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Abstract
We approximate boundaries of convex polytopes X ⊂ R

n by smooth hypersurfaces
Y = Yε with positive mean curvatures and, by using basic geometric relations between
the scalar curvatures of Riemannian manifolds and the mean curvatures of their bound-
aries, establish lower bound on the dihedral angles of X .
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1 Combinatorial Spread,�〉-Spread and�〉-Inequality

Let X ⊂ R
n be a compact convex polytope let ∂ X denote its (topologically spherical)

boundary and let X� be the dual convex tessellation of the sphere Sn−1, i.e. where
(n − k − 1)-cells are the sets of the (unit normal to the) supporting hyperplanes to X
along the interiors of the k-faces of X .

Let E = E(X) ⊂ Sn−1 be the edge graph of X�. Combinatorially, this is the
(n −2)-adjacency graph, where the set of the (n −1)-faces F of X is taken for the set
vertices and where the edges e in E correspond to the pairs of (n − 2)-adjacent faces:

vertices v1 and v2 are joined by an edge e = e12, whenever the corresponding
closed faces F̄1, F̄2 ⊂ X meetover a closed (n−2)-face, namely F̄12 = F1∩F2 ⊂ X .
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Remark on Adjacency and on Simple Polytopes. Recall that a convex polytope X is
simple if

adjacent �⇒ (n − 2)-adjacent,

where “adjacent” signifies that the intersection F1 ∩ F2 is non-empty, i.e. F1 and F2
meet at a vertex in X .

The combinatorial distance distcomb(F1, F2) is the length of the shortest path in
E between the corresponding vertices corresponding to F1 and F2.

For instance, these distances between opposite faces in the n-cube [−1, 1]n are
equal to 2.

Let ∠1,2 = ∠(F1, F2) denote the dihedral angle between (n − 2)-adjacent faces
and let 〉 stands for the complementary angle,

〉1,2 = π − ∠1,2,

that is the spherical arc length of the edge e12 ⊂ Sn−1 dual to the (n − 2)-face
F12 = F1 ∩ F2.

〉-AngularDistance.The angular distance or 〉-distance dist〉(F1, F2) between (not
necessarily (n − 2)-adjacent) (n − 1)-faces F1 and F2 in X is the minimum of the
spherical lengths of edge paths in E between the vertices of X� dual to these faces.

Accordingly, the 〉- (angular) distance between (unions of) sets of faces, say
F1,F2 ⊂ V , is the minimum of the 〉-distances between the faces in these sets,

dist〉(F1,F2) = min
F1∈F1,F2∈F2

dist〉(F1, F2).

Cubical Example. The 〉-distances between opposite faces of the n-cube �n =
[−1, 1]n are equal to π.

Combinatorial and Angular Spreads. Let �k
comb(X) be the maximum of the numbers

d ≥ 0, such that X admits a continuous map to the k-cube,

� : X → �k = [−1, 1]k,

with the following properties.1

•comb The �-pullbacks of the (k − 1)-faces from �k are unions of (n − 1)-faces in
X .

•dist The combinatorial distances between the pullbacks of the opposite cubical
faces Fi∓ ⊂ �k are ≥ d,

distcomb(�(Fi−),�(Fi+)) ≥ d, i = 1, . . . , k.

•deg The the induced relative homology homomorphism

1 If no such map exists, then let �k
comb(X) = 0.
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�∗ : Hk(X ,�−1(∂�k)) → Hk(�k, ∂�k) = Z,

doesn’t vanish.
(If k = n, this is equivalent to �−1(∂�n) = ∂ X and to non-vanishing of the degree

of the map � : ∂ X → ∂�n . For instance, homeomorphisms � : X → �n satisfy tis
condition.2)

Similarly define the angular spread �k〉 (X) with the dist〉 inequality instead of
distcomb:

•dist〉 dist〉(�(Fi−),�(Fi+)) ≥ d, i = 1, . . . , k.

Observe that the combinatorial and the angular spreads satisfy

�n(X) ≤ �n−1(X) ≤ ... ≤ �1(X) = diam(X),

where the diameter refers to the combinatorial and to the angular distances corre-
spondingly,

and that

�n(X) ≥ �n−1(X)

2n + 2
for all convex n-polytopes X .

�3
N -Example. Let �3

N be the subdivision of the 3-cube �3 = �3
1, where each 2-

face is subdivided into N 2 equal squares in an obvious way. (If you wish it to became
simple, ε-perturb with ε << 1/N the edges of) these small squares, such that the
resulting subdivision �3

N ,ε has three squares at each vertex.) Then the combinatorial

�3-spread of the so subdivided cube is N + 1.
“Random” Example. Apparently, the combinatorial �-spread of a suitably defined

random n-polytope with M faces (see Sect. 8) grows, roughly, as n−1
√

M .
1.A. Angular Spread Theorem. The top-dimensional 〉-spreads, of all compact

convex n-polytopes X ⊂ R
n are bounded by a universal constant,

�n〉 (X) ≤ D = Dn ≤ 2(n − 1)
√

n.

We shall prove this in Sect. 5 by reduction to the normalized mean curvature
mapping theorem (see Sect. 2) the proof of which (see Sect. 2.1) depends on the
index theory for Dirac operators on Riemannian spin manifolds with positive scalar
curvatures (see [13, Sects. 3.1.2 and 3.5 ]).

1.B. Corollary. The minimum of the complementary angles of X is bounded by the
combinatorial spread �n

comb(X) as follows,

〉min(X) ≤ D
1

�n
comb(X)

,

2 The topological degree is defined for all continuous equidimensional maps f between oriented manifolds,
e.g. such as our spherical ∂ X and ∂�n , where the non-vanishing condition deg( f ) �= 0 doesn’t depend on
the orientation for connected (orientable) manifolds. Also the degree is defined for the boundary respecting
maps between manifolds with boundaries.
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for the above constant D.
1.C. Conjecture. The above D = Dn is equal to+ π .3

Remark Probably 1.A, 1.B and 1.C generalize to all convex tessellation of Sn−1.4 (See
next section for more about it.)

1.1 Combinatorially Large Polytopes with Large Complementary Angles

Dirac operators notwithstanding, evaluation of the ranges of possible values of the
dihedral angles of polytopes depending on their combinatorial types and/or determi-
nation of the combinatorial and metric geometries of polytopes with all complementary
angles 〉(X) bounded from below remains problematic.

It is known here (Steinitz?) that if 〉min(X) ≥ π/2, then X is the product of simplices.
But – this was pointed out to me by Karim Adiprasito three years ago – there is no
bound on the number of faces of X for 〉min(X) ≥ α for small α > 0. Later, I found
the following on the web.

π/4-Example. Chop off the corners from the prism �i × [0, δ] ⊂ R
3, where �N

is the regular N -gon, N = 3, 4, . . . and δ = 10−N , such that this “chopping” fully
consumes the δ-edges of the prisms, and such that all complementary dihedral angles
of the resulting polytopes X N are mutually equal and satisfy αN → π/4 for N → ∞.

see [21].
Recently, Karim informed me [1] that infinity of combinatorial types of convex

polytopes with 〉min(X) ≥ α exists if an only if α < π/3.
Below, in a similar spirit, we construct n-polytopes, which
“infinitely stretch” in n − 2 directions, while having all complementary dihedral

angles bounded from below.
1.1.A. Skyscrapers. Given convex polytopes 0 ∈ X1 ⊂ ... ⊂ X N ⊂ R

k and
numbers h1 > ... > hN ≥ 0 let

∧N∧
{Xi } =

∧N∧

{hi }
{Xi } ⊂ R

k × R+ ⊂ R
k+1,

denote the intersection of the cones of heights hi over Xi , where the top vertices of
these cones lie on the “vertical” axes 0 × R+ ⊂ R

k × R+,

∧N∧
{Xi } =

N⋂

i

conehi (Xi ).

Such a
∧∧ = ∧∧N = ∧∧{Xi } is called a skyscraper with the bottom X1 and the

top X N if the following holds:

3 In view of what Karim Adiprasito recently told me, this D is better to be the one from 1.C rather than
from 1.B.
4 According to a remark by the referee (if I properly understood it) there exist convex tessellations, which
don’t come from convex polytopes, as it follows by dualization of classical examples of non-regular trian-
gulations, see [6], [2], [25] and appendix in [3] with references therein.
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•∩ the bounary of
∧∧{Xi } has non-empty intersections with all open (n − 1)-faces

of the cones conehi (Xhi
i ) and

two closed side faces F1, F2 ⊂ ∧∧{Xi } do not intersect unless they contained in
faces of the cone over some Xi ,

F1, F2 ⊂ ∂conehi (Xi ),

or in faces of two consecutive cones.

F1 ⊂ ∂conehi (Xi ) and F2 ⊂ ∂conehi+1(Xi+1).

Notice that •∩ implies the following:
•# the number of the k-faces of

∧∧{Xi } satisfies

#k

∧∧
{Xi } = 1 +

N∑

i=1

#k−1 Xi .

Observe that •∩ can be achieved with suitable hi and homothetically scaled Xi .
•{λi } Given Xi there exist h1 > ... > hi > ... > hN and 0 < λ1 < ... < λi < ... <

λN , such that •∩ is satisfied by
∧∧N

{hi }{λi Xi }.5
The usefulness of his for our purpose is due to the following obvious property of

skyscrapers.
1.1.B. Large 〉 Lemma. Let

∧∧
{hi }{Xi } be a a skyscraper (with the bottom X1

and the top X N ), such that the complementary angles of all Xi as well as (by
definition acute) angles between the pairs of hyperplanes, which define the faces
of consecutive Xi and of Xi+1, are strictly bounded from below by α > 0.

Then there exist a (large) positive number C such that vertically C-stretched∧∧
, that is C ↑ ∧∧ = ∧∧ {C · hi }{Xi } (a true skyscraper) has the complementary

dihedral angles between the side faces bounded from below by α

〉side

(
C ↑

∧∧)
> min(α, π/2),

while these angles at the bottom face are > π/2.
π/3-Example. Let Xi ⊂ R

2 be regular triangles, where Xi = Xi+2 and X2 = −X1.
Then the complementary side dihedral angles 〉 of the corresponding skyscraper

X� = X�(N , C) = C ↑
∧∧

=
∧∧

{C ·(N−i+1)}
{(N + 1)i Xi },

satisfy

〉side(X�(C, N )) → π/3 for C → ∞,

5 λX = {λx}x∈X ⊂ R
k .
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while

〉bottom(X�(C, N )) → π/2.

(This, I guess, must be exactly Adiprasito’s example.)

Remarks (a) The essential difference of X�(C, N )) from the above “pruned” prism�N × [0, δ] is that

the combinatorial diameters of X�(C, N ) tend to infinity for N → ∞.
In fact,

diamcomb(X�(C, N )) = N + 1.

(b) The Cartesian products of m copies of X� provide examples of 3m-polytopes,
m = 1, 2...., with all complementary angles ≥ π

3 − ε for all ε > 0 and with arbitrarily
large �m

comb-spreads.
(c) The directional limit set of the faces of the 3-polytops X�(C, N )) for N , C →

∞, that is the Hausdorff limit of the sets of vertices of the dual tessellations X��(C, N ))

of S2, is a 7-point set: a regular hexagon on the equator plus the south pole, while
similar X N with suitably rotated triangles Xi may have arbitrary limit sets on the
equator.

Question. Is this limit set always discrete away from an equatorial circle S1 ⊂ S2?
(Adiprasito bound 〉min ≤ π/3 makes this plausible for 〉min →

N→∞ π/3.)

1.1.C. Skyscrapers on Skyscrapers. Finiteness of the directional limit sets of
Skyscraper

∧∧{Xi } allows a lower bound on the complementary dihedral angles of
double skyscraper

∧∧{∧∧ j {Xi }}, etc.

π/3(2n − 5)-Example. Let ρn,k(�) ⊂ R
2, n = 3, 4, ..., k = 0, ...2n − 5, be

the regular triangle rotated by ρn,k = kπ/3(2n − 5) and define by induction on m
polytopes Xm = Xm(n, Nn,m−2, Cn,m−2) ⊂ R

m = R
2 × R

m−2+ , m = 3.4, ...n, as
follows.

Let

X3 =
∧∧

{ρn,0(�), ρn,1(�)|Nn,1} = Cn,1 ↑
2Nn,1∧∧

{hi }
{λi |ρn,0(�), ρn,1(�)|Nn,1},

where {λi |A, B|N } stands for {λ1 A, λ2 B, ...λ2N−1 A, λ2N B} and where the constants
hi and λi are chosen as in 1.1.A and where eventually Cn,1 → ∞ as earlier.

Then we slightly modify X3 by turning the base 2-face Fbase = � = X3 ∩R
2 × 0

by π/4, call the result X ′
3 and inductively define

X ′
m+1 =

∧∧
{ρn,2(m−3)(X ′

m), ρn,2(m−3)+1(X ′
m)|Nn,m+1},

where the rotations ρ apply to the R
2-factor in R

2 × R
m−2+ ⊃ X ′

m and where the
implicit h, λ and C- constants are adjusted as earlier.
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It is easy to show – we leave checking this to the reader that
�� the �n−2

comb stretch of X ′
n can be made arbitrarily large with all Nn,m → ∞6

and that
�〉 the complementary dihedral angles of X ′

n satisfy

〉(X ′
n) ≥ π

3(2n − 5)
− ε,

where ε > 0 can be made arbitrarily small with Cn,m → ∞.

Probbaly a skyscraper pattern is present in all polytopes X with �n−2
comb >> 1

〉min
.

We partly justify this (conclusively only for dim(X) = n = 3) by looking at the dual
spherical tessellations X� as follows.

Given a cellular tessellation T �, e.g. a triangulation, of an (n−1)-manifold Y , define
the combinatorial distance between cells, as earlier, by the lengths of minimal chains
of cells, denote this by dist� and define the combinatorial �k

�(Y ) = �k
comb(T

�),
including diam� = �1

�, via continuous maps � : Y → �k by just saying “cell”
instead of “face”.

1.1.D. Large Subdomain Lemma. Let T � be a convex tessellation of the unit
sphere Sn−1, where the cells are called �, and let B�

s ⊂ Sn−1, s ∈ Sn−1, denote
the union of closed cells which contain s.

Then, given a (small) number v > 0,
there exists a connected cellular (i.e. a union of cells) domain U� in the sphere

Sn−1, such that the spherical volumes of the “�-balls” B�
s around all points in U are

bounded by

vol(B�
s ) ≤ v, s ∈ U�,

and such that the �comb-spreads of U� are bounded from below by these of T � as
follows:

�k
�(U�) ≥ const · v · �k

�(U�) − 1, const = constn > (10n)−n .

Indeed, the cardinalities N = N (v) of subsets S ⊂ Sn−1 of “v-thick” points
s ∈ Sn−1, i.e. with vol(B�

s ) ≥ v, such that no pair of different points from S is

contained in the same closed cell of T �, are bounded by N = vol(Sn−1)
v

, while the
combinatorial diameters of all �-balls, are at most 2,

diamcomb(B�
s ) ≤ 2 for al s ∈ Sn−1.

Therefore, given a map � = {�1, ..., �k} : Sn−1 → [−1, 1]k from the definition
of �k

comb, there exist gaps between pairs of neighbouring images, say ti = �i (si ), t ′i =

6 The boundary of X ′
n (as well as that of Xn ) with the distcomb-geometry is shaped roughly the same as

(properly coarsely homotopy equivalent to) the rectangular solid [0, Nn,1] × ... × [0, Nn,n−2].
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�i (s′
i ) ∈ [−1, 1], i = 1, ...k, of pairs of “v-thick” vertices si and s′

i , such that

distcomb(�
−1
i [−1, ti ],�−1

i [t ′i , 1]) ≥ 1

N
distcomb(�

−1
i (−1),�−1

i (1)) − 2(N + 1),

and the “B�-enlargement” of the intersection U∩ of the pullbacks �−1[ti , t ′i ] ⊂ Sn−1

is taken for the required U�

U∩ =
k⋂

i=1

�−1[ti , t ′i ] and U� =
⋃

s∈U∩
B�

s .

Here is another obvious observation.
1.1.E. Narrow Band Lemma. If the edges (1-cells) from T �, adjacent to a vertex

s ∈ Sn−1, have lengths ≥ l and if vol(B�
s ) ≤ v, then B�

s ⊂ Sn−1 is contained in
the δ-neighbourhood of an equatorial sphere Sn−2 ⊂ Sn−1,

B�
s ⊂ Uδ(Sn−2),

where this δ = δn(l, v) > 0 satisfies for all n and l > 0,

δn(l, v) → 0 for v → 0.

Moreover, if all (n − 2)-cells �n−2 adjacent to s have

voln−2(�n−2) ≥ a > 0,

then this equatorial Sn−2 ⊂ Sn−1 is unique up to an ε-perturbation, i.e. all equators
for which Uδ(Sn−2) ⊃ B� lie within distance ε one from another, where

ε = εn(v, δ, a) → 0 for v → 0.

1.1.F. Corollary: Elementary Bound on �2
comb. A lower bound by a > 0 on the

(n − 2)-volumes of (n − 2)-cells in a convex tessellation T � of Sn−1 implies an
upper bound on the combinatorial �2-spread of T �,

voln−2(Fn−2) ≥ a > 0 �⇒ �2(T �) ≤ 
n(a).

where 
n is a (bounded monotone decreasing) function in a > 0.
(If n = 2, this is just a qualitative version of 1.B.)

Proof It follows from 1.1.F. and 1.1.E that the above U� ⊂ Sn−1 It follows from
1.1.F. and 1is contained in a δ′-neighbourhood of an equator Sn−2 ⊂ Sn−1, where,
for a fixed a > 0,

�k
comb(T

�) → ∞ �⇒ �k
comb(U

�) → ∞ for all k = 1.2....
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Then one sees that, for δ′ much smaller than a, this U� admits a cellular map
of degree one from the cylinder Sn−2 × [0, 1], which is decomposed into m × M
cells, which are products of cells of some triangulation of Sn−2 into m-simplices
and a decompositions of [0, 1] into M segments, where m is bounded by a constant
depending on a.

It follows that �2(U�) is also ≤ m, hence, it is bounded in terms of a > 0. ��
Remark The above shows that if �1

comb(T
�) → ∞ with the (n − 2) volumes of all

(n − 2)-cells bounded from below by a, then the unit sphere Sn−2 acquires several
limit tessellations with the same bound on the volumes of their (n −2)-cells and some
cells spanned by vertices of different tessellations.

Then, for instance, by looking on pairs of such tessellations, one recovers a special
case of Adiprasito’s result for n = 3.

1.1.G. Conjecture. For all k = 1, ...n − 2, a lower bound on the k-volumes of
the k-cells in a convex tessellation T � of Sn−1 implies an upper bound on the
combinatorial �n−k-spread of T �.

Conversely,
there exist convex tessellations T � of Sn−1 with arbitrary large �n−k−1

comb (T �)

and with the volumes of all k-cells bounded away from zero.
Moreover, there are such T �, which are dual of convex polytopes X ⊂ R

n . (A
quantitative form of a special case of this is suggested in 6.B.)

2 Manifolds with Corners, Mean Convexity and Distance dist�〉

Let X be a smooth n-manifold with corners, i.e. locally, at all x ∈ X , it is diffeomorphic
to a convex polytope Q = Qx ⊂ R

n .
For instance, diffeomorphic images of convex polytopes are manifolds with corners.
Also recall that the mean curvature of a cooriented hypersurface in a Riemannian

manifold is the sum of the principal curvatures.

Example The R-sphere Sn−1(R) ⊂ R
n and the round cylinder Sn−2 × R

1 ⊂ R
n

satisfy

mean.curv(Sn) = n − 1

R
and mean.curv(Sn−2(R) × R

1) = n − 2

R
.

A Riemannian manifold with corners is called mean convex if all its (n − 1) -faces
F ⊂ ∂ X have non-negative mean curvatures.

For instance, convex domains in R
n with corners are mean convex.

Given a smooth curve in the boundary of a manifold with corners, say γ ⊂ ∂ X ,
which doesn’t intersect (n − 2)-faces of X and which meets all (n − 2)-faces of X
transversally, say at xi ∈ ∂ X , i = 1, ..., j , let

length�
〉(γ ) = length�(γ ) +

j∑

i=1

〉xi ,
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where length�(γ ) = ∫
γ

mean.curv(∂ X))dγ , where 〉xi are the complementary dihe-
dral angles, 〉xi = π − ∠xi and where the dihedral angle ∠xi of X at the point xi

is the angle between the (naturally cooriented) (n − 1)-dimensional tangent spaces
Ti , T ′

i ⊂ Txi (X) to the two (n − 1)-faces adjacent to the (n-2)-face, which contains
xi .

Next, assuming X is mean convex and x1, x2 ∈ ∂ X are contained inside (n − 1)-
faces, let

dist�〉 (x1, x2) = inf
γ1,2

length�
〉(γ1,2),

where the infimum is taken over the above kind of curves γ1,2 ⊂ ∂ X between x1 and
x2.

Although this dist�〉 is defined not for all points and it may vanish at some pairs of
non-equal points, we treat it as a true distance; in particular, we define the correspond-
ing distance between (n − 1)-faces7 F1, F2 ⊂ ∂ X in the usual way:

dist�〉 (F1, F2) = inf
x1,x2

dist�〉 (x1, x2) for x1 ∈ F1 and x2 ∈ F2.

If the boundary of X contains no corners, i.e. it is smooth, then the corresponding
distance is denoted dist�. This is a true positive distance if X is strictly mean convex,
i.e. mean.curv(∂ X) > 0.

Semi(in)stability of dist�. An arbitrarily C1-small perturbation of a smooth con-
vex hypersurface Y ⊂ R

n , n ≥ 3, may significantly diminish the metric dist� on
Y .

For instance,
the unit sphere Sn−1 ⊂ R

n , which has diam�(Y ) = (n−1)π
2 , can be C1-

approximated by smooth convex hypersurfaces Yε with diam�(Yε) = π + ε for all
ε > 0 as follows.8

Let A = AN ,δ ⊂ Sn−1, where N > δ−2n , be the union of regular equatorial N -gons
in general position, such for all pairs of points in Sn−1, there are our N -gons passing
ε close to both points. Let BA ⊂ R

n be the intersection of subspaces bounded by the
hyperplanes tangent to Sn−1 at the vertices of the N -gons and let Y (N , δ, ε) be the
boundary of the ε-neighbourhood of BA for 0 < ε ≤ N−2n .

Then

diam�(Y (N , δ, ε)) → π for δ → 0,

and, for the same reason,
all �-spreads of Y (N , δ, ε) converge to the ordinary spreads of the unit sphere,

�k
� (Y (N , δ, ε) → �k(Sn−1) = 1

n − 1
�k

� (Sn−1),

7 An open k-face in X is understood as a maximal connected subset where X is locally diffeomorphic to a
polyhedral k-face.
8 This can’t be done with ε = 0.
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where, observe for instance, �n(Sn−1) = 2 arcsin 1√
n
.9

But the metric dist� of a compact convex hypersurface Y can’t everywhere signif-
icantly increase under small C0-perturbations of Y .

In fact, if Y = Sn−1, this follows from theorem 2.A below, which is a special case
of the normalized mean curvature mapping theorem from [13, Sect. 3.5] and which
makes the key ingredient of the proof of 1.A.

2.A. Euclidean dist�-Non-contraction Theorem. Let X be a compact oriented
mean convex Riemannian n-manifold with smooth boundary, let B ⊂ R

n be a
smooth compact convex domain. e.g the unit ball, and let f : ∂ X → ∂ B be a smooth
map, which which has non-zero degree.

If X has non-negative scalar curvature, Sc(X) ≥ 0, and if X is spin,10 then f
can’t be strictly dist�-decreasing: there exists a pair of points x1, x2 ∈ ∂ X , such that

dist�(x1, x2) ≤ dist�( f (x1), f (x2)).

Remarks (a) As far as the proof of 1.A is concerned, one needs only a very special
case of this theorem, namely, where X is also a smooth convex domain in R

n and
Y is the unit ball in R

n . Amazingly, however, even in this case, the only available
proof of 2.A relies on the spin geometry and Dirac operators (see below).

(b) The assumption Sc(X) ≥ 0 is, obviously, essential: there is no curvature constrains
on the boundaries of general Riemannian manifolds.

But what is non-obvious, is how sensitive the geometry of ∂ X may be to the sign
of the scalar curvature of X .

For instance, in agreement with the positive mass theorem in general relativity, there
is no Riemannian metric g on the unit ball Bn ⊂ R

n with Sc(g) > 0 and with dist�g
(non-strictly) greater than the original dist� on the unit sphere Sn−1 = ∂ Bn ⊂ R

n ,

(c) It is unknown if the spin condition is essential.

The second components of the proof of 1.A - this is an actual contribution of the
present paper, is the following.

2.B. dist�-Approximation Theorem.11 Let X be a compact mean convex Rieman-
nian n-manifold with corners. Then, for all ε > 0, there exists a smooth mean
convex hypersurface Y = Yε ⊂ X and a homeomorphism ψ = ψε : ∂ X → Y
with the following properties.

•1 The map ψ is ε-close to the identity, dist(ψε(x), x) ≤ ε for all x ∈ ∂ X .

9 Here �n(Sn−1) means �n(Sn+), i.e. this is defined via maps Sn−1 → ∂�n of positive degrees.
10 An oriented vector bundle T → X is spin if the associated principle bundle G → X with the fibres
Gx = SL(n,R), n = rank(T ), admits a double covering s : G̃ → G, such that the pullbacks of the fibers
s−1(Gx ) are connected; an orientable manifold X is spin if the tangent bundle T (X) is spin. A necessary
and sufficient condition for spin is vanishing of the second Stiefel-Whitney class w2(T ) ∈ H2(X;Z2); for
instance, if π2(X) = 0, then the universal covering of X is spin. It is also known that all 3-manifolds are
spin, while the complex projective plane CP2 is non-spin.
11 Smoothing the corners + “Dirac with boundary” is also used by Brendle [5] in the proof of his polyhedral
scalar curvature rigidity theorem.
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•2 The dist� in Y is greater than dist�〉 in ∂ X up to an ε-error,

dist�Y (ψ(x1), ψ(x2)) ≥ (1 − ε)dist�〉 (x1, x2)

for all pairs of points positioned within distances ≥ ε from the corners of X .
We shall proof this in Sect. 4, where we also show that, in the case of convex

domains X ⊂ R
n , the approximation is possible with strictly convex Y .

Then we shall see in Sect. 5 that 2.A and 2.B (trivially) imply the following gener-
alization of 1.A.

2.C. Riemannian Angular Spread Theorem. Let X be a compact orientable
mean convex Riemannian n-manifold with corners and with non-negative scalar
curvature, Sc(X) ≥ 0. If X is spin, then the cubical 〉-spread of X is universally
bounded as follows,

�n〉 (X) ≤ D = Dn ≤ 2(n − 1)
√

n.

Technical Strictness Remark. Non-strictness of mean convexity may create inconve-
nience, e.g. a terminological one in dealing with vanishing “metrics”. But this is mainly
irrelevant, since, in the cases of our immediate interest, e.g. for compact smooth hyper-
surfaces in R

n , strictness of mean convexity, mean.curv ≥ 0 � mean.curv > 0,
can is easily achieved by arbitrarily C∞-small perturbations.

In general, with a minor analytic effort, one can C∞-approximate a compact con-
nected mean boundary ∂ X of a Riemannian manifold X corners by a strictly convex
hypersurfaces Y ⊂ X , unless this ∂ X is smooth (no corners) with zero mean curvature.

Thus, one may assume strictness of mean convexity in the present paper whenever
this helps to simplify understanding.

2.1 Sc-NormalizedMetric g◦, Derivation of 2.A from the LGSL Theorem and
〉-Capillary Problem

The counterpart of g� for Riemannian manifolds X = (X , g) with positive scalar
curvatures

Sc(X , x) = Scg(x) > 0

is the Sc-normalized Riemannian metric

g◦ = g◦(x) = Scg(x)g(x)

on X .
The basic geometric property of this g◦ is the following special case of the Llarull

-Goette-Semmelmann-Listing theorem (see 3.1.2 in [13] and references therein)12

12 The essential ingredients of the proofs in [14, 17, 18] is a sharp evaluation of eigenvalues of certain
operators R in moduli over Clifford algebras, where these R are algebraically associated with the curvature
operators R of the underlying Riemannian manifolds X . This suggests a direct Clifford algebraic approach
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2.1.A. Euclidean dist◦-Area Non-contraction Theorem. Let X be a connected
orientable n-dimensional Riemannianmanifold with Sc(X) > 0 and let X ⊂ R

n+1

a closed convex hypersurface.
Let f : X → X be a smooth g◦-area decreasing map, that is

areag◦ f (S) < areag◦(S)

for all smooth surfaces S ⊂ X , where g is the induced Riemannian metric in
X ⊂ R

n+1.
If X is spin, then the map f has degree zero (hence, f is contractible).

Remarks (a) It is unknown, not even for n = 4, if the spin condition is essential.
(b) The proof of 2.1.A depends on the index and vanishing theorems for the Dirac

operator on X with coefficients in the vector bundle induced by f from a unitary
bundle on X .

The simplest kind of result of this kind, where the proof is technically very simple
(see [7], says that

for no Riemannian metric g on Sn the corresponding g◦ can be significantly greater
than the spherical metric:

2.1.B. If distg◦ ≥ CdistSn , then C ≤ Cn for a universal constant Cn .
(In fact, Cn = √

n(n − 1) by Llarull’s theorem [18].)

(c) If g has constant scalar curvature, then 2.1.B (but not 2.1.A) can be proven by the
technique of the geometric measure theory following ideas from [22].

Moreover:
2.1.C. If a metric g on the unit ball Bn ⊂ R

n satisfies Sc(g) ≥ Cn , then the identity
map id : (Bn, g) → (Bn, gEucl) can’t be distance decreasing.

This is proven in [9] for n ≤ 7 and extended to all n in [12] modulo [23], and
directly in [19].

(d) The obvious counterpart of 2.1.A for open manifolds fails to be true.

2.1.D. Example. The Euclidean space R
n , n ≥ 2, admits a Riemannian metric g

with Sc(g) > 1 and such that g◦ is greater than the Euclidean metric.

g◦ ≥ gEucl .

(Notice that g◦ for such a g is complete, but, (see [9]), g can’t be complete.)

Proof Recall that the scalar curvature of the metric gφ = dx2 + φ2(x)dy2 on the
(x, y)-plane is

Sc(gφ(x)) = −2
φ′′(x)

φ(x)
.

to the geometry of convex polytopes, where the complementary dihedral angle play the role of R (compare
with [24]).
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Thus, if φ(x) is a strictly concave positive function on the open interval (0, 1), such
that the integrals

∫ 1/2
0

φ′′(x)
φ(x)

dx and
∫ 1

1/2
φ′′(x)
φ(x)

dx diverge, then the metric g◦
φ on the

band U = (0, 1) × (−∞ × ∞) is complete. Moreover, for all ε > 0 there obviously
exists a distance decreasing diffeomorphism from (U , g◦

φ) onto R
2.

Now let φ(x) be equal xα near x = 0 and to (1 − x)α near x = 1 for 0 < α < 1,
observe that these integral diverge and make our example with the obvious distance
decreasing diffeomorphism U × R

n−2 → R
n .

On Reduction of 2.A to 2.1.A. This is achieved for a manifold X with a (mean
convex) boundary by applying 2.1.A to the double dD(X) with a a suitably smoothed
metric on it (see [13, Sect. 3.5]). A more direct but analytically more involved proof of
2.A based on the the index theorem for manifolds with boundaries was given in [20].

Then, on the next level of sophistication, the index theory directly applies to man-
ifolds with corners [24].

This, formally speaking, delivers a two line proof of 1.A, but my unsatisfactory
understanding of the techniques developed in [24] makes me reluctant to make such
a shortcut in the proof. ��

On Capillary Geometry of X . The above example highlights the difficulty of apply-
ing the geometric measure theory to g◦ and g�, but it doesn’t fully rule out such
applications.

Here is an instance of what one may expect of such an application.
Let X be a mean convex Riemannian n-manifold with corners and with positive

scalar curvature and let Fn−1∓ ⊂ ∂ X be two faces positioned far away one from another
in a suitable sense, where the weakest condition (which may fail to be sufficient) would
be a lower bound on the distance dist�〉 between them: dist�〉 (Fn−1− , Fn−1+ ) ≥ constn ,
where, ideally, constn = π .

Then one wants to have a smooth hypersurface Y ⊂ X with ∂Y ⊂ ∂ X transversal to
the faces of X and a smooth positive function ψ(y) on Y , such that the the ψ-warped
product of Y with the circle, X� = (Y ×T

1, g�), for g� = gY +ψ2dt2, where gY is
the induced Riemannian metric in Y , such that the following conditions are satisfied:

•Sc the metric g� has positive scalar curvature,
•mean the (boundary of the) manifold X� is mean convex,
•dist the dist�〉 -distances between (n − 1)-faces in X� are bounded from below,

possibly, times a controlled (1 + δn)-factor, by the dist�〉 -distances between the corre-
sponding faces in X .

This would allow an inductive proof of (a sharp version?) of 1.A, where, observe,
the expected Y ⊂ X , say for dim(X) = 3 is a minimal surface (or something of this
kind), which, even for 3-polytopes X ⊂ R

3 is by no means flat. (Compare with [11,
12, 16] and [13, Sect. 5.81]).
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3 Rounding the Corners and dist�-Approximation of Simple Polytopes

Let X ⊂ R
n be a convex polytope and ν : Rn → X be the normal projection, that is

ν(x) ∈ X is the nearest point point to X , i.e.

dist(x, ν(x)) = dist(x, X), x ∈ R
n,

and let X◦ = X◦ε ⊃ X , ε > 0, be the ε-neighbourhood of X that is the set of points
x ∈ R

n with dist(x, X) ≤ ε.
Observe the following (compare with [10, Sect. 5.7] and 11.3 in [12]).
•∪Gk The boundary ∂ X◦ is equal to the union of closures of the pullbacks of the

open k-faces Fk ⊂ X , k = 0, 1, ..., n − 1 intersected with ∂ Xε, denoted

Gk = ν−1(Fk) ∩ ∂ X◦ ⊂ ∂ Xε,

where such a Gk ⊂ R
n = R

k ×R
n−k is isometric to the product of the corresponding

face Fk ⊂ R
k by a convex ε-spherical polyhedron (dual to the normal section of Fk)

denoted

Fk⊥ ⊂ Sn−k−1(ε) ⊂ R
n−k .

Thus, the principal curvatures of Gk ⊂ R
n are

•curv 0, ...0︸ ︷︷ ︸
k

,
1

ε
, ...,

1

ε︸ ︷︷ ︸
n−1−k

and their mean curvatures satisfy

•mean mean.curv(Gk)) = 1

εn−k−1 .

•C1 Different Gk , which intersect across parts of their boundaries, have equal tan-
gent spaces at their common points; thus the boundary ∂ X◦ ⊂ R

n is C1- actually
C1,1-smooth.

Quadratic Form g�◦ε and Definition of dist�◦ = g�◦ε . Let g�◦ε be the product of the
induced Riemannian metric on the hypersurface ∂ Xε ⊂ R

n by the squared mean
curvature of this hypersurface,

g�◦ε = (mean.curv)2gEucl |∂ X◦ε

and observe that the metric defined with this Riemannian form g�
ε is exactly our

dist�∂ X◦ε
, which is denoted here dist�◦ε .
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3.A. dist�◦-Convergence Theorem. If X is a simple polytope, then the g�
ε-distance

converges to the 〉-distance,

dist�◦ε
(K1, K2) →

ε→0
dist〉(F1, F2)

for all pairs of compact subsets in open (n − 1)-faces F1, F2 ⊂ X .

K1 ⊂ F1, K2 ⊂ F2 ⊂ X .

�-Example. If X = �n = [−1, 1]n is the n-cube, where, as we know, dist〉 between

opposite (n − 1)-faces is π , the g�◦ε -distance between the corresponding faces in �n

is only π/2. To get the full π , one needs to go ε away from the boundaries of these
faces.

Proof 13 Let Q ⊂ R
n be a convex polyhedral n-dimensional cone and R ⊂ ∂ Q◦ =

∂ Q◦1 be the complement to the flat part of ∂ Q◦, that is the union of all Gk with
k �= n − 1.

Observe that this R is a connected (n − 1)-manifold with a boundary, where the
connected components of this boundary are equal to the boundaries of the (n−1)-faces
of Q. ��

3.B. Minimal Path Lemma. The shortest paths γ ⊂ R between different con-
nected components ∂1, ∂2 ⊂ ∂ R are geodesic segments contained in the subsets
Gk = Fk × Fk⊥ ⊂ R ⊂ ∂ Qε=1, or in the intersection of several such subsets.

Consequently,
the Riemannian distance between ∂1 and ∂2 is equal to the spherical distance

between the intersection of ∂1 and ∂2 with the spherical polytope G0 = Qε=1 ∩ Sn−1.

dist(∂1, ∂2) = distSn−1(∂1 ∩ Sn−1, ∂1 ∩ Sn−1).

Proof A priori, γ (which is a C1-smooth curve) is composed of several geodesic
segments contained in different Gk But since all geodesic segments in all Gk are
distance minimizing, γ is equal to the geodesic continuation of its initial segment, say
γ1 in some Gk ; thus γ stays in this very Gk all along. ��

Now, let a path γ � ∈ ∂ X◦ implement the distance dist� between two flat cells
in ∂ X◦, say between Gn−1,1 and Gn−1,2 The length of this path is equal to the sum
of dist� between components, say ∂1 and ∂1, of the boundary of the non-flat part
R ⊂ ∂ X◦ crossed by γ �.

If X is simple and all Gk = Fk × �n−1−k , where �n−1−k are spherical simplices,
these distances, because of 3.B, can implemented by geodesic segments in Gk with
k = n − 2 and 3.A follows.

About Non-simple X . Examples show that 3.A fails to be true for non-simple
polyhedra X , but, due to 3.B it allows a a modification applicable to non-simple X .

13 Compare with [10, Sect. 5.7] and [13, Sect. 3.1.2(8)].
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Namely, the (n − 2)-adjacency graph E must be replaced by the full adjacency
graph E+(X) ⊃ E(X), which, similarly to E , has the (n − 1)-faces for vertices and
where the edges correspond to pairs of (n − 1)-faces which meet at 0-faces (vertices)
of X and where the lengths of these edges are defined by the corresponding angles
between these faces.

However the resulting version of 1.A for non-simple X doesn’t bring anything new
since it follows from the “simple” case by a generic perturbation of the (n − 2)-faces
of X .

4 Locally Conical Hypersurfaces and the dist�-Approximation
Theorem for Non-simple X

4.A. Conical Function Lemma. Let Y ⊂ R
m be a (possibly unbounded, e.g. conical)

convex polytope. Then, for all ε > 0 there exists a positive concave, function
φ = φε : Y → R+, which is piecewise smooth in the interior of Y , which vanishes
on the boundary ∂Y and which satisfies the following four conditions.14

•ε The directional derivatives of φ at all boundary points y ∈ ∂Y are bounded in
absolute values by ε, or equivalently φ is ε-Lipschitz:

|φ(y1) − φ(y2)| ≤ ε · dist(y1, y2) for all y1, y2 ∈ X .

•curv The principal curvatures of the graph �φ ⊂ R
m ×R+ at the smooth points

of φ are everywhere strictly positive.
•mean The mean curvature of �φ is uniformly positive on compact parts of Y at

smooth points (y, φ(y)) ∈ �φ ,

mean.curv(�φ, (y, φ(y)) ≥ ε(y) > 0.

for a positive continuous function ε(y) on Y .
Moreover, for all (m − 2)-faces F ⊂ ∂Y ,

•1/d mean.curv(�φ(y, φ(y))) ≥ const
1

dist(y, F)

for some positive constant const = constP,ε > 0 and all interior points y ∈ Y ,
where φ is smooth.

Proof The existence of φ is obvious for m = 1 and the general case follows by
induction in m as follows.

Represent Y by the intersection of the wedges Wi ⊂ R
m , i = 1, ..., j , which are

based on the 1-faces F1
i ⊂ Y ,

Y =
j⋂

i=1

Wi , for Wi = Ci × Li , and Ci ⊂ R
m−1
i ,

14 With a little extra effort one can make φ smooth in the interior of Y .
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where

Li ⊂ R
m are the straight lines, which extend the 1-faces F1

i ⊂ Y ;
R

m−1
i ⊂ R

m are normal spaces to the faces F1
i at some points yi ⊂ F1

i ;
Ci ⊂ R

m−1
i are the convex tangent cones to Y at the points yi , that are the conical

extensions of the intersections of Rm−1
i with small neighbourhoods of yi in Y .

Let φi (c) be concave functions in the cones Ci , which satisfy the four conditions
•ε, •curv , •mean , •1/d ,

let φ̄i (c, l) = φi (c) for (c, l) ∈ Wi = Ci × Li ⊂ R
m

and let φ̄ be the minimum of generic λi -perturbations of the functions φ̄i on Y ,

φ̄(y) = min
i

λiφi (y), y ∈ Y .

for small generic λi > 0.15

Clearly, the function φ̄ satisfies •ε, •curv , •mean , but it may fail •1/d at the vertices
yν ∈ Y .

To correct this, modify φ̄ at yν as follows. Let Uν ⊂ Y be (very) small (pyramidal)
neighbourhoods of yi ∈ Y , which are bounded in Y by hyperplanes cutting yν away
from Y , let

Ȳ = Y \
⋃

ν

Uν

be the correspondingly truncated Y and let φ(y) be the smallest concave function on
Y , which is equal to φ̄ on Ȳ and which vanishes on the boundary of Y .

In geometric term, the convex body Y +
φ ⊂ R

m ×R+ under the graph �φ ⊂ R
m ×R+

is obtained by firstly cutting away yν from Y +
φ̄

⊂ R
m×R+ by vertical half-hyperplanes

H+
ν ⊂ R

m × R+ and then adding the cones from yν over the intersection Y +
φ̄

∩ H+
ν

to the resulted truncated Y +
φ̄

.
Now, clearly, the mean curvature of �φ does blow-up as 1/d for the distance d to

the (m − 2)-faces of Y and the proof of 4.A is concluded.
Proof of the dist�-approximation theorem 2.B for convex polytopes. Let X ⊂ R

m

be a compact convex polytope and let X+
ε ⊂ R

n be obtained by adding the subgraphs
of the functions φ = φε on all (n − 1)-faces Y of X to X .

The following five properties of X+
ε trivially follow from 4.A.

•δ The set X+
ε is pinched between X and a (small) δ-neighbourhood of X ,

X ⊂ X+
ε ⊂ Uδ(X) ⊂ R

n, where δ → 0 for ε → 0.

•conv If ε > 0 is sufficiently small, then X+
ε is convex.

15 Generic λi are needed to assure piecewise smoothness of φ̄(y) in the interior of Y .
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•n−2 The intersection of the boundary of X+ with X is equal to the union of the
closed (n − 2)-faces of X ,

∂ X+
ε ∩ X = ∂ X+

ε ∩ ∂ X =
⋃

i=1,...,k≤n−2

Fk
i .

•∠ The dihedral angles of X+
ε along (n − 2)-faces of X (contained in ∂ X+

ε )16 are
bounded by the dihedral angles of X between these faces as follows,

∠+ ≤ ∠ + 2ε.

•1/d The mean curvature of ∂ X+
ε at smooth points x ∈ ∂ X+

ε satisfies

mean.curv(∂ X+
ε , x) ≥ const

1

dist(x, Fn−3)

for some const > 0 and all (n − 3)-faces Fn−3 of X .
It follows, that paths γ ⊂ ∂ X+

ε , which approach Fn−3 have infinite g�-lengths;
hence g�-shortest paths cross (n − 2)-faces away from (n − 3) faces.

Then an additionally C2-smoothed boundary Y of the ε◦-neighbourhood U =
Uε◦(X+

ε ) serves as the required approximation of X by the (trivial) argument from
3.A.

Generalization to Mean Convex Manifolds X with Corners. Think of X as a
mean convex domain with corners in a larger Riemannian manifold, say W ⊃ X and
construct X+

ε ⊂ W in three steps.
1. Make the (n − 1)-faces Fn−1

i of X strictly mean convex by C∞-perturbations,
while keeping these faces unperturbed on the parts of their boundaries which are close
to (n − 3)-faces, i.e. on the intersections ∂ Fn−1

i ∩ Uε(Fn−3
j ).

This is done by linearizing the problem as it is done in the first proof of (�>) in
[12, Sect. 11.2 ]17

Warning. One can’t, in general, achieve this while keeping the faces fixed every-
where on their boundaries as it was done for convex X ⊂ R

n .
For instance, if X is a locally convex geodesic polygon in a Riemannian surface

W , then an edge F1 in X can be approximated by a strictly convex curve with the
same ends as F1, if and only if F1, which itself is a geodesic segment, contains no
conjugate points.

2. At the second step one make the mean curvature of the faces blow up at the
(n − 3)-faces with the rate 1/d. as in the above convex case. In fact, since this blow-

16 These are the angles between the pairs of extremal supporting hyperplanes to X+
ε at the points x ∈

Fn−2 ⊂ X ∩ X+
ε .

17 This argument is outlined in [12] for simple X , i.e. where the (n − 1)-faces intersect transversally and
thus the combinatorial structure of X remains stable under small perturbations, while in the present case,
one needs to keep the perturbation fixed on ∂ Fn−1

i near the (n − 3)-faces to preserve the combinatorial
structure of X . In any case, all this is a minor matter and one doesn’t loose much by assuming that X is
strictly mean convex to start with. Also notice that second “variational proof” of (�>) in [12] is invalid.
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up property is invariant under diffeomorphisms, one can perform it locally in normal
geodesic coordinates and then glue these together by a partition of unity argument.

Notice that this is unneeded if X is simple, where one goes directly to the third step.
3. Once 1 and 2 are done and one arrives at a strictly mean convex Xε, which satisfy

the above •1.d , then, as earlier, one takes the C∞-smoothed boundary of a small ε◦-
neighbourgood Uε◦(Xε) for the required approximation Y of ∂ X (compare with 5.7
in [10] and 11.4 in [12]). ��
Remark It would take a couple of extra pages to explicitly write down the (quite
boring) details of the above argument but it would add nothing new to what we have
already seen in the convex case. ing

Convexly StratifiedManifolds. The step 2 in the above argument takes X out of the
category of manifolds with corners, where the new manifolds are locally diffeomorphic
not to convex polytopes but to certain smoothly stratified convex subsets X ⊂ R

n ,
such, for instance, as cones over smooth convex bodies in R

n−1 ⊂ R
n .

The most general class X gen of such X , where the statement of theorem 2.A makes
sense, consists of closed convex domains X , such that the boundaries of X are piece-
wise smooth in the complements of closed (n − 3)-dimensional subset Z ⊂ ∂ X .

Probably, the proof of theorem 2.A can be extended to the corresponding class X
of mean convex Riemannian manifolds X locally diffeomorphic to such X .

5 Lipschitz Maps and the Proof of Theorems 1.A. and 2.C

Here is an essential, albeit elementary (and trivial), geometric fact one needs.
5.A. LipschitzMappingLemma.Let Y be a closed orientable Riemannian (n−1)-

manifold and φ be a continuous map from Y to the boundary of the n-cube �n =
[−1, 1]n ,

φ : Y → ∂�n,

such that the distances between the pullbacks of the opposite faces �n−1
i± ⊂ �n ,

i = 1, ..., n, satisfy

dist(φ−1(�n−1
i+ , φ−1(�n−1

i− )) > D.

Then the composition of φ with the obvious radial homeomorphism from ∂�n to
the unit sphere

∂�n → Sn−1 ⊂ �n

is homotopic to a smooth map,

f : Y → Sn,
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such that the differential of f satisfies

||d f || <
2
√

n

D
.

Proof Let δi (y) be the distance functions to φ−1(�n−1
i− ) ⊂ Y truncated by D′ > D

such that

D < D′ < max
i

dist(φ−1(�n−1
i+ ,�n−1

i− ),

namely,

δi (y) = min(dist(y, φ−1(�n−1
i− )), D′)

and observe that the map

� =
(

2

D′ δi (y) − 1, ...,
2

D′ δn(y) − 1

)

sends

Y → ∂�n for �n = [−1, 1]n ⊂ R
n,

that this map is homotopic to φ and that it is 2
√

n
D′ -Lipschitz. Since the radial map radial

map ∂�n → Sn−1 → Sn−1 is distance decreasing and D′ > D, the composed map

Y
�→ �n → Sn

can be approximated by the required f .
5.B.Conclusion of theProof of Theorem2.C Let X be a Riemannian manifold with

corners as in 2.C, let �n〉 (X) > D and let � : X → �n be a continuous combinatorial
map, which satisfies •dist〉 and •deg from Sect. 1 and also •dist〉 , but now with D instead
of d.

Then a smooth mean convex hypersurfaceY ⊂ X , which approximates ∂ X accord-
ing to 2.B, which we assume strictly mean convex and which we endow with the metric
dist�, and the map φ = �|Y : Y → ∂�n satisfy the assumptions of 5.A. Hence,

(Y, dist�) admits a λ-Lipschitz map to the unit sphere Sn−1 for λ <
2
√

n
D as in 5.A.

Since the degree of this map doesn’t vanish according to •deg , theorem 2.A says

that λ ≥ 1
mean.curv(Sn−1)

= 1
n−1 , which implies that 2

√
n

D ≤ 1
n−1 and

D < 2(n − 1)
√

n.

��
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6 Combinatorial Waists and 〉n−k−1-Angles

The Fk-overlaps of a map from a manifold X with corners, e.g. from a polytope, to
some set, say α : X → �, denoted

�

#
k

α(X) and #̂k
α(X),

are the maxima of the numbers of open, respectively closed, l-faces in X the α-images
of which in � have a common point ξ ,

For instance, generic linear maps α from n-polytopes X ⊂ R
n to R

n−1 satisfy
�

#
n−1

α (X) = 2 and, if X simple, then #̂n−1
α (X) = n + 1.

The spherical (n − k − 1)-(co)angle of a convex subset X ⊂ R
n , e.g. a Euclidean

n-polytope, at a point x ∈ ∂ X , denoted

〉n−k−1
x (X),

is the (n − k − 1)-dimensional spherical volume (Hausdorff measure) of the set of the
supporting planes to X at x , and where we denote

〉Fk =〉n−k−1
x∈Fk◦

(X)

for open and closed k-faces Fk and for Fk◦ ⊂ Fk being the interior parts of these faces.
Then the “angle” 〉n−k−1

x (X) at a point x in a Riemannian manifold X with corners
is defined as the corresponding angle of the tangent cone of X at x

For instance, if x ∈ Fn−2, this is the complementary dihedral angle of the face
Fn−2 defined earlier.

Define
�∑〉n−k−1

α (X) and
∑̂〉n−k−1

α (X) for Riemannian manifolds X with corners
as the supremum over ξ ∈ � of the sums of these angles over the set of non-empy
intersections of the k-faces Fk in X with the α-pullbacks of points ξ in �,

sup
ξ∈�

∑
〉Fk , Fk ∩ α−1(ξ) �= ∅,

i.e. the sum is taken over all open, respectively closed, k-faces Fk ⊂ X ,which intersect
α−1(ξ).

Remark This definition makes sense for all weight functions w on the faces instead

of 〉n−k−1, where, e.g. for w(x) = 1, one recaptures the numbers
�

#
k

α(X) and #̂k
α(X).

Problem. Given a class A of function α, evaluate possible values #k
α(X) and∑〉n−k−1

α (X) for convex polytopes and other “interesting” manifolds with corners in
terms of other geometric invariants.
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Example 6.A Let X ⊂ R
n be a convex polytope and α : X → R

n−2 a continuous map.
If X is simple,18 then the number #̂n−2

α (X) is bounded from below by the combinatorial
�-spread of X as follows

#̂n−2
α (X) ≥ costn · �n

comb(X).

Sketch of the Proof. Let gε be a Riemannian metric on ∂ X , which distance-wise
ε-approximates distcomb on X . By the argument from the previous section, (∂ X , gε)

admits a 1-Lipschitz map � of non-zero degree to the sphere Sn−1(R) of radius R ≥
const ′n�comb(X). It follows by the (quite elementary) 1-waist inequality for spheres
(see [15] and references therein) the �-image of the pullback α−1(ξ), ξ ∈ R

n−2, has
length ≥ 2π R. Hence, the gε-length of α−1(ξ) is also ≥ 2π R, which, since X is
simple, implies the required bound #̂n−2

α (X) ≥ const ′n R for ε → 0.
Probabaly, a similar argument applies to continuous maps α : X → R

k for all
k = 1, ..., n − 2, thus showing, at least for manifolds X with simple corners, that

#̂k
α(X) ≥ costn · (

�n
comb(X)

)n−k−1

for all continuous α.
But it is unclear what happens to

∑〉k
α .

For instance, let X ⊂ R
n be a convex polytope and k = 1, ..., n − 2.

Question 6.B Is

inf
α

�∑
〉k
α(X) ≤ costn

the infimum is taken over all continuous (may be even linear?) maps α : X → R
k?

Question 6.C Does there exist an (n − k)-dimensinal affine subspace A ⊂ R
n , which

transversally meets N > 0 (open) k-dimensional faces Fk
i ⊂ X , i = 1, ...N , such

that

1

N

N∑

i=1

〉n−k−1
Fk

i
(X) ≤ constn

(�comb(X))n−k−1 ?

The positive answers to this would yield the following generalization of corollary
1.B to k ≤ n − 3.

Conjecture 6.D If the combinatorial �n-spread of a convex polytope X ⊂ R
n is

large, then there exists a k-dimensional face Fk
min ⊂ X with small 〉n−k−1-angle:

〉n−k−1
Fk

min
(X) ≤ constn

(
�n

comb(X)
)−(n−k−1)

,

18 This is probabaly redundant.
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or, at least,

〉n−k−1
Fk

min
(X) → 0 for �n

comb(X) → ∞.

for simple polytopes X .

7 Surgery with Corners and Related Problems

It is claimed in [11, Sect. 1.3] that the so called staircase thin surgery of mean convex
manifolds with positive scalar curvatures19 can be also applied to manifolds X with
corners. However, I overlooked the difficulty in proving the following.

7.A. ∠-Shrinking Problem. Let Y0 ⊂ Sn−1 ⊂ R
n be a convex spherical polytope.

Does there exist a continuous deformation Yt ⊂ Sn−1, 0 ≤ t ≤ 1, of Y0, where
all Yt for t < 1 are convex spherical polytopes combinatorially isomorphic to X0
and having their dihedral angles bounded by the corresponding angles of Y0 and
where Y1 is a single point?

It is easy to construct such a Yt for dim(Y0) = 2, and also for “sufficiently round”
spherical polytopes of dimensions>2, where such shrinking can be achieved by pro-
jective transformations of Y0, but I was unable to prove or disprove it for general
Y ⊂ Sn−1 if n ≥ 4.

And granted such a deformation for the spherical base Y0 of the tangent cone
T Cx0(X) ⊂ Tx0(X) = R

n , at a vertex x0 ⊂ X , say for a strictly mean convex domain
X ⊂ R

n with corners, the staircase construction delivers another strictly mean convex
X1 ⊂ R

n , such that
•cut the domain X1 is diffeomorphic to X with the vertex x0 cut away by a

hyperplane H0 ⊂ R
n parallel to a supporting hyperplane of X at at x0, where this

diffeomorphism moves all points at most by a given ε > 0 and fixes the points ε-far
from x0;

•>〉 the dihedral angles at the (old) (n − 1)-faces of X1 away from the cut X ∩ H0
are bounded by the corresponding angles of X ;

•π/2 the dihedral angles between the new (n − 1)-face corresponding to X ∩ H0
with the old ones are equal to π/2.

Observe that if n = 3, this construction, when applied to all vertices of X , delivers
a simple polytope and thus provides an alternative reduction of the general case of
theorem 1.A to that for simple X .

However, since 7.A. remains problematic for dim(Y ) ≥ 3

the thin surgery at the corners remains problematic as well.

Also pondering over 7.A brings to one’s mind the following more general problems.
7.B. 〉-Variation Problem. Find the homotopy type of the space X (C, κ) of (pos-

sible) dihedral angles of convex n-polytopes X of given combinatorial type C in the
space of constant curvature κ and determine how this space varies depending on
∞ < κ < ∞.

19 See [4, 8, 13].
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7.C. Scalar Curvature 〉-Problem. Let X be a compact connected smooth manifold
with corners, let −∞ < μi < ∞ be numbers associated to the (n − 1)-faces of X and
0 < α j < π be associated to the (n − 2)-faces. Determine the homotopy type of the
space G(X , σ, μi , α j ), σ > 0 of Riemannian metrics g on X such that

•σ the scalar curvature of X satisfies:

Sc(X) > σ ;
•μ the mean curvatures of the (n − 1)-faces of X satisfy:

mean.curvg(Fn−1
i ) > μi ;

•α the complementary dihedral angles at the (n − 2)-faces satisfy:

〉g((Fn−2
j ) ≥ α j .

Also determine how this space varies depending on (σ, μi , α j ).

8 On Random Polytopes

Let � = {σi }i=1,...,N n−1 ⊂ Sn−1 be randomly chosen points on the unit sphere and
X N = X(�) be the (necessarily simple) convex polyhedron defined by the tangent
hyperplanes to the sphere at the points σi .

Let distcomb,N (s1, s2), s1, s2 ∈ Sn−1 be the combinatorial distance between the
(n − 1)-faces F1, F2 ⊂ X of X N the normal projections of which to Sn−1 contains
the points s1 and s2 respectively. (Never mind the distinction between open and closed
faces.)

8.A. Spherical distcomb-Conjecture. There exists a universal constant �n such
that

distcomb,N (s1, s2)

N · distSn−1
→ �n for N → ∞,

with probability 1 for all pairs of points s1, s2 ∈ Sn−1:

the probability of the inequality
∣∣∣ distcomb,N (s1,s2)

N ·distSn−1
− �n

∣∣∣ > ε tends to zero for

N → ∞ for all ε > 0.

Remark Probabaly, this follows by the results/arguments from [BDGHL2021] but
I haven’t looked at this closely.20 in any case an elementary (Poisson) percolation
argument shows that, with overwhelming probability,

distcomb,N (s1, s2)

N · distSn−1
≤ costn and

distcomb,N (s1, s2)

N · distSn−1
≥ cost ′n

log N
for N → ∞.

20 There is an extensive literature on random polytopes, where much of known estimates of the sizes of
random polytopes concern upper bounds on combinatorial edge-diameters, which are motivated by the
Hirsch conjecture, while we are interested on lower bounds on the �-spreads.
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8.A. Spherical dist〉-Conjecture. Let dist〉(s1, s2) = dist〉(F1, F2) for the above

F1, F2. Then there exists a universal constant �
〉
n such that

dist〉(s1, s2)

distSn−1
→ �〉

n for N → ∞,

with probability 1 for all pairs of points s1, s2 ∈ Sn−1.

Remark Exact evaluation of �n and �
〉
n may be difficult but the ratio �n/�

〉
n seems

computable.

There are other commonly used definition of “random polytope” (see [Schnei-
der2008]); we single out the following.

Let C(n, M) be the set of combinatorial types of simple n-polyhedra X with M
faces and observe that the cardinality of this set is pinched between two exponentials:

AM ≤ #C(n, M) ≤ B M .

Cutting X by hyperplanes in two parts suggests that log #C(n, M) is (essentially)
super-additive, and the limit

lim
M→∞

log #C(n, M)

M
,

which seems an interesting number, exists.
Then we assign equal probabilities to all points (combinatorial types) in C(n, M)

and conjecture that
the graphs E = E(X) of the so defined random n-polytopes X with M faces

endowed with metrics M
−1

n−1 distcomb Hausdorff converge to the sphere Sn−1(Rn)

of some radius Rn for M → ∞.
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