if this is not so, it can be achieved by decreasing the valei€ldfen there
exists au, € S"* such thah(uy)/ h(—u,) = n—&. Performing, if necessary, a suitable
similarity transformation, we may assume that

h(ug) = n —¢, h(—ug) = 1. @)

Letnowpbe apointinK NH (u,), and letE be the plane parallel td (u,) and passing
throughz(K). Obviously, there exists a col@with the following three properties: the
apex ofC is p, its base is contained id (—u,), andENC = ENK. It will be shown that
C satisfies inequality (3). For this purpose we may suppose that the positiomaR"
(equipped with the usu&kg, . . ., X,)-coordinate system) is such that= (0, ..., 0, 1)
and

z(C) = o. (8

We write E* and E~ for the two closed half-spaces determinedibywherep € E*.
Furthermore, for an)X € K" we let X™ = X N ET and X~ = X N E~. Note that
CT c K*,K~ c C7, and that

A(K,C) = ((K*) =v(C*) + ((C7) —v(K7)). 9
Also, (7) shows that the height 6fisn 4+ 1 — ¢, and this implies that

. 10
n+1 n+1 19

For anyY € K" let z,(Y) denote thex,-coordinate ofz(Y). Sincez,(K) = hc(ug) —
hk (Up) it follows from (7) and (10) that,(K) = ¢/(n + 1). Thus we can state that

1 + + - -)) —
U(K)(U(K )Za(K™) +v(K)zn(K™)) = ——1

he(Uo) = N (1— L) he(—Ug) =1— —
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and, as a consequence of (8),
v(CH)Z(CH) +v(C)za(CT) = 0.

Hence,

&

(W(KH)zn(KH)=v(CHZa (CT))+W(KT)Zn(K)~v(CT)za(CT)) = ]

v(K). (12)

We also note that (2) (applied #1) and the fact that(C*) = n imply that
Z,(K™) = z,(C™). (12
We now proceed under the hypothesis that in addition to (12) we have
zn(K™) = z(C7). 13

From (11), (12), (13), and the fact that(C~) < 0 we infer that

e
+1

(W(K™) = v(C")zy(CH) + (v(C7) — v(K7))|zo(CT)| < - v(K). (14
Using (10) we see that,(C™) = (1/(n + 1))hc(Ug) > (n — &)/(n+ 1), and it follows
from (6) that

z,(C*) > 3. (15

Furthermore, since the height of the truncated c@ne=qualsh(—u,) = 1 the orthog-
onal distance o£(C~) from the base o€ is at most%. This implies thatz,(C™)| >
he(—uo) — % Consequently, using again (6) and (10), we obtain

£ 1

=

n+1- 4

_ 1
1Za(CT)| = 5~ (16)

Clearly, (14), (15), and (16) imply

4e v(K).

oot - _ -
(K™) —v(C") + (C7) —v(K7)) =< N1

Inequality (3) is now an obvious consequence of this inequality and (9).

To complete the proof we need to show (13). First we note that it can be assumed that
C~ andK~ have rotational symmetry with respect to theaxis. This assumption is
justified since one can perform a rotational symmetrization (“Schwarzsche Abrundung,”
see Section 41 of [1]) with respect to theaxis, and it is obvious that this symmetrization
does not changg, (K ~) andz,(C™). Thus we can proceed under the assumptionGhat
is atruncated cone whose “upper baBé"= CN E and “lower baseB, = CNH (—up)
are(n — 1)-dimensional balls. Let noW’ be the plane that is parallel #®and contains
z(K7), and letK’ be the truncated cone (possibly cylinder) with upper tBisdower
base contained iB,, and such thakK~ N E’ = K’ N E’. Since it is evident that
z,(K’) < z,(K™) we only have to show that

z,(K") > z,(C7).
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For this purpose lat, R, andp denote, respectively, the radii 8, B,, and that of the
lower base oK’, and leth signify the height ofC~. If p < r, then obviouslyz,(K’) >
hc(—Uo) + h/2 andz,(C~) < hc(—Uo) + h/2, and consequentls, (K') > z,(C™).

If p >rleta = R/r andg = p/r. Thena > B > 1, and an elementary calculation
shows that

h /-1 o1
K') — = » — .
Zn( ) Zn(C ) n+1k=1 <ﬂn_1 aﬂ_l)
Since it is easily checked that for & k < n — 1 andx > 1 the functions(xk —

1)/(x" — 1) are decreasing we obtain the desired inequality. This concludes the proof of
Theorem 1. O

The following lemma concerning the symmetric difference metric will facilitate the
proof of Theorem 2. It is also of some independent interest. In the proof of this lemma
and in the proof of Theorem 2 we let, .. ., c14 denote positive constants that depend
onn only. The symbol| - | denotes the euclidean normR?.

Lemma. Let M, N € K", and assume that(tM N N) > Oandv(M) < 1,v(N) < 1.
Then there exists a homothetic copydfiN such that Nc N N M and

AM. N) )l/n 17

A(M, N) <y (m

wherey, depends on n only

Proof. Let L denote the Loewner ellipsoid & N N, that is, the ellipsoid of smallest
volume that contains1 N N. Since a volume preserving affine transformatioRbfeaves
all entities in (17) invariant it can be assumed thas a ball centered at. Letr denote
the radius of. Then the well-known theorem of John states ti#h)L ¢ M NN, and
this shows that

(%) v(L) <v(MNN) <v(l). (18

Now, if X € N\M let X’ be the intersection point of the line segmeat){] with the
boundary ofM. There obviously are ar, € N\M and a corresponding], such that
XN/ 11%ll = inf{]IX[I/lIx]l: x € N\M}. Hence, for allx € N\M we have

1%l ,
X < Xl
%ol
and this implies that
X/
uN C M. (19
%ol

Let P be a support plane &fl atx/ and consider the cones= C(Xo, (1/n)LN(P—X}))
andU’ = C(Xe, U N P). Observing that the base 0fis an(n — 1)-dimensional ball of
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radius(1/n)r and the height of) is at least1/n)r we find

A(M, N) > v(U") > (M) v(U) > ¢ (1— ”X"”> v(L).

(%ol %ol

Combined with (18) this yields

AM, N) \ V" /
1_(02 (M, )) _ Il

v(M N N) I Xoll
Nowy, if
A(M, N
c2¥ <1, (20)
v(M NN
let

1/n
N (1o (G 2M NV
v(MNN
Then (19) shows thall’ ¢ M N N and one deduces that
A(M,N) < A(M,N) + A(N, N')

any 4 (1 (1 (2NN L

’ 25(M NN v
Using also the inequalitiegN) < 1,v(MNN) < 1,andA(M, N) < v(M)+v(N) < 2
we readily deduce that

IA

A(M, N))l/”

AM. N = (m

If (20) is not satisfied then, taking & any homothetic copy dil contained inM N N,
one obtains

AM, N) \ /"
v(MN N))

AM,N)<v(M) <1< <02

1/n

Thus, lettingy, = max{cs, ¢;’"'}, we have proved (17). O

Proof of Theoren2. One obviously may assume that
v(K) =1 (21

Also, replacing, if necessary, by maxi,, 1} we see that (5) is trivially satisfied if
¢ > 1. Thus it can be assumed that

e <1l (22

Moreover, there is no loss in generality by assuming that

z(K)=o0
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and that) (K) = 6, —e = v(Ky,)/v(K_y,), where, in the giverixy, . . ., X,)-coordinate
systemu, = (0, ...,0,1). Thenv(K,,) = (6n — ¢)/(6n — ¢ + 1), and observing (22)
we deduce that

n \" n \"
1-— -2 K 1— ) 2
< <n+1> 5e <v(Ky,) < <n+1> 23

The planex, = 0 will be denoted byF, and, similarly as before, we writeé*™ andF ~
for the two closed half-spaces definedpy> 0 andx, < 0, respectively. Furthermore,
foranyY € K" we again se¥* = YNF*, Y~ =YNF~. Thus,K,, = Kt and
K_y, = K™. Thexy-axis will be denoted by.

We first deal with the case whdf is rotationally symmetric with respect toand
prove under this assumption the following statement:

Ol

Let G, be the cone ifR" with the following propertiesThe base of €is an(n — 1)-
dimensional ball in F centered at and parallel to F, and the apex of Gisin¢NF~.
MoreoverK N F = C, N F, andv(C}) = v(K™), v(C;) = v(K™). Then

A(K, Co) < Cae¥/?. (24

It is evident that a cone with the above properties exists. The idea to construct this
cone is suggested by the work of@baum [5] where it is used to prove (4). Note that
(21) implies

v(Co) =1 (295

To prove (24) we first show thai K N C,) is hot less than some constant (depending
onn only). Let Q be the cone with apey at Hx (—Up) N £, base inHk (uy), and such
thatK N F = QN F. Clearly,K* c Q and it follows from (23) that

v(Q) > v(K™) > 3. (26)
Letting Q" = C(q, K N F) we see tha)’ ¢ K N C, and therefore

v(K NCo) > (Q) = ( Nk (= o) )nv@).
hk (Uo) + hk (—Uo)
Combining this with (26) and the fact that, due to (2),(—uo)/(hk (Ug) +hk (—=Ug)) >
1/(n+ 1) we obtain the desired inequality

v(KNGCo) = Cs. 27

Next, consider the Loewner ellipsoid, sdyof K N C,. From the uniqueness &f
and the axial symmetry df andGC, it follows immediately tha€ also hag as an axis
of symmetry. Consequently there exists a volume preserving affine transforration
the form(xq, ..., Xn—1, Xn) = (AX1, ..., AXn—1, AY""Xy) (A > 0) that transformg into
a ballo£. Since (24) is invariant with respect toit suffices to prove this inequality
under the assumption thétis already a ball. Then it follows from John’s theorem and
(27) thatk N C, contains a balB such that

v(B) > Ce. (28
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Because of (21) and (25) this implies in particular that the diameters of#ba@thdC,
are bounded by constants dependingnamly.
It is now convenient to introduce the following notation:

Ki=KNCH, Ky=K\C;, Ci=CHhK'"  Co=C;\K".
The definition ofC, shows that
v(KH=v(Ch), v(K)=v(C7), v(K)=v(C1), v(K)=v(Cp), (29
and consequently

A(K, Co) = 2(v(Ky) + v(K2)). (30)

Letting againz,(X) denote thex,-coordinate ofz(X), and observing thak = (K N
Co) UK UKj3, Cy = (K NCy) UCy UCy, where the unions are disjoint, we have
V(K NC)za(K NCo) + v(Ky)zn(Ky) + v(K2)zn(K2) = z,(K) =0, (31)

V(K NCo)zn(K NCo) +v(C1)Zn(Cr) + v(C2)Zn(C3) = zn(Cy). (32)

Sincez,(Co) > 0 would implyv(K*) = v(C}) > 1— (n/(n+ 1))", which contradicts
(23), we see that,(C,) < 0. This fact in conjunction with (29), (31), and (32) shows
that

[20(Co)| = v(K1)(Zn (K1) — Zn(Cy)) + v(K2)(Zn(K2) — Zn(Cy)). (33
We now wish to establish a lower bound KK 1) — z,(C,). If sdenotes the distance
betweenF and the base df,, then obviously

Z,(Cy) <s.

On the other hand, ifis the distance between the support pl&hgu,) and the base of
C,, then (because of (2))

1
Zn(Ky) — s> ——t.
n( 1) “nhn+1

Hence,

1
Zn(K1) — z0(Cy) = mt. (34

SinceK is outsideC,, but within the conical extension &, up to Hy (uo) it follows

that
h+t\"
(%) ~ 1> u(Ky),

whereh signifies the height of,. Observing that < c; and, because of (28), > cg
we deduce that

t > cou(Ky).
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In conjunction with (34) this yields
Zh(K1) — zn(Cy) > ciov(Ky). (39

Next, we derive a lower bound fax,(K2) — z,(Cy). If g = (0, ..., 0, gn) denotes
again the pointH (—u,) N £, thenK~ N CJ contains the con€(q, K N F). Conse-
quently, if g denotes the height of; and if v" indicates the volume fofn — 1)-
dimensional convex bodies, then

%v'(K N Bt < v(KTNCH) =v(KT) —v(Kyp) =v(Cy) —v(Kp)
= %v/(K NF)g — v(Ky).

Recalling the remark after (28) regarding the boundednekswé obtain

nv(K2)
— — K»).
g—Onl = (KN F) > C11v(K2) (36)
Thus, if p denotes the apex &,, the coneC(p, C, N Hk (—U,)) has height at least
C11v(Ky).
Let now F’ be the plane that separatés andC,, and setC; = C(p,Co N F').
Obviously,

C(p, Co N Hk (=Uo)) C Cs, (37
and if hg denotes the height @3 one obtains from (36) that
hs > c11v(Kp). (39
Furthermore, we can show that
zh(Cp) < zn(Cy). (39

To verify this letK; = C3N K. ThenCz = C, U K3, and sinceC, andK 3 are disjoint it
follows that(z,(C3) — z,(C2))v(C2) = (zn(K3) — z,(C3))v(K3). Thus one only has to
show thatz,(C3) < z,(K3). However, this can easily be seen by constructing the €ane
which has the same base@sandis suchthat, N F” = K3 N F”,whereF” isthe plane
that passes througttK3) and is parallel td=. Evidentlyz,(C3) < z,(Cy) < z,(K3).
From (37), (38), (39), and the fact that(K,) — z,(C3) is not less than the distance
of z(C3) from F’ (sincez(K5) andz(Cs) lie on different sides oF’) one can deduce that

1
Zn(K2) = 20(C2) = Z0(K2) — 2(Ca) = hs > c2v(K2). (40

+1
We can now complete the proof of (24). From (33), (35), and (40) one deduces that

|Z0(Co)| = Crov(K1)? + Cr2v(K2)?.
Noting thatv(K1)? + v(K2)? > 1(v(K1) + v(K2))? we infer, observing also (30), that

121(Co)| > C13A(K, Co)2.



Stability Theorems for Two Measures of Symmetry 311

Since the height of; is (n/(n+1))h+ |z,(C,)| and, as noted befork,> cg it follows
from this inequality together with (21), (25), and (29) that

1-v(K*) = v(C]) = 1( +lh+|zn<co>|) z(ﬁﬁclm(K,co)Z) .

Combining this with (23) we obtain

1 n "L . ) 1 n 2
n 4 _ + n -
n+1+(9 €) <<n+1> + g<9> > (1=v(K")"" = n+l+Cl4A(K,Co)

and this implies (24).

Applying the above lemma witM = K andN = C,, and taking into account (21),
(24), (25), and (27), we see thKt contains a con€’ that is homothetic t&C, and
satisfies the inequality

v(K) — v(C) = A(K, C') < rpeV/?”, (41)

wherel,, depends om only.

Finally, if K lacks the stipulated axial symmetry we perform a rotational symmetriza-
tion of K with respect to the liné. This transform« into a convex bod that hast
as an axis of symmetry and has the property tm(t) = v(K) = 1. Then (41) applied
to K instead ofK shows thatk contains a con€ that hast as an axis of symmetry,
and whose base, sal is in a planeF, that is orthogonal té. Moreover, we have

v(K) — v(€) < Ane¥/?”.

Let now C be defined as a cone with baken F and apex inkK N Hk (—Uo). Since
the spherical symmetrization has the property ek N F) = v'(K N F) and since
J c K N F it follows that the(n — 1)-dimensional volume of the base 6fis at least
that of the base of and the height of is at least that o€. Hence,

A(K, C) = v(K) = v(©) < v(K) — v(C) < ane¥/?,

and this proves Theorem 2.
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