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Abstract
The volume of a Meissner polyhedron is computed in terms of the lengths of its dual
edges. This allows to reformulate the Meissner conjecture regarding constant width
bodies with minimal volume as a series of explicit finite dimensional problems. A
direct consequence is the minimality of the volume of Meissner tetrahedras among
Meissner pyramids.
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1 Introduction

Certain convex shapes have the remarkable property that any two parallel tangent or
supporting planes which contain the shape between them are at a fixed distance apart.
The ball is an obvious example, but there are infinitely many more. In dimension
two the famous Reuleaux triangle (the intersection of three unit disks centered at the
vertices of a unit equilateral triangle) has constant width, together with the whole class
of Reuleaux polygons. See [15, Ch. 7] for an introduction regarding shapes of constant
width. For simplicity, all constant width shapes have unit diameter in the following.

The Reuleaux triangle is a particular shape of constant width, since it solves various
optimization problems in the class of constant width:

• it minimizes the area [5, 9, 15, 21];
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• it minimizes the inradius [15, Ch. 7], or equivalently, it maximizes the circumra-
dius;

• it maximizes the Cheeger constant [6, 10].

In dimension three fewer results are known regarding extremal shapes of constant
width. The minimality of the inradius and the maximality of the circumradius are
achieved by constant width shapes containing a unit tetrahedron [23, Sect. 14.3]. In
[1] it is proved that any body of constant width minimizing the volume resembles the
Meissner tetrahedron in the sense that any diameter has one endpoint corresponding
to a singular part of the boundary. Procedures for producing shapes of constant width
in arbitrary dimension were given in [20] and analytical parametrizations for three
dimensional constant width bodies were proposed in [3, 16].

Nevertheless, there are three dimensional bodies which are conjectured tominimize
the volume. These bodies are called Meissner tetrahedra [24] and are constructed as
follows:

• Intersect four unit balls centered at the vertices of a regular tetrahedron of unit
diameter. The body obtained is called a Reuleaux tetrahedron, but it does not have
constant width (see [23, Sect. 8.2] for more details)

• One side is chosen among each pair of opposite sides and a smoothing procedure
is performed. This is described in [15, Ch. 7] or [23, Sect. 8.3]. The smoothing
procedure can give rise to two types ofMeissner tetrahedra: either all edges coming
from a vertex are smoothed or all edges adjacent to one of the faces are smoothed.

It is conjectured by Bonnesen and Fenchel [7] that Meissner tetrahedra minimize the
volume. More historical and bibliographical aspects related to this problem are given
in [17]. Numerical simulations presented in [2] further suggest that the Meissner
tetrahedra are indeed minimizers for the volume. The conjecture is still open today
and we state it below:

Conjecture 1 The Meissner tetrahedra minimize the volume among all three dimen-
sional bodies with fixed constant width.

Many proofs of the analogue two dimensional result rely on showing that any
Reuleaux polygon which is not the Reuleaux triangle is not a minimizer for the area.
The density of Reuleaux polygons in the class of two dimensional shapes of constant
width implies the result.

Until recently, a similar class of discrete constant width shape was missing in
dimension three. In [28] the class of Reuleaux polytopes was introduced, defined
using intersection of balls. Although these polytopes can approximate arbitrarily well
all bodies of constant width, they have a drawback: they do not have constant width
themselves. This was remedied recently in [26] where the authors show how to obtain
constant width bodies in dimension three starting from a Reuleaux polytope. The
resulting bodies are called Meissner polyhedra, since they generalize the Meissner
tetrahedron. More details regarding these bodies, including their connections with
extremal sets of diameter one and their density in the class of shapes of constant width
are presented in [13]. It turns out that Meissner polyhedra give a natural context for
studying Conjecture 1, since the Meissner tetrahedron naturally belongs to all classes
of Meissner polyhedra which have an upper bound on the number of vertices.
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The study of Meissner polyhedra gives rise to complex combinatorial aspects and
connections with graph theory. The graphs behind the Reuleaux and Meissner poly-
hedra are studied in [27]. In particular, on associated the Github page https://github.
com/mraggi/ReuleauxPolyhedra the graphs giving rise to Meissner polyhedra up to
14 vertices are presented. These graphs are used for creating some of the illustrations
in this paper. Recently, in [14] the surface area and volume of Reuleaux and Meissner
polyhedra are computed, giving new tools for attacking Conjecture 1.

The purpose of this paper is to present observations and computations which lead
to a simple formula for the surface area and volume of Meissner polyhedra. Section2
presents details regarding the construction of Meissner polyhedra. Section3 presents
the detailed computation of the area and volume of Meissner polyhedra. In particular,
Conjecture 1 is reduced to a maximization problem involving a completely explicit
two dimensional function and the lengths of pairs of dual edges in a Meissner polyhe-
dron. In Sect. 4 the particular case of Meissner pyramids, generalizing the Meissner
tetrahedron is discussed, establishing that the tetrahedron is the body of constant width
with minimal volume among all pyramids of constant width. In Sect. 5 we show that
Conjecture 1 may be reduced to a series of finite dimensional problems for which the
Meissner tetrahedra are natural solution candidates.

Illustrations shown in the paper were produced using Metapost or Matlab. The
codes associated to Schwerdtfeger [31] were used to create drawings from spherical
geometry.

2 Meissner polyhedra

All constantwidth bodies considered in the following have unit diameter. TheMeissner
Polyhedra are introduced in [26] and are the 3Danalogue ofReuleaux polygons. In [26]
it is mentioned that these polyhedra are dense in the class of 3D constant width bodies
using arguments based on [28]. The density ofMeissner polyhedra in the class of three
dimensional constant width bodies was revisited in [13] where a detailed description
is given regarding the construction of these bodies. Moreover, a detailed description of
the computation of the volume and surface area for the Meissner tetrahedra is given.
The surface area and the volume of Meissner polyhedra is computed in [14]. In this
paper an alternate computation is proposed, resulting in a simple formula depending
only on the lengths of the pairs of dual edges.

The volume of a constant width body K is related to the surface area using the
Blaschke Formula

|K | = 1

2
|∂K | − π

3
. (2.1)

Therefore, to study the bodies having minimal volume it is enough to find constant
width bodies having minimal surface areas. Moreover, since the Meissner polyhedra
are dense in the class of constant width bodies if one proves that an arbitrary Meiss-
ner polyhedron has surface area larger than the Meissner tetrahedron, the Meissner
conjecture, i.e. the Blaschke–Lebesgue problem in dimension three is solved.
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In the following, we use the notation B(X) to denote the intersection of all balls
having unit radius with centers in X . Let X ⊂ R

3 be a finite set of m ≥ 4 points
having diameter 1 and suppose that X is extremal, i.e. the number of diametric pairs
of X is maximal. In [13, Thm. 3.4] is recalled that a set is extremal if and only if there
are 2m − 2 diametric pairs among points of X . Furthermore X is the set of vertices of
B(X), i.e. the points where at least three spherical faces meet. In a similar manner, an
edge of B(X) is the intersection of two adjacent spherical faces of ∂B(X). Following
Sallee [28], Kupitz et al. [19] and Hynd [13] we can define Reuleaux polyhedra.

Definition 2.1 (Reuleaux polyhedra) Given X ⊂ R
3 a finite set of m ≥ 4 points

which is an extremal finite set of unit diameter, the associated Reuleaux polyhedron
is R = B(X).

The resulting ball polytope does not have constant width. Nevertheless, any body
of constant width can be approximated arbitrarily well using Reuleaux polyhedra.

Let X be an extremal set of diameter one. Reuleaux polyhedra have natural def-
initions for vertices, edges and faces, which are analogue to classical polyhedra. In
particular, vertices are points x belonging to at least two diameters. Faces are spheri-
cal portions of ∂B(X), each face being opposite to a vertex which is the center of the
respective sphere. Two adjacent faces meet along an edge, which is a circular arc. See
[13] for a detailed discussion.

If x, y are the endpoints of an edge e of B(X) then there is a unique edge e′ of
B(X) with endpoints x ′, y′ such that |x − x ′| = |x − y′| = |y − x ′| = |y − y′| = 1.
See Fig. 1 for an illustration. The pair (e, e′) is a pair of dual edges of B(X). See [13,
Sect. 3] for more details.

The Meissner polyhedra are defined as follows. Consider an extremal diameter one
set X ⊂ R

3 having m ≥ 4, which according to Hynd [13] has m − 1 pairs of dual
edges

(e1, e
′
1), ..., (em−1, e

′
m−1). (2.2)

Meissner polyhedra were introduced in [26] and we give the following equivalent
definition according to Hynd [13].

Definition 2.2 (Meissner polyhedra) Consider X ⊂ R
3 a finite set of m ≥ 4 points

which is an extremal finite set of unit diameter having the pair of dual edges given by
(2.2). The convex body

B(X ∪ e1 ∪ ... ∪ em−1) (2.3)

is aMeissner polyhedron based on X . EveryMeissner polyhedron is a body of constant
width.

Note that it consists on intersection of balls with centers in X and on one edge among
every pair of dual edges. For every extremal finite set of unit diameter havingm points
there exist 2m−1 choices of Meissner polyhedra which can be constructed. Among
these choices there is one having minimal volume. This choice will be made more
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Fig. 1 Configuration of a pair of dual edges (e, e′). All other four edges in the corresponding tetrahedron
have unit length. θ(e) denotes the spherical length of the edge e and φ(e) represents the dihedral angle
corresponding to edge e in the tetrahedron determined by (e, e′)

precise in the next section. The fact that this construction produces bodies of constant
width is well established and proved in detail in [13, 26]. An example of Reuleaux
polyhedron and the associated Meissner polyhedron is shown in Fig. 2. This example
is taken from the database associated to the paper [27].

Consider the following elements associated to an extremal diameter 1 set:

• A generic pair of dual edges from (2.2) will be denoted by (e, e′).
• For each edge e consider the associated angle θ(e)made by e at the center of a unit
ball which determines e. More precisely, the endpoints of x, y of e are put on a
disk of radius 1 and the angle at the center is measured. In particular θ(e)measures
the geodesic distance from the endpoints of e on a unit sphere. Since the vertices
form a set of diameter 1 we must have |x − y| ≤ 1 which implies θ(e) ∈ [0, π/3].
Moreover, if θ(e) = θ(e′) = π/3 then x, y, x ′, y′ must coincide with the vertices
of the regular tetrahedron. We have the explicit formula sin(θ(e)/2) = |x − y|/2.
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Fig. 2 An example of Reuleaux polyhedron with 10 vertices (left) and the associated Meissner polyhedron
(right) obtained by smoothing some of the edges. Non-smoothed edges are represented in red, smoothed
edges are represented with green and spherical geodesic polygons contained in the faces are colored in blue

• For each edge e consider the tetrahedron determined by the vertices in the dual
pair (e, e′) shown in Fig. 1. In this tetrahedron, edges e, e′ are orthogonal since
all remaining edges have unit length. We denote by φ(e) the dihedral angle of this
tetrahedron associated to the edge determined by e. A simple computation involv-
ing elementary trigonometry implies the following relation between θ(e), θ(e′)
and φ(e):

sin
φ(e)

2
= sin θ(e′)

2

cos θ(e)
2

.

The elements of this tetrahedron are completely determined by θ(e), θ(e′).
• For each vertex x consider the opposite face τ(x) determined by vertices x1, ..., xk ,
k ≥ 3 situated at unit Euclidean distance from x . The extremal diameter one sets
generating Meissner polyhedra have the self-dual property: x ∈ τ(y) ⇐⇒ y ∈
τ(x). This notation for opposite faces is used for Meissner or Reuleaux polyhedra.

At each pair of dual edges (e, e′) in a Meissner polyhedron two types of surfaces
appear. If points of e are chosen as centers of balls in the intersection determining the
Meissner polyhedron M then the surface of M near e′ consists of a spindle surface,
i.e. a surface obtained by rotating an arc of circle of radius 1 around a symmetry axis.
We say that such an edge is smoothed. More details regarding the geometry of this
configurations are given in [13, Sect. 4.1] and in the following.

Definition 2.3 Wedge surface Consider (e, e′) a pair of dual edges in the Meissner
polyhedron M . Endpoints x, y of the edge e belong to the intersection of two spheres
of radii 1 centered at x ′, y′, the endpoints of e′. Denote by>xy the small arc associated
to e in the circle ∂B(x ′) ∩ ∂B(y′). Consider gx ′, gy′ the geodesic arcs joining x, y
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Fig. 3 Meissner tetrahedra of the two types. Either three edges having a common vertex are smoothed (first
row) or three edges adjacent to a common face are smoothed (second row). Spherical parts are represented
in blue, wedge surfaces are shown in red and spindle surfaces in green

on ∂B(x ′), ∂B(y′), respectively. The wedge W (e) at edge e is defined as the region
bounded by>xy and gx ′ in ∂B(x ′) and>xy and gy′ in ∂B(y′). It is obvious that W (e) is
symmetric about e. See Fig. 3 for an illustration.

Definition 2.4 Spindle surface Consider (e, e′) a pair of dual edges in M . Using the
notation defined previously, the geodesic arcs gx ′, gy′ are constructed around the edge
e bounded by vertices x and y on spheres ∂B(x ′), ∂B(y′). Both gx ′ and gy′ are geodesic
arcs in sphere of radius 1, they are arcs of circles of radius 1 having length θ(e). The
spindle surface S(e) is the surface obtained by rotating gx ′ towards gy′ around the
axis xy. It is part of a surface of revolution determined by the dihedral angle φ(e)
associated to edge xy in the tetrahedron x, y, x ′, y′. See Fig. 4 for an illustration.

Remark 2.5 In [26] spindle surfaces are calledwedges, however this does not reflect the
meaning of the word wedge which is a triangular shaped tool, implying the existence
of an angle. In [13] the wedge surfaces are called silver surfaces.

From the previous definitions of wedge and spindle surfaces, it is apparent that their
surface areas depend only on the parameters θ(e), θ(e′) characterizing the tetrahedron
x, y, x ′, y′. Moreover, if θ(e) = θ(e′), i.e. the tetrahedron is symmetric, choosing
(e′, e) instead of (e, e′) in Eq. (2.3) will not change the area or volume of the Meissner
polyhedron M .

Ifm = 4 then the only extremal set of diameter 1 consists of the vertices of a regular
tetrahedron of edge length 1. In this case, the Meissner polyhedra coincide with one
of the two Meissner tetrahedra [15, Ch. 7], [23, Sect. 8.3]. Note that the 23 choices of
smoothing one edge among the three pair of opposite edges only produce two types
of Meissner tetrahedra. Either all edges starting from a common vertex are smoothed
or the edges adjacent to a given face are smoothed. See Fig. 5 for an illustration.

The two Meissner tetrahedra have the same volume and the same area. As already
underlined in [13, Sect. 4], for a given extremal finite set of diameter one, the corre-
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Fig. 4 Wedge surface associated to an edge ewith vertices x, y of aMeissner polyhedron. The two adjacent
spherical faces centered at x ′, y′ endpoints of the dual edge e′ are continued until they intersect across the
geodesics connecting x, y on these faces

sponding Meissner polyhedra differ only in the exterior dihedral angles associated to
edges e = xy, e′ = x ′y′ in the tetrahedron x, y, x ′, y′. Indeed, all other regions of
∂M are portions of spheres centered at the vertices of M . Moreover, wedge or spindle
surfaces in ∂M intersect only at vertices. Since the vertices of a Meissner tetrahedron
form a regular tetrahedron, any choice of smoothing one edge among pairs of dual
edges will give the same area and the same volume.

Given M a Meissner polyhedron, its surface area is composed of the following
elements:

• For every face τ(x) of M , having vertices v1, ..., vk consider the spherical polygon
determined by v1, ..., vk on the sphere centered at the vertex x opposite to τ(x).
This provides a series of spherical geodesic spherical polygons.

• For every pair of opposite edges (e, e′), consider the intersection of ∂M with
the dihedral angles at e, e′ in the tetrahedron determined by the vertices of these
edges. This produces two surfaces: a spherical spindle S(e′) (Fig. 4) and a wedge
W (e) (Fig. 5). The areas of these two surfaces will be established explicitly in the
following in terms of the lengths θ(e), θ(e′).

The surface area of M is made of geometric surfaces which have explicit formulas
for their areas. For example, it seems obvious that S(e′) and W (e) can be computed
in terms of the spherical lengths of edges e, e′, given by θ(e), θ(e′). Nevertheless, it is
not clear for the moment how the area of the portions of the sphere present in the faces
of M could be computed in terms of the same parameters. This will be addressed in
the next section.
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Fig. 5 Spindle surface associated to an edge e with vertices x, y of a Meissner polyhedron. The geodesics
connecting x, y on the adjacent spherical faces are rotated around xy

3 Surface areas of Meissner polyhedra

3.1 Linked rectangles on the sphere

Let M be a Meissner polyhedron given by (2.3). If x is one of its vertices then the
opposite face contains a spherical geodesic polygon S(x) having common vertices
with M , i.e. a region bounded by a sequence of geodesic arcs>vivi+1 on a sphere of
radius 1, where vi , i = 0, ..., k − 1 are vertices of M . The classical Gauss-Bonnet
formula allows to compute the area of a spherical polygon in terms of its angles, but it
involves the turning angles of the spherical polygon which are not explicit in terms of
θ(e), θ(e′). We show below how a simple observation can lead to an explicit formula
for the total area of all such spherical regions in ∂M .

Consider the following definition of a normal vector for a bounded convex body
M .

Definition 3.1 Let M be a bounded convex body in R
3 and x ∈ ∂M be a point on its

boundary. A normal vector to M at x is a unit vector which is a normal vector for a
supporting plane α for M at x , pointing in the half-space determined by α which does
not contain M . Denote by N (x) the set of unit normal vectors to M at x , identified
with a subset of the unit sphere S2.

We have the following elementary properties.

Proposition 3.2 (a) The map N : ∂M → S
2 is surjective.

(b) Suppose M is strictly convex. Then x �= y implies N (x) ∩ N (y) = ∅.
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(c) If M0 ⊂ M is a spherical surface of unit radius then N (M0) is a translation of
M0.

(d) If M is a Meissner polyhedron and x is a vertex then N (x) contains the antipodal
set in S2 of the spherical surface N (S(x)).

Proof (a) For every orientation there exists a supporting plane orthogonal to it, leaving
M on the opposite side, therefore the normal map is surjective.

(b) If x �= y and n ∈ N (x) ∩ N (y) then parallel supporting planes exist at x and y,
showing that these planes should coincide, contradicting the strict convexity.

(c) This property is obvious by definition.
(d) Let x be a vertex and consider S(x) the spherical geodesic polygon made by ver-

tices of M contained in the face opposite to x . Since M is a Meissner polyhedron,
it has constant width, by construction [12, 26]. For any point z ∈ S(x) we have
|x − z| = 1, therefore z − x ∈ N (z) and x − z ∈ N (x) (see [13, Lem. 4.8], for
example). Since N (S(x)) = {z − x : z ∈ S(x)}, the previous observation shows
that −N (S(x)) ⊂ N (x). ��

We arrive at the following result:

Proposition 3.3 Let M be a Meissner polyhedron. The unit sphere S
2 can be parti-

tioned in the following regions (see the examples in Fig. 6):

(A) Translations of the spherical polygons S(xi ) contained in the faces opposite to xi
of M and their antipodals in S2 which contain normals to xi .

(B) Aseries of pairs of antipodal rectangles having spherical edge lengths (θ(ei ), θ(e′
i )),

i = 1, ...,m − 1, where (ei , e′
i ) are the pairs of dual edges in M.

Proof Following results of Proposition 3.2, the images of S(xi ) through the normal
map N are spherical geodesic polygons which are translations of S(xi ). Every normal
to S(xi ) has an opposite one at xi .

Let us now consider the complementary region to
⋃m−1

i=1 (N (S(xi )) ∪ −N (S(xi )))
in S

2. Given a pair of dual edges (e, e′) of M , with x, y and x ′, y′ endpoints of e, e′,
respectively we have the following observations.

Normals considered in part (A) for vertices x, y and faces τ(x ′), τ (y′) adjacent to
the edge>xy have the following representations in S2:

• the spherical polygons N (S(x ′)), N (S(y′)), having an edge equal to θ(e) corre-
sponding to the image through N of a geodesic from x to y.

• the spherical polygons −N (S(x)),−N (S(y)) having an edge equal to θ(e′) cor-
responding to the image through N of a geodesic from x ′ to y′.

An illustration is given in Fig. 7.
Therefore, normals to W (e) or S(e) not considered in part (A) are contained in a

spherical rectangle having edges θ(e), θ(e′). Indeed, this region is a spherical quadri-
lateral with equal opposite sides and two planes of symmetry. Moreover, its vertices
form an Euclidean rectangle. This is a consequence of the fact that spindle and wedge
surfaces also have two planes of symmetry. This determines a spherical rectangle, i.e.
a spherical quadrilateral with equal opposite sides and equal angles.

The same configuration arises for normals around e′ not considered at part (A). The
resulting spherical rectangle is the antipodal for the one obtained for e. ��
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Fig. 6 Examples of partitions of the sphere containing spherical parts of Meissner or Reuleaux polyhedra
and spherical rectangles

N (S (x ))

N (S (y ))

N (S (x ))

N (S (y))

(e)

(e)

(e )

(e )

Fig. 7 Example of spherical rectangle corresponding to normals for a wedge or spindle surface around the
edge e with endpoints x, y and dual to e′ with endpoints x ′, y′. The adjacent spherical polygons to e are
S(x ′), S(y′). The spherical region bounded by N (S(x ′)), N (S(y′)), −N (S(x)), −N (S(y)) is a spherical
rectangle with edge lengths θ(e), θ(e′)

To compute the surface area of a Meissner polyhedron M a clear strategy emerges,
following the previous results. The area of the spherical geodesic polygons in ∂M is
the complementary of a series of spherical rectangles with lengths (θ(ei ), θ(e′

i ))
m−1
i=1 .

The remaining parts are wedge and spindle surfaces whose areas will be computed.
We start by computing the area of a spherical rectangle.

Lemma 1 A spherical rectangle is a spherical quadrilateral with equal angles and
equal opposite sides. The area of a spherical rectangle with geodesic side lengths
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x

a d

b c

2 2 2 2

Fig. 8 Computing the area of a spherical rectangle in terms of its side lengths

θ, θ ′ ∈ (0, π) is given by

R(θ, θ ′) = 4 arcsin
(
tan

θ

2
tan

θ ′

2

)
.

Proof Let a, b, c, d be the vertices of the spherical rectangle such that
>
ab,

>
cd have

lengths θ and
>
bc,

>
da have lengths θ ′. To compute the area of a spherical geodesic

polygon, its angles need to be computed. See Fig. 8 for an illustration.
Draw the great circles containing

>
ab,

>
cd and denote by x the intersection point

closer to
>
bc and x ′ the other point of intersection. By the symmetry of the rectangle,

the arc
>
ab is symmetric about the midpoint of the half circle

>
xx ′ containing>ab. For

simplicity, we use the same notation for an arc and for its spherical length. Thus, in
the spherical triangle xbc all edge lengths are known:

>
bc = θ ′,>bx = >cx = π

2 − θ
2 .

Denoting by α the angle at b in the triangle bcx , the spherical law of cosines gives

cos>cx = cos
>
bc cos

>
bx + sin

>
bc sin

>
bx cosα.

Therefore, using basic trigonometric identities, we obtain

cosα = cos
(

π
2 − θ

2

) − cos θ ′ cos cos
(

π
2 − θ

2

)

sin θ ′ sin
(

π
2 − θ

2

) = sin θ
2 (1 − cos θ ′)
sin θ ′ cos θ

2

= tan
θ

2
tan

θ ′

2
.
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The Gauss–Bonnet formula combined with the result above shows that the area of the
rectangle is

R(θ, θ ′) = 2π − 4α = 4
(π

2
− α

)
= 4 arcsin

(
tan

θ

2
tan

θ ′

2

)
.

��

The area of S2 is 4π . Therefore, keeping inmind that every spherical part counted in
(A) in Proposition 3.3 and every rectangle appears twice on the sphere in Proposition
3.3, it follows that the total area of the spherical polygons contained in ∂M is

2π −
m−1∑

i=1

R(θ(ei ), θ(e′
i )).

Thus, we arrive at an initial formula for the area of a Meissner polyhedron, which
is given by:

|∂M | = 2π −
m−1∑

i=1

R(ei , e
′
i ) +

m−1∑

i=1

(|W (ei )| + |S(e′
i )|), (3.1)

where |W (ei )|, |S(e′
i )| represent the areas of wedge and spindle regions, respectively.

Thus, the Blaschke–Lebesgue problem in dimension three amounts to solving

max
m−1∑

i=1

(
R(ei , e

′
i ) − |W (ei )| − |S(e′

i )|.
)
. (3.2)

In the following section |W (ei )| and |S(e′
i )| are computed explicitly in terms of

θ(ei ), θ(e′
i ).

3.2 Computation of areas of wedge and spindle surfaces

Computations regarding spindle and wedge surfaces are also presented [13, 14]. The
computations made below sometimes use different arguments, therefore we present
the computations in full detail, for the sake of completeness.

In the following (e, e′) denotes a generic pair of dual edges and θ(e), θ(e′) denote
their spherical lengths. Recalling that φ(e) is the dihedral angle at edge e of the
tetrahedron determined by e and e′, we have the relation

sin
φ(e)

2
= sin θ(e′)

2

cos θ(e)
2

. (3.3)
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Since θ(e) ∈ [0, π/3] for every edge, we find that sin φ(e)
2 ≤ sin π

6
cos π

6
=

√
3
3 . This gives

cosφ(e) = 1 − 2 sin2 φ(e)
2 ≥ 1

3 and as a consequence all dihedral angles φ(e) verify

φ(e) ∈
[
0, arccos

1

3

]
. (3.4)

Moreover, denoting d(e, e′) the distance between the midpoints of the segments
determined by vertices of the dual pair (e, e′) we have

cos
φ(e)

2
= d(e, e′)

cos θ(e)
2

. (3.5)

Since d(e, e′) depends only on φ(e), θ(e) via (3.5) it follows that

cos
φ(e)

2
cos

θ(e)

2
= cos

φ(e′)
2

cos
θ(e′)
2

. (3.6)

ThewedgeW (e) (seeDefinition 2.3) is the union of two spherical regions contained
between two circles. Gauss-Bonnet formula can be used to compute its surface area,
provided the radii of the two circles and the angle made by the two circles are known.

Angle made by two circles on the sphere A circle on the unit sphere is determined
by a point C on the sphere and a spherical distance θ ∈ [0, π/2] and consists of all
points X on the sphere at spherical (or angular) distance θ to P . A spherical circle is,
of course, an Euclidean circle of radius sin θ .

Lemma 2 Consider intersecting circles on the unit sphere having centers C1,C2 and
spherical radii θ1, θ2 ∈ [0, π/2]. Suppose that their axes of symmetry make an angle
equal to φ. Then, denoting by α the angle made by the two circles at one intersection
point, we have

cosφ = cos θ1 cos θ2 + sin θ1 sin θ2 cosα.

Proof An illustration of the configuration is given in Fig. 9. Assume the two circles
intersect: a necessary and sufficient condition is that φ, θ1, θ2 are the sides of a spher-
ical triangle, i.e., they verify the usual triangular inequalities. Let X be a point of
intersection of the two circles. Then the arcs

>
C1X ,
>
C2X are orthogonal to the tangent

vectors to the two circles at X . The angle of the two tangent vectors is the angle X in
the spherical triangle XC1C2. The sides of this spherical triangle are known, starting
from the hypothesis: C1X = θ1,C2X = θ2,C1C2 = φ. The spherical law of cosines
coincides with the desired formula, since the spherical angle α = ∠C1XC2 is opposite
to the side C1C2. ��

Area of a wedge surface A wedge surface is twice the area of the intersection of a
circle of a given radius smaller than 1 and a great circle of the same sphere of radius
1. It can be explicited using Lemma 2.
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C

Fig. 9 Configuration for computing the angle between two circles on the sphere. The two circles have
centers Ci and spherical radii θi , i = 1, 2 and meet at point X

For a pair of dual edges (e, e′) consider the endpoints x, y of e and x ′, y′ of e′.
Denoting>xy the small arc between x and y in ∂B(x ′) ∩ ∂B(y′) let us find the angle
made by>xy with the geodesic linking x and y on ∂B(x ′) (or ∂B(y′). Let us identify
all elements used in Lemma 2.

• The arc>xy lies on the circle ∂B(x ′)∩∂B(y′)which has spherical radiusπ/2−θ(e′).
• The geodesic lies on a big circle of spherical radius θ2 = π/2.
• The angle φ made by the symmetry axes of the two circles is equal to the dihedral
angle of the planes of the two circles. This is half of the dihedral angle at edge
e = xy in the tetrahedron x, y, x ′, y′. Indeed, the arc

>{xy} is contained in the
bisector plane of the tetrahedron at edge xy, while the geodesic is contained in
one of the planes x ′xy or y′xy. Thus φ = φ(e)/2.

Plugging this information into Lemma 2 we find that the corresponding angle α(e)
between the arc>xy and a geodesic arc at e verifies

cosα(e) cos
θ(e′)
2

= cos
φ(e)

2
. (3.7)

In view of (3.5), (3.6), notice that this angle is the same for the two pairs of opposite
edges, i.e. α(e) = α(e′). It should be noted that (3.7) has solutions since (3.3) implies
φ(e) ≥ θ(e′), therefore cos φ(e)

2 ≤ cos θ(e′)
2 .

For a spherical region p1, ..., pk bounded by arcs of circle on the unit sphere,
having radii r1, ..., rk ∈ (0, 1], denoting γ1, ..., γk the turning (exterior angles) at the
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respective vertices, the Gauss–Bonnet formula states that its area is given by

A = 2π −
k∑

i=1

γi −
k∑

i=1

∫

pi

√
1 − r2i

ri
.

The last term corresponds to the integral of the geodesic curvature, equal to
√
1−r2
r for

a circle of radius r .
One half of the wedge W (e) is determined by two arcs of circles, meeting at an

angle α(e) given by (3.7). The geodesic arc has zero geodesic curvature. The arc
>xy belongs to a circle of radius cos θ(e′)

2 , has geodesic curvature tan θ(e′)
2 and has an

angular measure equal to φ(e′) (see Fig. 1). We arrive, thus at the following result.

Proposition 3.4 The area of a wedge surface W (e) at the edge e in the dual pair (e, e′)
is given by

|W (e)| = 4 arccos
( cos φ(e)

2

cos θ(e′)
2

)
− 2 sin

θ(e′)
2

φ(e′).

Proof The proof is immediate, noting that the turning angles at the two vertices of
We are equal to π − α(e), where α(e) verifies (3.7). Furthermore, the integral of the
geodesic curvature on>xy gives the second term. The result is multiplied by two, since
W (e) contains two congruent spherical regions. ��

The area of a spindle surface at edge e (see Definition 2.4) is computed in [13]. Nev-
ertheless, since its computation is immediate via integrals on surfaces of revolution,
we give a brief proof below.

Proposition 3.5 The area of a spindle surface S(e) at the edge e in the dual pair (e, e′)
is given by

|S(e)| = 2φ(e)
(

− cos
θ(e)

2

θ(e)

2
+ sin

θ(e)

2

)
.

Proof We compute the full surface area of a complete spindle and recover the result
for a spindle of angle φ(e) as a byproduct. Recall that if f : [a, b] → R+ is a C1

function then the area of the surface of revolution determined by the graph of f around
the x-axis is simply A = 2π

∫ b
a f (x)

√
1 + ( f ′(x))2)dx .

We apply this result for the function f : [− sin θ(e)
2 , sin θ(e)

2 ] which verifies

x2 +
(
f (x) + cos

θ(e)

2

)2 = 1.

We obtain

f (x) =
√
1 − x2 − cos

θ(e)

2
, f ′(x) = −x√

1 − x2
.
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The result follows immediately from the integral formula. ��
Notice that if in the definition of theMeissner polyhedron M we consider balls with

centers on e, then close to edges in the dual pair (e, e′) the boundary ∂M is made of
the wedgeW (e) and the spindle surface S(e′). It is already apparent from Propositions
3.4, 3.5 that when computing |W (e)| + |S(e′)| some terms cancel. More precisely,

|W (e)| + |S(e′)| = 4α(e) − φ(e′)θ(e′) cos θ(e′)
2

.

Moreover, using the classical identity arcsin x = arccos
√
1 − x2 for x =

tan θ(e)
2 tan θ(e′)

2 ∈ [0, 1], we find, remarkably, that

arcsin
(
tan

θ(e)

2
tan

θ(e′)
2

)
= arccos

(
√
cos2 θ(e)

2 − sin2 θ(e′)
2

cos θ(e)
2 cos θ(e′)

2

)
= arccos

( cos φ(e)
2 )

cos θ(e′)
2

)
.

Therefore, 4α(e) coincides with the area of the spherical rectangle with edges
(θ(e), θ(e′)), which further simplifies the expression (3.1).

3.3 Area of Meissner polyhedra

Gathering all the results from previous sections we obtain the following.

Theorem 3.6 The Meissner polyhedron M = B(X ∪ e1 ∪ ... ∪ em−1) given by (2.3)
has the surface area

|∂M | = 2π −
m−1∑

i=1

f (θ(ei ), θ(e′
i )) (3.8)

with

f (x, y) = y cos
y

2
arcsin

( sin x
2

cos y
2

)
(3.9)

The maximal value of f (x, y) given in Eq. (3.9) for {(x, y) ∈ [0, π/3]2 : x ≤ y}
is attained at (π/3, π/3) and f is increasing in both x, y and is convex in the x and y
directions. Results regarding the function f are gathered in Appendix A.

Remark 3.7 We have the following geometric interpretation for f (θ(ei ), θ(e′
i )).

Observe that cos θ(e′)
2 φ(e′) is the length 	(e) of the circle arc between x, y in

B(x ′) ∩ B(y′). Therefore f (θ(ei ), θ(e′
i )) = 	(ei )θ(e′

i ).

We obtain the following direct consequence of Theorem 3.6.
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Corollary 3.8 (a) The area of a Meissner tetrahedron is equal to

2π − 3 f (π/3, π/3) = 2π −
√
3
2 arccos 1

3π.

The volume of aMeissner polyhedron is obtained using the Blaschke formula (2.1).
(b) Among the 2m−1 possible choices of Meissner polyhedra for a given extremal set

of diameter one consisting of m points, the one with minimal area verifies

θ(ei ) ≤ θ(e′
i ), i = 1, ...,m − 1.

In other words, the longest edge among each pair of dual edges should be
smoothed, i.e., replaced by a spindle surface.

(c) The three dimensional Blaschke–Lebesgue theorem is equivalent to solving

max
m−1∑

i=1

f (θ(ei ), θ(e′
i )),

assuming that in all dual pairs we have θ(ei ) ≤ θ(e′
i ).

Proof (a) TheMeissner tetrahedron corresponds tom = 3 and all edges have spherical
length π/3. The result follows after evaluating f (π/3, π/3).

(b) We observe that on [0, π/3]2 we always have

x ≤ y �⇒ f (x, y) ≥ f (y, x). (3.10)

A proof is given in the Appendix A. Therefore the conclusion follows.
(c) A simple consequence of the area formula (3.8). ��

Remark 3.9 The strategy employed here can also be used to compute the area of
Reuleaux polyhedra R, like in [14]. Compared to Meissner polyhedra, for any pair of
dual edges (e, e′) the corresponding wedge surfaces W (e),W (e′) are present in the
boundary of a Reuleaux polyhedron. Therefore, its surface area is simply

|∂R| = 2π −
m−1∑

i=1

R(ei , e
′
i ) +

m−1∑

i=1

(|W (ei )| + |W (e′
i )|)

= 2π +
m−1∑

i=1

(
4α(ei ) − 2 sin

θ(ei )

2
φ(ei ) − 2 sin

θ(e′
i )

2
φ(e′

i )
)
, (3.11)

The resulting expression is slightlymore complex than (3.8) since fewer terms simplify.
On the other hand the expression is symmetric in θ(ei ), θ(e′

i ) as expected, recalling
that α(ei ) = α(e′

i ).

123



Discrete & Computational Geometry

Fig. 10 Different views of a Reuleaux pyramid. The edges connecting the central node a to the vertices of
the opposite face are smoothed. The rightmost picture shows the face opposite to the central node a and is
a spherical Reuleaux polygon of constant width equal to π/3 (in spherical distance)

4 Meissner pyramids

Given an extremal three dimensional finite set of diameter 1 having m points it is
possible to attach a graph structure to it: two points x, y are connected through an edge
if and only if |x− y| = 1. Such a graph will be called diameter-graph in the following.
These graphs are studied in detail in [8, 25, 27]. In [27] all possible diameter graphs
for m ≤ 14 are investigated, giving rise to many examples of Meissner polyhedra.

In [8] the authors show that there is a class of graphs which is particular, in the sense
that every edge is on a triangular face. Such a graph is called a wheel graph and has
one central node a connected to nodes b1, ..., bm−1 which form a cycle (see Fig. 10).
Geometrically,Meissner polyhedra havingwheel diameter graphs resemble a pyramid.
Such polyhedra will be called Meissner pyramids in the following. They consist of a
vertex a and a face b1, ..., bm−1 opposite to a. We are interested in Meissner pyramids
of minimal volume, therefore the edges abi should be smoothed. This implies that
the face b1, ..., bm−1, where wedge surfaces are considered at each one of the edges,
resembles a planar Reuleaux polygon, each vertex being at Euclidean unit distance
from twoopposite vertices. This is, in fact, a spherical Reuleaux polygonwith spherical
width π/3.

In this section it is shown that the Meissner tetrahedron minimizes the surface area
and volume among Meissner pyramids.

Theorem 4.1 Theminimal surface area of aMeissner pyramid is attained forMeissner
tetrahedra. The same result holds for the volume in view of the Blaschke formula (2.1).

Proof Consider M = ab1...bm−1 a Meissner pyramid. Every pair of dual edges con-
tains one edge of the form bibi+1 and one of the form ab j . Since |a − b j | = 1, the
associated spherical length is θ(ab j ) = π/3. According to Corollary 3.8, the minimal
area is attained when spindles surfaces are put along the longest edge of every one
of the dual pairs. For Meissner pyramids, all edges of the form abi have spherical
length π/3 and are, therefore larger than their dual edges (of the form b jb j+1, with
the convention bm = b1). Denoting e j = b jb j+1, j = 1, ...,m − 1 the least area of a
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Meissner pyramid having the given vertices is equal to

2π −
m−1∑

i=1

f (θ(e j ), π/3).

Using the explicit expression of f (x, y) in Eq. (3.9) and the Remark 3.7 regarding the
alternative expression we arrive at the equivalent problem

max
m−1∑

i=1

π

3
cos

π

3
φ(abi ) ⇔ π

3
max

m−1∑

i=1

	(bibi+1), (4.1)

where it should be recalled that φ(abi ) is the dihedral angle at abi in the tetrahe-
dron abib j b j+1, where b jb j+1 is the dual of abi . The faces abib j , abib j+1 of this
tetrahedron are equilateral triangles. Also, according to Remark 3.7, 	(bibi+1) is the
length of the arc

>
bibi+1 on the intersection ∂B(a) ∩ ∂B(bi ). It is immediate to see

that up to a multiplicative function, the objective function to be maximized is equal
to the perimeter of the spherical region determined by the face b1...bm−1, including
the parts coming from the wedge surfaces, on the sphere centered in a with radius 1.

Moreover, all boundary parts of this region are circle arcs of radii
√
3
2 , since they are

on the intersection of ∂B(a) and ∂B(bi ), i = 1, ...,m − 1.
Let us make the analogy with planar Reuleaux polygons more precise. The face

opposite to a in theMeissner pyramid whose spindle surfaces are all on edges contain-
ing a is the intersection on ∂B(a) of the spherical circles centered in bi , i = 1, ...,m−1
having spherical radius π/3. This is a spherical region of constant width in ∂B(a).
Blaschke claimed in [5] that the analogue of the Blaschke–Lebesgue theorem holds
also on the sphere: among all shapes on a sphere of radius 1 of constant widthw ≤ π/2
(in the sense of the spherical distance), the spherical Reuleaux triangle of width w has
the smallest area. This was proved by Leichtweiss [22] and strengthened to the case
of spherical disk polygons in [4]. For spherical curves of constant width w the length
L and the area A are linked by the formula

L = (2π − F) tan w
2 .

This formula is attributed to Blaschke [5] and can also be found in [29]. In particular,
at fixed constant width, the spherical Reuleaux triangle maximizes the perimeter.

In conclusion, the solution to problem (4.1) corresponds to a spherical Reuleaux
triangle and the Meissner pyramid maximizing (4.1) must be a Meissner tetrahedron.

��

5 The general case: discrete problems

Given m ≥ 4 denote byMm the class of Meissner polyhedra with at most m vertices.
This set is non-void if m ≥ 4, as it contains the Meissner tetrahedron. Like in the two
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dimensional case discussed in [18] we may formulate a series of finite dimensional
problems related to the Meissner conjecture.

Proposition 5.1 There exists a Meissner polyhedron M ∈ Mm which minimizes its
surface area, i.e. the problem

min
M∈Mm

|∂M |

has solutions.

Proof The standard method in the calculus of variation is employed. Of course, |∂M |
has trivial upper and lower bounds: zero and the area of the unit ball. Therefore there
exists a minimizing sequence (Mk) ⊂ Mm such that

|∂Mk | → inf
M∈Mm

|∂M |.

The classical Blaschke selection theorem [30, Thm. 1.8.7] shows that there exists
a subsequence of (Mk) which converges in the Hausdorff metric (see [11, Ch. 2]).
Suppose, up to relabeling, that Mk converges to M , which is still of constant width
(this is classical, see [2] for a proof). The goal is to prove that M ∈ Mm , i.e. the
class of Meissner polyhedra with a fixed number of vertices is closed in the Hausdorff
metric.

Since each Mk has at most m − 1 pairs of dual edges, there is a subsequence of
(Mk), denoted again with (Mk)which has a constant numberm0 of pairs of dual edges.
For each of the polyhedra Mk consider the pairs of dual edges

(ek1, (e
k
1)

′), ..., (ekm0
, (ekm0

)′).

Corollary 3.8 shows that among all 2m0 possible choices of smoothing one of any pair
of dual edges, the one verifying θ(eki ) ≤ θ((eki )

′) gives the lowest surface area. If this
is not the case, modify each Mk , eventually decreasing its surface area, recovering
another minimizing sequence. At convergence continuity implies that we can assume
that the choice of the edge smoothing does not change.

Up to extracting a diagonal sequence, assume that endpoints of eki and (eki )
′ converge

so that the corresponding segments verify

eki → ei , (eki )
′ → e′

i

for all i = 1, ...,m0. Since endpoints of edges eki form extremal diameter 1 sets,
in the limiting process, these diameters are preserved. If none of the edges eki , (e

k
i )

′
collapse in the limiting process, then the discrete set obtained is extremal, having2m−2
diameters. If one edge ei collapses and (eki )

′ does not then two pairs of diametersmerge
and one vertex is lost in the limiting process, the resulting set remaining extremal. If
both edges in a pair (eki , (e

k
i )

′) collapse in the limiting process then two vertices and
four diameters are lost, the remaining set still being extremal. The m0 vertices of Mn

converge to m1 ≥ 4 distinct points in R
3, since the limit set M has constant width.
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SinceHausdorff limits of balls are balls, andHausdorff convergence preserves finite
intersections [11, Ch. 2], all spherical parts of Mk converge to spherical parts in M .
In particular, wedge surfaces converge to wedges.

This shows that faces of Mk converge to faces of M and vertices of Mk converge to
vertices in M . Since M contains an extremal diameter one set with m1 vertices, any
edge dual to a wedge will correspond to a spindle surface [13]. Therefore will be a
Meissner polyhedron with at most m vertices, i.e., M ∈ Mm . ��
Remark 5.2 An alternative proof of Proposition 5.1 can be given using Theorem 3.6.
Indeed, any polyhedron inMm can be characterized by the lengths (θ(ei ), θ(e′

i ))
m−1
i=1

for the pairs of dual edges. Polyhedra with fewer than m vertices can also be charac-
terized, setting some of the lengths θ(ei ), θ(e′

i ) to zero. The space of lengths of dual
edges is finite dimensional, closed and blunded. According to the area formula (3.8)
the result of Proposition 5.1 follows since a continuous function attains its extremal
values on a compact set.

Remark 5.3 The result of Proposition 5.1 suggests that the Meissner conjecture can be
reduced to a series of discrete problems. Ideally it should be proved that a Meissner
polyhedron which is not a tetrahedron cannot be optimal.

A similar result can be formulated if instead of Meissner polyhedra we consider
Reuleaux polyhedra. In this case, the solution is expected to change as the number
of vertices increase. Indeed, it is known that Reuleaux polyhedra can approximate
arbitrarily well any shape of constant width. However, since these polyhedra do not
have constant width themselves, when n → ∞ the solution to the problemwill change
and converge to a constant width body of minimal volume.

6 Concluding remarks

In this paper, the surface area and volume ofMeissner polyhedra is computed explicitly
in terms of lengths of dual edges (Theorem 3.6). This reduces the study of theMeissner
conjecture to a series of finite dimensional problems. In particular, the minimality
of the volume of the Meissner tetrahedron among Meissner pyramids is established
(Theorem 4.1). The answer to Conjecture 1 depends on obtaining a finer understanding
of the space of lengths of dual edges (θ(ei ), θ(e′

i ))
m−1
i=1 . In particular, it is expected

that a similar phenomenon to the one observed in dimension two occurs: no Meissner
polyhedron which is not a tetrahedron can be a local minimizer for the area or the
volume.

A Analysis of a particular 2D function

The function f (x, y) = y cos y
2 arcsin

( sin(x/2)
cos(y/2)

)
defined in Eq. (3.9) is fundamental in

understanding Meissner polyhedra with minimal surface area. In this section multiple
properties are proved, with a special interest regarding the region (x, y) ∈ [0, π/3]2,
x ≤ y.

(i) x �→ f (x, y), y �→ f (x, y) are increasing and convex on [0, π/3].
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Proof sin is increasing on [0, π/6] and arcsin is increasing, therefore x �→ f (x, y) is
increasing. To decide the convexity, notice that

∂ f

∂x
(x, y) = y

2

cos x
2 cos

y
2√

1 − sin2 x
2 − sin2 y

2

. (A.1)

It is straightforward to see that x �→ cos x2 cos
y
2√

1−sin2 x
2−sin2

y
2

is increasing on [0, π/2], there-
fore x �→ f (x, y) is convex on [0, π/3] for any fixed y ∈ [0, π/3].

A straightforward computation leads to

∂ f

∂ y
=

(
cos

y

2
− y

2
sin

y

2

)
arcsin

( sin x
2

cos y
2

)
+ y

2

sin x
2 sin

y
2√

1 − sin2 x
2 − sin2 y

2

, (A.2)

but it is difficult to asses the sign of this partial derivative.
The equality (A.1) shows that f has the following integral representation

f (x, y) = y

2

∫ x

0

cos t
2 cos

y
2√

1 − sin2 t
2 − sin2 y

2

dt . (A.3)

Therefore, since the integrand is increasing in ywefind that y �→ f (x, y) is increasing.
Differentiating with respect to y gives

∂ f

∂ y
(x, y) =

∫ x

0

cos t
2 cos

y
2√

1 − sin2 t
2 − sin2 y

2

dt + y

2

∫ x

0

sin t
2 sin t sin

y
2

4
(
1 − sin2 t

2 − sin2 y
2

)3/2 .

It is straightforward that in this formulation y �→ ∂ f
∂ y is increasing, and therefore

y �→ f (x, y) is convex.

(ii) Smoothing the longest among dual edges gives a lower volume:

x ≤ y �⇒ f (x, y) ≥ f (y, x). (A.4)

Differentiate (A.1) with respect to y to get

∂2 f

∂x∂ y
(x, y) = 1

2

cos x
2 cos

y
2√

1 − sin2 x
2 − sin2 y

2

+ 1

4

y sin y
2 cos

x
2 sin

2 x
2

(1 − sin2 x
2 − sin2 y

2 )
3
2

. (A.5)

The function x �→ x
sin x is strictly increasing on [0, π/3]. Therefore, for x ≤ y we

have

y sin
y

2
cos

x

2
sin2

x

2
≥ x sin

x

2
cos

y

2
sin2

y

2
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(factor sin2 x
2 sin

2 y
2 on both sides) and

∂2 f

∂x∂ y
(x, y) ≥ ∂2 f

∂x∂ y
(y, x).

Therefore, the mapping

g : x �→ ∂ f

∂ y
(x, y) − ∂ f

∂x
(y, x)

is increasing with respect to x for x ≤ y. Since g(0) = 0 we have

∂ f

∂ y
(x, y) ≥ ∂ f

∂x
(y, x)

whenever 0 ≤ x ≤ y ≤ π/3. Replacing y by t and integrating this inequality with
respect to t on [x, y] we get f (x, y) ≥ f (y, x) whenever x, y ∈ [0, π/3], x ≤ y, as
requested. ��
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