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Abstract. This article concerns two measures of central symmetry that characterize cones
as the most asymmetric convex bodies. Stability estimates are established that provide
information on the deviation of a convex body from a cone if the corresponding measure of
symmetry is close to its maximum value.

The survey article [6] of Gr¨unbaum shows convincingly that a large variety of results
in the theory of convex sets can be viewed as statements regarding certain measures
of symmetry (or asymmetry). We consider here two such measures that attain their
minimum if the bodies are centrally symmetric and their maximum if the bodies are
cones. Our primary objective is to establish stability estimates concerning the max-
imum value of these measures. In other words, we seek estimates for the deviation
of a convex body from a cone if its measure of symmetry is close to its maximum
value.

The following definitions and notations are used consistently.Rn denotes the euclidean
n-dimensional space, where it is always assumed thatn ≥ 2. We leto denote the origin
of Rn, andSn−1 the (n − 1)-dimensional unit sphere inRn (centered ato). The class
of convex bodies inRn, that means the compact convex subsets inRn with nonempty
interior, is denoted byKn. 1 denotes the symmetric difference metric onKn. Thus, if
K , L ∈ Kn, then1(K , L) = v(K ∪ L) − v(K ∩ L), wherev signifies the volume in
Rn. Instead of “hyperplane” we simply say “plane.” IfB is a compact convex subset of
a plane inRn andp is a point inRn, then the convex hull ofB ∪ {p}, if it has nonempty
interior, is called aconewith baseB and apexp, and it is denoted byC(p, B). For any
K ∈ Kn we letz(K ) denote the centroid ofK andHK (u) the support plane ofK in the
directionu. The distance betweenz(K ) and HK (u), that is, the support function ofK
with respect to the centroid, is denoted byhK (u).
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As our first measure of symmetry we define

η(K ) = sup{hK (u)/hK (−u): u ∈ Sn−1}.

Clearly,

η(K ) ≥ 1, (1)

andη(K ) = 1 holds exactly ifK is centrally symmetric. Minkowski already showed
that, for allK ∈ Kn,

η(K ) ≤ n. (2)

Furthermore, it is easy to see that ifK is a cone, thenη(K ) = n, and thathK (u)/hK (−u)
attains the valuen if u is an inner normal vector ofK at its base. For references and
historic comments regardingη(K ) and related functions see [6].

We now can formulate our first result.

Theorem 1. Let there be given a K∈ Kn and anε ≥ 0. If η(K ) ≥ n− ε there exists
a cone C such that

1(K ,C) ≤ 4

n+ 1
v(K )ε. (3)

We add some relevant remarks concerning this theorem.
1. Lettingε = n− η(K ), which is admissible because of (2), we obtain from (3) the

following statement:

For any K ∈ Kn there is a cone C such that

η(K ) ≤ n− n+ 1

4v(K )
1(K ,C).

This is a sharpened version of (2). Combined with the previous remark concerning the
occurrence of the equalityη(K ) = n one infers that this equality holds if and only ifK
is a cone.

2. For the inequality (1), where equality holds exactly ifK is centrally symmetric,
one can also establish a corresponding stability result. To see this, assume that, for some
ε ≥ 0,

η(K ) ≤ 1+ ε.
Then 1/(1+ ε) ≤ hK (u)/hK (−u) ≤ 1+ ε (for all u ∈ Sn−1) and therefore

∣∣hK (u)− 1
2(hK (u)+ hK (−u))

∣∣ = 1

2

∣∣∣∣ hK (u)

hK (−u)
− 1

∣∣∣∣ |hK (−u)| ≤ nD

2(n+ 1)
ε,

whereD denotes the diameter ofK . Thus, lettingK ∗ denote the convex body obtained
from K by central symmetrization (with respect toz(K )), andδ the Hausdorff metric
onKn we have justified the following statement:
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If η(K ) ≤ 1+ ε there exist a centrally symmetric convex body K∗ such that

δ(K , K ∗) ≤ nD

2(n+ 1)
ε.

Similarly as in the previous statement this can also be written as an improved version of
(1), namely,

η(K ) ≥ 1+ 2(n+ 1)

nD
δ(K , K ∗).

We also remark that it is not particularly important whether such results are stated in
terms of the symmetric difference or the Hausdorff metric since there exist inequalities
that allow the transition from one of these metrics to the other (see [4]).

Our second result concerns a theorem that was first published by Gr¨unbaum [5]. In
this article one also can find further references. As before let there be given aK ∈ Kn

with centroidz(K ). Furthermore, letE+(u) denote the half-space whose boundary plane
containsz(K ) and hasu as an interior normal vector. Define

Ku = K ∩ E+(u)

and

θ(K ) = sup{v(Ku)/v(K−u): u ∈ Sn−1}.
Similarly asη(K ) the functionθ(K ) can be conceived as a measure of symmetry.
Obviously,θ(K ) ≥ 1 and equality holds ifK is centrally symmetric. IfK is a cone and
u an outer normal vector ofK at its base, then

v(Ku)

v(K−u)
=
(

1+ 1

n

)n

− 1.

The theorem just mentioned states that this is actually the extremal situation. In other
words, if we define

θn =
(

1+ 1

n

)n

− 1,

then

θ(K ) ≤ θn (4)

with equality if K is a cone. Our second theorem establishes a stability result for this
inequality.

Theorem 2. Let there be given a K∈ Kn and anε ≥ 0. There exists a constantλn,
depending on n only, such that the inequalityθ(K ) ≥ θn − ε implies that K contains a
cone C with the property that

1(K ,C) ≤ λnv(K )ε
1/2n2

. (5)



304 H. Groemer

Again, we add several pertinent remarks.
1. The proof will show that it would be possible to explicitly determine a suitableλn,

but the additional technical details would require substantially more space.
2. Similarly as in the case of the first remark to Theorem 1 the above result can also

be formulated as a sharpened version of (4), namely,

θ(K ) ≤ θn −
(

1

λnv(K )
1(K ,C)

)2n2

,

and similarly as before one can state thatθ(K ) = θn holds if and only ifK is a cone.
3. Although it is obvious that for a centrally symmetricK we haveθ(K ) = 1, it is

not obvious, but true, that this equality holds only in this case. For a detailed study of
the equalityθ(K ) = 1, including pertinent stability results, see Section 5.6 of [3].

Proof of Theorem1. If ε ≥ (n+ 1)/4, then (3) is trivially true for any inscribed cone
C in K . Consequently it can be assumed that

ε <
n+ 1

4
. (6)

SinceK is supposed to be given and fixed we frequently simplify the notation by writing
H andh instead ofHK andhK , respectively. It suffices to consider only the caseη(K ) =
n− ε since, if this is not so, it can be achieved by decreasing the value ofε. Then there
exists auo ∈ Sn−1 such thath(uo)/h(−uo) = n− ε. Performing, if necessary, a suitable
similarity transformation, we may assume that

h(uo) = n− ε, h(−uo) = 1. (7)

Let nowpbe a point inK∩H(uo), and letE be the plane parallel toH(uo)and passing
throughz(K ). Obviously, there exists a coneC with the following three properties: the
apex ofC is p, its base is contained inH(−uo), andE∩C = E∩K . It will be shown that
C satisfies inequality (3). For this purpose we may suppose that the position ofK in Rn

(equipped with the usual(x1, . . . , xn)-coordinate system) is such thatuo = (0, . . . ,0,1)
and

z(C) = o. (8)

We write E+ andE− for the two closed half-spaces determined byE, wherep ∈ E+.
Furthermore, for anyX ∈ Kn we let X+ = X ∩ E+ and X− = X ∩ E−. Note that
C+ ⊂ K+, K− ⊂ C−, and that

1(K ,C) = (v(K+)− v(C+))+ (v(C−)− v(K−)). (9)

Also, (7) shows that the height ofC is n+ 1− ε, and this implies that

hC(uo) = n

(
1− ε

n+ 1

)
, hC(−uo) = 1− ε

n+ 1
. (10)

For anyY ∈ Kn let zn(Y) denote thexn-coordinate ofz(Y). Sincezn(K ) = hC(uo) −
hK (uo) it follows from (7) and (10) thatzn(K ) = ε/(n+ 1). Thus we can state that

1

v(K )
(v(K+)zn(K

+)+ v(K−)zn(K
−)) = ε

n+ 1



Stability Theorems for Two Measures of Symmetry 305

and, as a consequence of (8),

v(C+)zn(C
+)+ v(C−)zn(C

−) = 0.

Hence,

(v(K+)zn(K
+)−v(C+)zn(C

+))+(v(K−)zn(K
−)−v(C−)zn(C

−))= ε

n+1
v(K ). (11)

We also note that (2) (applied toK+) and the fact thatη(C+) = n imply that

zn(K
+) ≥ zn(C

+). (12)

We now proceed under the hypothesis that in addition to (12) we have

zn(K
−) ≥ zn(C

−). (13)

From (11), (12), (13), and the fact thatzn(C−) ≤ 0 we infer that

(v(K+)− v(C+))zn(C
+)+ (v(C−)− v(K−))|zn(C

−)| ≤ ε

n+ 1
v(K ). (14)

Using (10) we see thatzn(C+) = (1/(n+ 1))hC(uo) ≥ (n− ε)/(n+ 1), and it follows
from (6) that

zn(C
+) ≥ 1

4. (15)

Furthermore, since the height of the truncated coneC− equalsh(−uo) = 1 the orthog-
onal distance ofz(C−) from the base ofC is at most12. This implies that|zn(C−)| ≥
hC(−uo)− 1

2. Consequently, using again (6) and (10), we obtain

|zn(C
−)| ≥ 1

2
− ε

n+ 1
≥ 1

4
. (16)

Clearly, (14), (15), and (16) imply

(v(K+)− v(C+))+ (v(C−)− v(K−)) ≤ 4ε

n+ 1
v(K ).

Inequality (3) is now an obvious consequence of this inequality and (9).
To complete the proof we need to show (13). First we note that it can be assumed that

C− and K− have rotational symmetry with respect to thexn-axis. This assumption is
justified since one can perform a rotational symmetrization (“Schwarzsche Abrundung,”
see Section 41 of [1]) with respect to thexn-axis, and it is obvious that this symmetrization
does not changezn(K−) andzn(C−). Thus we can proceed under the assumption thatC−

is a truncated cone whose “upper base”B∗ = C∩E and “lower base”B∗ = C∩H(−uo)

are(n− 1)-dimensional balls. Let nowE′ be the plane that is parallel toE and contains
z(K−), and letK ′ be the truncated cone (possibly cylinder) with upper baseB∗, lower
base contained inB∗, and such thatK− ∩ E′ = K ′ ∩ E′. Since it is evident that
zn(K ′) ≤ zn(K−) we only have to show that

zn(K
′) ≥ zn(C

−).
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For this purpose letr , R, andρ denote, respectively, the radii ofB∗, B∗, and that of the
lower base ofK ′, and leth signify the height ofC−. If ρ ≤ r , then obviouslyzn(K ′) ≥
hC(−uo) + h/2 andzn(C−) ≤ hC(−uo) + h/2, and consequentlyzn(K ′) ≥ zn(C−).
If ρ > r let α = R/r andβ = ρ/r . Thenα ≥ β > 1, and an elementary calculation
shows that

zn(K
′)− zn(C

−) = h

n+ 1

n−1∑
k=1

(
βk − 1

βn − 1
− α

k − 1

αn − 1

)
.

Since it is easily checked that for 1≤ k ≤ n − 1 andx > 1 the functions(xk −
1)/(xn−1) are decreasing we obtain the desired inequality. This concludes the proof of
Theorem 1.

The following lemma concerning the symmetric difference metric will facilitate the
proof of Theorem 2. It is also of some independent interest. In the proof of this lemma
and in the proof of Theorem 2 we letc1, . . . , c14 denote positive constants that depend
onn only. The symbol‖ · ‖ denotes the euclidean norm inRn.

Lemma. Let M, N ∈ Kn, and assume thatv(M ∩ N) > 0 andv(M) ≤ 1, v(N) ≤ 1.
Then there exists a homothetic copy N′ of N such that N′ ⊂ N ∩ M and

1(M, N ′) ≤ γn

(
1(M, N)

v(M ∩ N)

)1/n

, (17)

whereγn depends on n only.

Proof. LetL denote the Loewner ellipsoid ofM ∩ N, that is, the ellipsoid of smallest
volume that containsM∩N. Since a volume preserving affine transformation ofRn leaves
all entities in (17) invariant it can be assumed thatL is a ball centered ato. Let r denote
the radius ofL. Then the well-known theorem of John states that(1/n)L ⊂ M ∩ N, and
this shows that (

1

n

)n

v(L) ≤ v(M ∩ N) ≤ v(L). (18)

Now, if x ∈ N\M let x′ be the intersection point of the line segment [o, x] with the
boundary ofM . There obviously are anxo ∈ N\M and a correspondingx′o such that
‖x′o‖/‖xo‖ = inf{‖x′‖/‖x‖: x ∈ N\M}. Hence, for allx ∈ N\M we have

‖x′o‖
‖xo‖‖x‖ ≤ ‖x

′‖

and this implies that

‖x′o‖
‖xo‖N ⊂ M. (19)

Let P be a support plane ofM atx′o and consider the conesU = C(xo, (1/n)L∩(P−x′o))
andU ′ = C(xo,U ∩ P). Observing that the base ofU is an(n− 1)-dimensional ball of
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radius(1/n)r and the height ofU is at least(1/n)r we find

1(M, N) ≥ v(U ′) ≥
(‖xo‖ − ‖x′o‖

‖xo‖
)n

v(U ) ≥ c1

(
1− ‖x

′
o‖
‖xo‖

)n

v(L).

Combined with (18) this yields

1−
(

c2
1(M, N)

v(M ∩ N)

)1/n

≤ ‖x
′
o‖
‖xo‖ .

Now, if

c2
1(M, N)

v(M ∩ N
< 1, (20)

let

N ′ =
(

1−
(

c2
1(M, N)

v(M ∩ N

)1/n
)

N.

Then (19) shows thatN ′ ⊂ M ∩ N and one deduces that

1(M, N ′) ≤ 1(M, N)+1(N, N ′)

≤ 1(M, N)+
(

1−
(

1−
(

c2
1(M, N)

v(M ∩ N

)1/n
)n)

v(N).

Using also the inequalitiesv(N) ≤ 1,v(M∩N) ≤ 1, and1(M, N) ≤ v(M)+v(N) ≤ 2
we readily deduce that

1(M, N ′) ≤ c3

(
1(M, N)

v(M ∩ N)

)1/n

.

If (20) is not satisfied then, taking asN ′ any homothetic copy ofN contained inM ∩ N,
one obtains

1(M, N ′) ≤ v(M) ≤ 1≤
(

c2
1(M, N)

v(M ∩ N)

)1/n

.

Thus, lettingγn = max{c3, c
1/n
2 }, we have proved (17).

Proof of Theorem2. One obviously may assume that

v(K ) = 1. (21)

Also, replacing, if necessary,λn by max{λn,1} we see that (5) is trivially satisfied if
ε ≥ 1. Thus it can be assumed that

ε < 1. (22)

Moreover, there is no loss in generality by assuming that

z(K ) = o
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and thatθ(K ) = θn−ε = v(Kuo)/v(K−uo), where, in the given(x1, . . . , xn)-coordinate
system,uo = (0, . . . ,0,1). Thenv(Kuo) = (θn − ε)/(θn − ε + 1), and observing (22)
we deduce that

1
9 ≤ 1−

(
n

n+ 1

)n

− 4
9ε ≤ v(Kuo) ≤ 1−

(
n

n+ 1

)n

. (23)

The planexn = 0 will be denoted byF , and, similarly as before, we writeF+ andF−

for the two closed half-spaces defined byxn ≥ 0 andxn ≤ 0, respectively. Furthermore,
for any Y ∈ Kn we again setY+ = Y ∩ F+, Y− = Y ∩ F−. Thus,Kuo = K+ and
K−uo = K−. Thexn-axis will be denoted bỳ.

We first deal with the case whenK is rotationally symmetric with respect tòand
prove under this assumption the following statement:

Let Co be the cone inRn with the following properties: The base of Co is an(n− 1)-
dimensional ball in F+ centered at̀ and parallel to F, and the apex of Co is in `∩ F−.
Moreover, K ∩ F = Co ∩ F , andv(C+o ) = v(K+), v(C−o ) = v(K−). Then

1(K ,Co) ≤ c4ε
1/2n. (24)

It is evident that a cone with the above properties exists. The idea to construct this
cone is suggested by the work of Gr¨unbaum [5] where it is used to prove (4). Note that
(21) implies

v(Co) = 1. (25)

To prove (24) we first show thatv(K ∩Co) is not less than some constant (depending
on n only). Let Q be the cone with apexq at HK (−uo) ∩ `, base inHK (uo), and such
that K ∩ F = Q ∩ F . Clearly,K+ ⊂ Q and it follows from (23) that

v(Q) ≥ v(K+) ≥ 1
9. (26)

Letting Q′ = C(q, K ∩ F) we see thatQ′ ⊂ K ∩ Co and therefore

v(K ∩ Co) ≥ v(Q′) =
(

hK (−uo)

hK (uo)+ hK (−uo)

)n

v(Q).

Combining this with (26) and the fact that, due to (2),hK (−uo)/(hK (uo)+hK (−uo)) ≥
1/(n+ 1) we obtain the desired inequality

v(K ∩ Co) ≥ c5. (27)

Next, consider the Loewner ellipsoid, sayE , of K ∩ Co. From the uniqueness ofE
and the axial symmetry ofK andCo it follows immediately thatE also has̀ as an axis
of symmetry. Consequently there exists a volume preserving affine transformationσ of
the form(x1, . . . , xn−1, xn)→ (λx1, . . . , λxn−1, λ

1−nxn) (λ > 0) that transformsE into
a ballσE . Since (24) is invariant with respect toσ it suffices to prove this inequality
under the assumption thatE is already a ball. Then it follows from John’s theorem and
(27) thatK ∩ Co contains a ballB such that

v(B) ≥ c6. (28)
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Because of (21) and (25) this implies in particular that the diameters of bothK andCo

are bounded by constants depending onn only.
It is now convenient to introduce the following notation:

K1 = K+\C+o , K2 = K−\C−o , C1 = C+o \K+, C2 = C−o \K−.

The definition ofCo shows that

v(K+)=v(C+), v(K−)=v(C−), v(K1)=v(C1), v(K2)=v(C2), (29)

and consequently

1(K ,Co) = 2(v(K1)+ v(K2)). (30)

Letting againzn(X) denote thexn-coordinate ofz(X), and observing thatK = (K ∩
Co) ∪ K1 ∪ K2, Co = (K ∩ Co) ∪ C1 ∪ C2, where the unions are disjoint, we have

v(K ∩ Co)zn(K ∩ Co)+ v(K1)zn(K1)+ v(K2)zn(K2) = zn(K ) = 0, (31)

v(K ∩ Co)zn(K ∩ Co)+ v(C1)zn(C1)+ v(C2)zn(C2) = zn(Co). (32)

Sincezn(Co) > 0 would implyv(K+) = v(C+o ) > 1− (n/(n+ 1))n, which contradicts
(23), we see thatzn(Co) ≤ 0. This fact in conjunction with (29), (31), and (32) shows
that

|zn(Co)| = v(K1)(zn(K1)− zn(C1))+ v(K2)(zn(K2)− zn(C2)). (33)

We now wish to establish a lower bound forzn(K1)−zn(C1). If sdenotes the distance
betweenF and the base ofCo, then obviously

zn(C1) ≤ s.

On the other hand, ift is the distance between the support planeHK (uo) and the base of
Co, then (because of (2))

zn(K1)− s ≥ 1

n+ 1
t.

Hence,

zn(K1)− zn(C1) ≥ 1

n+ 1
t. (34)

SinceK1 is outsideCo, but within the conical extension ofCo up to HK (uo) it follows
that (

h+ t

h

)n

− 1≥ v(K1),

whereh signifies the height ofCo. Observing thatt ≤ c7 and, because of (28),h ≥ c8

we deduce that

t ≥ c9v(K1).
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In conjunction with (34) this yields

zn(K1)− zn(C1) ≥ c10v(K1). (35)

Next, we derive a lower bound forzn(K2) − zn(C2). If q = (0, . . . ,0,qn) denotes
again the pointH(−uo) ∩ `, then K− ∩ C−o contains the coneC(q, K ∩ F). Conse-
quently, if g denotes the height ofC−o and if v′ indicates the volume for(n − 1)-
dimensional convex bodies, then

1

n
v′(K ∩ F)|qn| ≤ v(K− ∩ C−o ) = v(K−)− v(K2) = v(C−o )− v(K2)

= 1

n
v′(K ∩ F)g− v(K2).

Recalling the remark after (28) regarding the boundedness ofK we obtain

g− |qn| ≥ nv(K2)

v′(K ∩ F)
≥ c11v(K2). (36)

Thus, if p denotes the apex ofCo, the coneC(p,Co ∩ HK (−uo)) has height at least
c11v(K2).

Let now F ′ be the plane that separatesK2 andC2, and setC3 = C(p,Co ∩ F ′).
Obviously,

C(p,Co ∩ HK (−uo)) ⊂ C3, (37)

and if h3 denotes the height ofC3 one obtains from (36) that

h3 ≥ c11v(K2). (38)

Furthermore, we can show that

zn(C2) ≤ zn(C3). (39)

To verify this letK3 = C3∩ K . ThenC3 = C2∪ K3, and sinceC2 andK3 are disjoint it
follows that(zn(C3)− zn(C2))v(C2) = (zn(K3)− zn(C3))v(K3). Thus one only has to
show thatzn(C3) ≤ zn(K3). However, this can easily be seen by constructing the coneC4

which has the same base asC3 and is such thatC4 ∩ F ′′ = K3 ∩ F ′′, whereF ′′ is the plane
that passes throughz(K3) and is parallel toF . Evidentlyzn(C3) ≤ zn(C4) ≤ zn(K3).

From (37), (38), (39), and the fact thatzn(K2)− zn(C3) is not less than the distance
of z(C3) from F ′ (sincez(K2) andz(C3) lie on different sides ofF ′) one can deduce that

zn(K2)− zn(C2) ≥ zn(K2)− zn(C3) ≥ 1

n+ 1
h3 ≥ c12v(K2). (40)

We can now complete the proof of (24). From (33), (35), and (40) one deduces that

|zn(Co)| ≥ c10v(K1)
2+ c12v(K2)

2.

Noting thatv(K1)
2+ v(K2)

2 ≥ 1
2(v(K1)+ v(K2))

2 we infer, observing also (30), that

|zn(Co)| ≥ c131(K ,Co)
2.
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Since the height ofC−o is (n/(n+1))h+|zn(Co)| and, as noted before,h ≥ c8 it follows
from this inequality together with (21), (25), and (29) that

1− v(K+) = v(C−o ) =
1

hn

(
n

n+ 1
h+ |zn(Co)|

)n

≥
(

n

n+ 1
+ c141(K ,Co)

2

)n

.

Combining this with (23) we obtain

n

n+ 1
+ ( 4

9ε)
1/n ≥

((
n

n+ 1

)n

+ 4
9ε

)1/n

≥ (1−v(K+))1/n ≥ n

n+ 1
+c141(K ,Co)

2

and this implies (24).
Applying the above lemma withM = K andN = Co, and taking into account (21),

(24), (25), and (27), we see thatK contains a coneC′ that is homothetic toCo and
satisfies the inequality

v(K )− v(C′) = 1(K ,C′) ≤ λnε
1/2n2

, (41)

whereλn depends onn only.
Finally, if K lacks the stipulated axial symmetry we perform a rotational symmetriza-

tion of K with respect to the linè. This transformsK into a convex bodyK̃ that has̀
as an axis of symmetry and has the property thatv(K̃ ) = v(K ) = 1. Then (41) applied
to K̃ instead ofK shows thatK̃ contains a conẽC that has̀ as an axis of symmetry,
and whose base, saỹJ, is in a planeF̃ , that is orthogonal tò. Moreover, we have

v(K̃ )− v(C̃) ≤ λnε
1/2n2

.

Let now C be defined as a cone with baseK ∩ F̃ and apex inK ∩ HK (−uo). Since
the spherical symmetrization has the property thatv′(K̃ ∩ F̃) = v′(K ∩ F̃) and since
J̃ ⊂ K̃ ∩ F̃ it follows that the(n− 1)-dimensional volume of the base ofC is at least
that of the base of̃C and the height ofC is at least that of̃C. Hence,

1(K ,C) = v(K )− v(C) ≤ v(K̃ )− v(C̃) ≤ λnε
1/2n2

,

and this proves Theorem 2.
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