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Abstract
We develop data structures for intersection queries in four dimensions that involve
segments, triangles and tetrahedra. Specifically, we study three main problems: (i)
Preprocess a set of n tetrahedra in R

4 into a data structure for answering segment-
intersection queries amid the given tetrahedra (referred to as segment-tetrahedron
intersection queries). (ii) Preprocess a set of n triangles in R

4 into a data struc-
ture that supports triangle-intersection queries amid the input triangles (referred to
as triangle-triangle intersection queries). (iii) Preprocess a set of n segments in R

4

into a data structure that supports tetrahedron-intersection queries amid the input seg-
ments (referred to as tetrahedron-segment intersection queries). In each problem we
want either to detect an intersection, or to count or report all intersections. As far as
we can tell, these problems have not been previously studied. For problem (i), we
first present a “standard” solution which, for any prespecified value n ≤ s ≤ n6 of a
so-called storage parameter s, yields a data structure with O∗(s) storage and expected
preprocessing, which answers an intersection query in O∗(n/s1/6) time (here and
in what follows, the O∗(·) notation hides subpolynomial factors). For problems (ii)
and (iii), using similar arguments, we present a solution that has the same asymptotic
performance bounds. We then improve the solution for problem (i), and present a
more intricate data structure that uses O∗(n2) storage and expected preprocessing,
and answers a segment-tetrahedron intersection query in O∗(n1/2) time, improving
the O∗(n2/3) query time obtained by the standard solution. Using the parametric
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search technique of Agarwal and Matoušek (SIAM J Comput 22:794–806, 1993),
we can obtain data structures with similar performance bounds for the ray-shooting
problem amid tetrahedra in R

4. Unfortunately, so far we do not know how to obtain
a similar improvement for problems (ii) and (iii). Our algorithms are based on a
primal-dual technique for range searching with semi-algebraic sets, based on recent
advances in this area (Agarwal et al. in SIAM J Comput 50:760–787, 2021. Also
in Proceedings of Symposium on Computational Geometry (SoCG) 5:1–5:14, 2019.
Also in arXiv:1812.10269; Matoušek and Patáková in Discrete Comput Geom 54:22–
41, 2015). As this is a result of independent interest, we spell out the details of this
technique. We present several applications of our techniques, including continuous
collision detection amid moving tetrahedra in 3-space, an output-sensitive algorithm
for constructing the arrangement of n tetrahedra in R

4, and an output-sensitive algo-
rithm for constructing the intersection or union of two or several nonconvex polyhedra
in R4.

Keywords Computational geometry · Ray shooting · Tetrahedra in R4 · Intersection
queries in R4 · Polynomial partitioning · Range searching · Semi-algebraic sets ·
Tradeoff

Mathematics Subject Classification 52C45 · 68Q25 · 68U05

1 Introduction

In this paper we consider various intersection problems involving segments, triangles
and tetrahedra inR4. In four dimensions, the interesting setups involve (i) intersections
between (one-dimensional) query segments and (three-dimensional) input tetrahedra,
(ii) intersections between (two-dimensional) query triangles and (two-dimensional)
input triangles, and (iii) intersections between (three-dimensional) query tetrahedra
and (one-dimensional) input segments. We study all three problems, and derive effi-
cient solutions to each of them.

As an interesting application, we consider the continuous collision detection prob-
lem, where the input consists of n tetrahedra in R

3, each of which is moving at some
constant velocity of its own, and the goal is to detect whether any pair of them collide.
Adding the time as a fourth coordinate, this becomes a batched version of intersection
detection inR4, involving both setups (i) (or (iii)) and (ii). Specifically, a collision can
occur when a vertex v of one tetrahedron hits a face f of another, or when an edge e
of one tetrahedron hits an edge e′ of another. In the four-dimensional space-time, the
first event corresponds to an intersection between the ray traced by v and the three-
dimensional prism traced by f (setups (i) and (iii)). The second event corresponds to
an intersection between the two-dimensional strip traced by e and the strip traced by
e′ (setup (ii)).

Other applications include output-sensitive construction of the arrangement of n
tetrahedra in R

4, and an output-sensitive algorithm for computing the intersection
or the union of two or several not necessarily convex polyhedra in R

4. In the three-
dimensional versions of these problems, which were recently studied by the authors,
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the only setups that needed to be considered were segment intersection amid triangles
[18] (or triangle intersection amid segments [4]). In four dimensions, though, we also
face the triangle-triangle intersection problem, since we also need to find intersections
between pairs of 2-faces of the input objects.

Before proceeding, we note that our results are stated and proved under the assump-
tion that the input and query objects are in general position. Informally, this means that
the intersection between any query and input objects occurs at the “right” dimensional-
ity. For example, the intersection between a line and a tetrahedron should be at a single
point that lies in the relative interior of the tetrahedron, and the intersection between
two triangles should also occur at a single point that lies in the relative interiors of
both triangles. We will later be more precise about this assumption, but comment right
now that in most cases this assumption can be removed using standard perturbation
techniques. In one of our applications we will need more ad-hoc techniques to address
thus issue.
Setup (i): Segment-tetrahedron intersectionqueries.Consider first the case of query
segments vs. input tetrahedra. In the setup considered here, the input objects are n (not
necessarily disjoint) tetrahedra in R4 and the query objects are segments, and the goal
is to detect, count, or report intersections between the query segment and the input
tetrahedra.

As far as we can tell, this problem has not been explicitly studied so far. We first
present, in Sect. 3, a “traditional” (albeit novel) solution, in which the problem is
reduced to a range searching problem in a suitable parametric space, which, in the
case of (lines supporting) segments in R

4, is six-dimensional. We carefully adapt
and combine recent techniques, developed by Agarwal et al. [5] and Matoušek and
Patáková [26], which provide algorithmic constructions of intricate space decomposi-
tions based on polynomial partitioning. Using this machinery, we solve the problem so
that, with a so-called prespecified storage parameter s, a segment intersection query
can be answered in1 O∗(n/s1/6) time, for any n ≤ s ≤ n6, and the storage and
preprocessing cost are both O∗(s).

A special case of this setup is an extension to four dimensions of the classical ray
shooting problem, which has mostly been studied in two and three dimensions. In a
general setting, we are given a collection S of n simply-shaped objects, and the goal
is to preprocess S into a data structure that supports efficient ray shooting queries,
where each query specifies a ray ρ and asks for the first object of S hit by ρ, if
such an object exists. In this work we only consider the (already challenging) case
of input tetrahedra. Using the parametric search technique of Agarwal and Matoušek
[7], ray shooting queries can be reduced to segment-intersection detection queries, up
to a polylogarithmic factor in the query cost. By the above discussion, we obtain the
following result:

Theorem 1.1 Given a collection T of n tetrahedra in R4, and any storage parameter
n ≤ s ≤ n6, we can preprocess T into a data structure of size O∗(s), in randomized
O∗(s) expected time, so that we can answer any segment-intersection or ray-shooting
query in T in O∗(n/s1/6) time. The query time bound applies to segment-intersection

1 As in the abstract, the O∗(·) notation hides subpolynomial factors, typically of the form nε , for any
ε > 0, and their coefficients which depend on ε.
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detection and counting queries (and to ray shooting queries). The cost is O∗(n/s1/6)+
O(k) for reporting queries, where k is the output size.

The recent work of Afshani and Cheng [1] shows, for the setting of Theorem 1.1
under the pointer machine model, that any data structure that reports all intersections
in T with a query line in O∗(1) time must use space close to�(n6). This suggests that
our tradeoff bound is likely to be nearly tight2 for s = n6. Nevertheless, we manage
to obtain an improvement when the storage parameter is quadratic. Specifically, we
show, in Sect. 5:

Theorem 1.2 A collection T of n arbitrary tetrahedra in R4 can be preprocessed into
a data structure of size O∗(n2), in expected time O∗(n2), which supports segment-
intersection detection and ray-shooting queries in time O∗(n1/2) per query. A segment-
intersection reporting query takes O∗(n1/2) + O(k) time, where k is the output size.

This indeed improves the bound stated in Theorem 1.1, which, with s = O∗(n2)
storage, has query time O∗(n2/3). Furthermore, with the storage bound specified in
Theorem 1.2, the query bound is similar to that obtained for segment-intersection
(and ray-shooting) amid hyperplanes (rather than tetrahedra) in R4 [7]. We comment,
however, that this improvement does not hold for counting queries.

We then go on to extend the result of Theorem 1.2 to obtain a tradeoff between
storage (and expected preprocessing time) and query time. We obtain the following
result.

Theorem 1.3 Let T be a set of n tetrahedra in R
4. With storage parameter s, which

can vary between n and n6, we can answer a segment intersection or a ray shooting
query amid the tetrahedra of T in time

Q(n, s) =
⎧
⎨

⎩

O∗
(
n7/6

s1/3

)
for s = O(n2),

O∗
(
n3/4

s1/8

)
for s = �(n2).

(1)

Again, this bound pertains to detection queries, and incurs an additive term of O(k)
for reporting queries, where k is the output size, namely the number of intersections
between the query segment and the input tetrahedra.

See Fig. 1 for an illustration. This implies the following corollary.

Corollary 1.4 One can answer m segment intersection detection or ray-shooting
queries, on n tetrahedra in R4 in

max
{
O∗(m3/4n7/8 + n), O∗(m8/9n2/3 + m)

}
(2)

expected time and storage. The first (resp., second) bound dominates when m ≤ n3/2

(resp., m ≥ n3/2). For reporting queries, the bound incurs an additive term of O(k),
where k is the output size.
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Fig. 1 The tradeoff between storage and query time. The breakpoint in the graph represents the case studied
in Theorem 1.2. Both axes are drawn on a logarithmic scale. The straight green graph is the tradeoff given
in Theorem 1.1, and the bent red graph is the improved tradeoff given in Theorem 1.3

Setup (ii): Triangle-triangle intersection queries.Wenext consider the second setup
of intersection queries, where both input and query objects are triangles in R

4. We
show that this setup can also be reduced, similar to setup (i), to a multi-level range
searching problem inR6 involving semi-algebraic ranges. This allows us to obtain the
same performance bounds here too. Namely we have:

Theorem 1.5 Given a collection � of n triangles in R
4 and any storage parameter

n ≤ s ≤ n6, we can preprocess � into a data structure of size O∗(s), in randomized
O∗(s) expected time, so that we can answer any triangle-intersection query in � in
O∗(n/s1/6) time.

We comment that, based on the recent work of Afshani and Cheng [1], the tradeoff
bound in Theorem 1.5 is nearly tight for s = n6 in the pointer machine model. That
is, �(n6) storage is needed to ensure fast query time.

Since both input and query objects are triangles, it is also interesting to consider
the bichromatic batched version of the problem. Namely we have:

Theorem 1.6 Given two collections R and B of triangles in R4, of respective sizes m
andn,we candetect an intersection between some triangle of R and some triangle of B,
or count all such intersections, in expected time (and storage) O∗(m6/7n6/7 +m+n).
We can also report all these intersections in expected time O∗(m6/7n6/7 + m + n) +
O(k), where k is the output size.

As a consequence, integrating this bound with the one obtained in Theorem 1.1
(in which we need to set s = n12/7 to match the performance with that stated above,
as is easily verified), we obtain an overall O∗ (

n12/7
)
expected-time solution for the

continuous collision detection problem, that is:3

Theorem 1.7 Given n tetrahedra in R
3, each of which is moving at some constant

velocity of its own, one can detect a collision between any pair of moving tetrahedra
in O∗ (

n12/7
)
expected time (and storage).

2 See, e.g., [3], for the comparison between the RAM and the pointer machine models, as well as the
justification to use the latter for range reporting computation.
3 Here we use an obvious divide-and-conquer approach in order to reduce the general (non-bichromatic)
problem to the bichromatic version.

123



Discrete & Computational Geometry

Indeed, in the four-dimensional space-time, a tetrahedron � moving at some fixed
velocity, traces a prism-like polytope�∗, of constant complexity. A collision between
twomoving tetrahedra�1,�2 in three dimensions occurs if and only if�∗

1 and�∗
2 have

a nonempty intersection.We can therefore triangulate the boundary of each such prism-
like polytope �∗ into O(1) tetrahedra, and then obtain the settings in Theorems 1.1
and 1.6 (where in the firstwe consider the tetrahedra and their edges, and in the latterwe
consider the 2-faces of these tetrahedra).We recall thatwe assume that both settings are
in general position. For the first, we solve the bichromatic version for the tetrahedra and
their edges, since the tetrahedra and the tetrahedron-edges (with whichwe query) lie in
general position (see our comment above about standard perturbation techniques and
the general position assumptions stated in Sect. 3) we can apply Theorem 1.1. In order
to enforce the general position assumption for the 2-faces of the resulting tetrahedra
(the input of Theorem 1.6), we apply the following steps. First, after triangulating
each prism-like polytope �∗, we color each of the resulting 2-faces in a distinct
color. By this step we partition the entire set of the 2-faces, over all �∗, into O(1)
subcollections. We next apply Theorem 1.6 for each pair of such subcollections in
turn (overall, we have O(1) such pairs), and report that a collision between any pair
of moving tetrahedra has been detected if we detected an intersection between a pair
of triangles from two different collections. As above, we use standard perturbation
techniques (see also Sect. 3 and 4), in order to conclude that the resulting O(1) pairs
of triangle collections are in general position.

Collision detection has been widely studied—see Lin, Manocha and Kim [24] for
a recent comprehensive survey, and the references therein. We are not aware of any
work that addresses the exact algorithmic approach for the specific setup considered
here, although there are some works, such as Canny [12] or Schömer and Thiel [29],
that address similar contexts.

We then consider the applications of our techniques to the problems of output-
sensitive construction of an arrangement of tetrahedra in R

4, and of constructing the
intersection or union of two or several (nonconvex and bounded) polyhedra in R

4.
Using the bounds for setups (i) and (ii), we obtain, in Sect. 7:

Theorem 1.8 (i) Let T be a collection of n tetrahedra in general position4 in R
4.

We can construct the arrangement A(T ) of T in O∗(n12/7 + n1/2k2) + O(k4 log k4)
randomized expected time, where k2 is the number of intersecting pairs of tetrahedra
in T , and k4 is the number of vertices of A(T ).
(ii)Given two arbitrary (bounded) polyhedra R and B inR4, each of complexity O(n)

(where the complexity is the number of faces of all dimensions on their boundary),
that lie in general position with respect to one another,5 the intersection R∩ B can be
computed in expected time O∗(n12/7+n1/2k2)+O(k4 log k4), where k2 is the number
of 2-faces of A(R ∪ B), and k4 is the number of vertices of A(R ∪ B).

As another application of our techniquewe present an efficient algorithm for detect-
ing, counting or reporting intersections between n 2-flats and n lines in R4. We show

4 Here general position implies that a pair of intersecting tetrahedra intersect in a two-dimensional convex
polygon of constant complexity.
5 In the context of our analysis this implies that, for any pair of intersecting tetrahedra �1 ∈ ∂R and
�2 ∈ ∂B, �1 ∩ �2 is a a two-dimensional convex polygon of constant complexity.
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that, given n lines and n 2-flats in R
4, one can detect whether some line intersects

some 2-flat in O∗(n13/8) expected time, or count the number of such intersections.
One can also report all k intersections in O∗(n13/8)+ O(k) expected time. This result
is a degenerate special case of the triangle-triangle intersection setup (ii), and admits a
faster solution. (Note that in general position 2-flats and lines are not expected to meet
in R4, which makes this special case interesting. One can also regard this problem as
a variant, in four dimensions, of Hopcroft’s problem, seeking to detect an incidence
between n points and n lines in the plane.)
Setup (iii): Tetrahedron-segment intersection queries. This is a symmetric version
of setup (i), where the input consists of n segments in R

4 and the query is with a
tetrahedron T , where the goal is to detect, count or report intersections between T
and the input segments. Using a similar machinery, we obtain the same asymptotic
performance bounds, as in the previous standard solutions, for this setup too.

Theorem 1.9 Given a collection S of n segments in R
4, and any storage parameter

n ≤ s ≤ n6, we can preprocess S into a data structure of size O∗(s), in randomized
O∗(s) expected time, so that we can answer any tetrahedron-intersection query in S in
O∗(n/s1/6) time. The query time bound applies to tetrahedron-intersection detection
and counting queries. The cost is O∗(n/s1/6) + O(k) for reporting queries, where k
is the output size.

The paper is organized as follows. We begin with a short preliminary section
(Sect. 2), where we briefly review some basic notions used in the paper, such as
range searching and semi-algebraic sets. We then present, in Sect. 3, the standard (but
novel) technique for setup (i). A simple modification of the algorithm, also presented
in Sect. 3, yields an algorithm for setup (iii). The algorithm for setup (ii) is then pre-
sented in Sect. 4. The improved algorithm for setup (i) is presented in Sect. 5. This
improved solution can be extended to yield an improved tradeoff between storage and
query time, the details of which are given in Sect. 6. Our applications, for constructing
arrangements of tetrahedra inR4, constructing the intersection or union of nonconvex
polyhedra in R4, and continuous collision detection, are presented in Sect. 7. Finally,
in Sect. 8, we study the special case of intersections between 2-flats and lines in R

4.

2 Preliminaries

In this section we briefly review some basic concepts and tools that we will be using
in our analysis.

The problems studied in this paper are solved via a reduction to semi-algebraic
range searching. Specifically, we are given a set P of n points in Rd , which we want
to preprocess into a data structure that supports range searching queries. Each such
query specifies a range K , which is a region of some shape in R

d , and the goal is
either to detect whether K contains a point of P (referred to as range emptiness), or
to count the number of these points (range counting), or to report all of them (range
reporting). Range searching has been thoroughly reviewed in several surveys, such as
the recent survey of Agarwal [3], and we refer the reader to this survey for details.
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Range searching has been extensively studied for more than three decades, but
most of these studies have focused on the case where K is a halfspace, bounded by a
hyperplane, or, more generally, where K is a simplex. Only recently, focus has shifted
to the case where the ranges are semi-algebraic. A set is called semi-algebraic if it is
defined as a Boolean combination of polynomial equalities and inequalities. It is said
to have constant complexity if the number of polynomials and their maximum degree
are both bounded by a constant. In what follows we assume that the ranges under
consideration have e degrees of freedom, meaning that each of them can be specified
in terms of e real parameters.

We assume that the model of computation is the real RAM model, where algebraic
manipulation of a constant number of polynomials of constantmaximumdegree can be
performed exactly in constant time. Such manipulations include computing the roots
of a polynomial equation, in the sense that any polynomial sign test involving such a
root can be performed exactly (in constant time), and all kinds of algebraic operations
of a similar nature. See the book of Basu, Pollack and Roy [11], for details of such
computations, as well as the studies in [8, 10] where such a model of computation was
used.

The ability to perform range searching with semi-algebraic sets is due to recent
algorithmic advances in the theory of polynomial partitioning. The technique has
been introduced by Guth and Katz [21] in 2010, and has later been extended by
Guth [20] in 2015. In a nutshell, these works show that, given a collection S of n
k-dimensional varieties in R

d , for any 0 ≤ k ≤ d − 1, of constant maximum degree,
and for a specified parameter D, one can construct a polynomial F ∈ R[x1, . . . , xd ]
of degree O(D), so that its zero set Z(F) partitionsRd into O(Dd) cells, each being a
connected component of Rd \ Z(F), so that each cell τ is crossed by at most n/Dd−k

varieties of S. This yields a powerful divide-and-conquer mechanism, that has been
used effectively to solve many combinatorial problems, involving incidences, distinct
distances, and many other topics; see the book of Sheffer [32] for more details.

The technique has been initially combinatorial in nature, as it lacked efficient algo-
rithms for the actual construction of partitioning polynomials. It has also suffered from
the problem that the partition guarantees good bounds within each of its cells, but not
necessarily on the zero set Z(F) itself. Many works have addressed this latter issue,
but a full satisfactory solution was hard to come by.

Only recently, the missing algorithmic part has been supplied, in a couple of fun-
damental works, by Matoušek and Patáková [26] and by Agarwal, Aronov, Ezra and
Zahl [5] (see also somewhat earlier works [8, 10]).

The crucial technical tool in [5], on which their technique is based, is the following
result. We give here a restricted specialized version that suffices for our purposes,
as we apply it in d = 6 dimensions. (When applying this tool in d dimensions, the
parameter 6 has to be replaced by d.)

Theorem 2.1 (A specialized version of Agarwal et al. [5, Corr. 4.8]) Given a set �

of N constant-degree algebraic surfaces in R
6, and a sufficiently small parameter

0 < δ < 1/6, there are finite collections�0, . . . , �6 of semi-algebraic sets inR6 with
the following properties.
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• For each index i , each cell ω ∈ �i is a connected semi-algebraic set of constant
complexity. The size |�i | of �i (the number of its sets) is a constant that depends
on δ. 6

• For each index i and each ω ∈ �i , at most
N

4|�i |1/6−δ surfaces from � cross ω

(intersect ω without fully containing it).

• The cells partitionR6, in the sense thatR6 =
6⊔

i=0

⊔

ω∈�i

ω, where
⊔

denotes disjoint

union.

The sets in �0, . . . , �6 can be computed in O(N ) expected time, where the constant
of proportionality depends on δ, by a randomized algorithm. For each i and for every
set ω ∈ �i , the algorithm returns a semi-algebraic representation of ω, a reference
point inside ω, and the subset of surfaces of � that cross ω.

Here is a brief overview of the range searching technique that we use. Suppose,
for specificity, that each range in the family S under consideration is defined as the
conjunction of t inequalities fi (x, y) ≤ 0, for i = 1, . . . , t , where fi are constant-
degree polynomials in x ∈ R

d , the coordinates of the points of P , and in y ∈ R
e,

which is a vector representing the at most e real parameters specifying a range in S.
There are two ways to represent the problem, which we refer to as the primal and

dual settings. In the primal, standard setting, we work in the d-dimensional object
space, where the points of P are represented as points and the ranges as regions. In
the dual, we work in the e-dimensional query space, where the ranges are represented
as points and the points of P as ranges, where the range σp associated with a point p
is the set of all points representing regions of S that contain p. The problem that we
face in the dual is also referred to as point enclosure searching; that is, the input is a
set of regions, the query is a point q, and the goal is to detect whether q is contained
in some input region, or to count or report all such regions.

In the primal, we handle the conjunction of the t inequalities using a multi-level
search tree, where each level of the tree caters to one of the inequalities. At each level,
we construct a partition of space (that is of Rd ) into O(1) cells, and associate with
each cell τ the set Pτ = P ∩ τ , to which we refer as a canonical set. Assuming we are
not yet at the final level, each canonical set is passed to the next level, and the points
in it are partitioned using a similar scheme.

When we query with a range K , we find, at each level i that we process, in O(1)
time, all the cells that are fully contained in the ‘halfspace’ fi (x, yK ) ≤ 0, and the
cells that this halfspace crosses (intersects but does not fully contain), where yK are the
parameters that specify K (as above). In fact, due to our general position assumption,
we actually consider the open halfspace fi (x, yK ) < 0. We then continue the query
recursively, at the same level, in each cell of the second type. For each cell τ of the
first type, we continue the query at the next-level structure associated with Pτ , which
we query with the inequality involving fi+1. When we reach the last level, the points
in the first kind of canonical sets that the query has reached can be trivially detected,

6 This latter property is not explicitly mentioned in [5]. However, it follows from the proof details there,
where it is shown that |�i | ≤ Di+O(δ), for some constant D representing the degree of a partitioning
polynomial at “level i”.
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counted, or reported, using the fact that these sets are pairwise disjoint, by construction.
Canonical sets of the second kind will be processed recursively, within the same level,
until we reach subproblems of constant size, and their points are then handled by brute
force.

The construction is different in the dual, for point-enclosure queries. We also use
here a multi-level structure, one level for each inequality. Here we have a set S of
constant-complexity semi-algebraic regions (namely, at the i-th level, the region asso-
ciated with a point p is {y ∈ R

e | fi (xp, y) < 0}, where xp are the coordinates of
p), and we query with a point. Using Theorem 2.1, we partition space (this time Re),
at each level, into a constant number of cells, as prescribed there, and for each cell
τ of the partition, we construct the set S0τ of the regions that fully contain τ , and the
set Sτ of the regions that cross τ . We recursively process each of these sets, the sets
S0τ at the next level, and the sets Sτ at the same level. (More precisely, when handling
a conjunction of inequalities, the sets S0τ are replaced by similarly defined sets using
fi+1 instead of fi .)
A query with a point q is easy to answer. We locate, in O(1) time, the cell τ

containing q, and continue the query recursively, with S0τ at the next level, and with
Sτ at the same level.

In the primal, the storage used by the structure is near-linear. The query cost depends
on the number of cells crossed by the query region K . Skipping the details in this
overview (for which see [3, 5, 26]), which are based on properties of polynomial
partitions, as given, e.g., in [26], this cost is shown to be O∗(n1−1/d).

In the dual, the cost of a query is easily seen to be O(log n). Using Theorem 2.1
and the analysis around it given in [5], one can show that the storage is O∗(ne). Again,
we omit the details in this overview.

The review of multi-level structures given above assumes that each inequality
fi (x, y) < 0 uses the same number d of the coordinates of x and the same num-
ber e of the parameters of the ranges in y. In practice, and in some of the applications
given in this paper, this does not have to be the case. Nevertheless, the performance
bounds (the query cost in the primal and the storage in the dual) continue to be the
same. More precisely, as can be shown, the parameter d in the former bound is the
maximum number of coordinates of the points of P used at any of the polynomials
fi , and the parameter e in the latter bound is the maximum number of parameters of
the ranges that are used at any polynomial.

The primal and dual techniques can be combined, in order to obtain a tradeoff
between the storage and the cost of a query. This is done by constructing the primal
structure up to a certain depth, in which the subproblems have a prescribed ‘interme-
diate’ size, and then by handling each subproblem in the dual. When d = e, as will
be the case in most of the applications of these techniques in this paper, one obtains
a structure that uses O∗(s) storage and answers a query in O∗(n/s1/d) time, for any
so-called ‘storage parameter’ n ≤ s ≤ nd .

These tradeoff bounds are useful in the offline, or batched mode, where we
have m queries given in advance. As shown in several recent works (such as the
appendix in [4]), the overall cost of processing these queries, for the case d = e, is
O∗(md/(d+1)nd/(d+1) + m + n).
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3 Segment-Intersection amid Tetrahedra: An Initial Algorithm

In this section we prove Theorem 1.1. Specifically, we present an initial solution to
the problem of segment-intersection detection amid tetrahedra in four dimensions,
which is based on a careful combination of the recent semi-algebraic range searching
machinery of [5, 26]. As far as we can tell, such a solution has not yet been presented
in the literature. Also, the adaptation of the available techniques to this problem is not
simple, requires nontrivial and careful enhancements, and is sufficiently novel, in our
opinion, to be of independent interest. Moreover, this gives a yardstick for appreciat-
ing the improvement obtained by our improved algorithm, presented in Sect. 5. The
machinery developed here will also be used, with some appropriate modifications, in
the algorithms for handling setups (ii) and (iii).

The parametric search technique of Agarwal and Matoušek [7] reduces ray shoot-
ing queries to segment-intersection detection queries, so it suffices to consider the
latter problem. The reporting and counting variants are simple extensions of the same
technique, as will be discussed as we go.

To obtain a tradeoff between the storage of the structure (and its preprocessing
cost) and the query time, our algorithm uses a primal-dual approach. However, both
the primal and dual setups suffer from the fact that, in four dimensions, segments and
tetrahedra require too many parameters to specify. Specifically, a segment requires
eight parameters (e.g., by specifying its two endpoints), while a tetrahedron requires
16 parameters (e.g., by specifying the coordinates of its four vertices).

To address this issue, we use a multi-level data structure, where each level caters
to one aspect of the condition that a segment crosses a tetrahedron. This is done so
that, at each of these levels, the number of parameters that a segment or a tetrahedron
requires is at most six.

Specifically, the condition that a segment e, that lies on a line �, intersects a tetrahe-
dron �, supported by a hyperplane h�, is the conjunction of the following conditions:

(i) The two endpoints of e lie on different sides of h�.
(ii) With a suitable choice of an orientation of �, � has the same orientation with

respect to each of the 2-planes that support the four 2-faces of �, where each
2-plane is oriented consistently with �.

We remind the reader that we assume general position. In particular, this means
that the sidedness in condition (i) is with respect to the open halfspaces bounded by
h�, and that the orientations in condition (ii) are positive or negative but not zero.

Informally, concerning the notion of orientation in (ii), a line � is oriented by
specifying the order of some pair of points p�,1, p�,2 on �. A 2-plane π is oriented by
specifying the circular order of three noncollinear points qπ,1, qπ,2, qπ,3 on π . The
relative orientation of � with respect to π is the orientation of the 5-tuple

(
p�,1, p�,2, qπ,1, qπ,2, qπ,3

)
.

See (3) and the discussion around it for more precise details.
Condition (i) is the conjunction of two sub-conditions, each testing the position of

some endpoint of ewith respect to the hyperplanes h�. Condition (ii) is the disjunction
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Fig. 2 An illustration of condition (ii) in three dimensions. (i) The line � intersects the triangle �. (ii) We
assign appropriate directions to � and to the lines supporting the edges of �, so that the directed � intersects
� if and only if � is positively oriented with respect to each of the three directed edge-supporting lines of
�. These three conditions are enforced by three respective orientation tests

of two conjunctions of four sub-conditions each, where the first (resp., second) dis-
junction involves tests that check that the orientation of � with respect to the 2-planes
supporting specific 2-faces of the tetrahedra are all positive (resp., negative). Thus,
the dual structure is the union of two substructures, each of which has six levels, two
for testing the sub-conditions of condition (i) and four for testing the sub-conditions
of condition (ii). For simplicity, we consider only one substructure, where the ori-
entations have to be positive. See Fig. 2 for a three-dimensional illustration of this
condition.

More precisely, each but the last level is a collection of structures, each of which
operates on some canonical subset of the input tetrahedra, produced at the previous
levels, and collects all the tetrahedra � of that subset that satisfy the corresponding
sub-condition for the query segment (that a specific endpoint of e lies in a specific side
of h� for the first two levels, or that the oriented 2-plane supporting a specific 2-face
of� is positively oriented with respect to the directed line � for the last four levels), as
the disjoint union of precomputed canonical sets of tetrahedra. The last level just tests
whether the last sub-condition is satisfied for any tetrahedron in the current canonical
set.

We use the fact that lines in R
4 require six real parameters to specify. The space

of lines in R
4 is actually projective, but for simplicity of presentation we regard it

as a real space, and ignore the special cases in which the real representation fails.
Handling these cases follows the same approach, and is in fact simpler, as it uses
fewer parameters.

One simple way to represent a line � in R4 is by the points u0� = (x0, y0, z0, 0) and
u1� = (x1, y1, z1, 1) at which � crosses the hyperplanesw = 0 andw = 1, respectively
(ignoring lines that are orthogonal to the w-axis), so the line � can be represented as
the point p� = (x0, y0, z0, x1, y1, z1) in R6, as desired.

Similarly, 2-planes in R
4 also require six parameters to specify. This is simply

because the duality in R
4 maps lines to 2-planes and vice versa, but a concrete way

to represent 2-planes by six parameters, which we will use, is to specify three points
on a 2-plane π that are intersections of π with three fixed 2-planes, such as, say,
x = y = 0, x = 0 and y = 1, and x = y = 1 (again ignoring special directions of π ).
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Each of the intersection points has two degrees of freedom (as two of its coordinates
are fixed), for a total of six. Denote these points as v

(00)
π , v

(01)
π , and v

(11)
π , and put

qπ =
(
v

(00)
π , v

(01)
π , v

(11)
π

)
, listing only the w- and z-coordinates of each point, so qπ

is indeed a point in R
6.

These observations are meaningful only for the last four levels of the structure. The
first two levels are simpler, as they dealwith points (the endpoints of e) and hyperplanes
(those supporting the tetrahedra of T ) in R

4. Thus each of the first two levels is a
halfspace range searching structure for points and halfspaces in R

4. (Actually, this is
the case when we pass to the dual 4-space; in the primal we have a point-enclosure
problem, where the query is a point and the input consists of halfspaces bounded by
the relevant hyperplanes.) Using standard techniques (see, e.g., [3]), this can be done,
for N halfspaces in the current canonical subset and using O∗(N ) storage, so that a
query costs O∗(N 3/4) time.7 This cost will be subsumed by the query time bounds
for the last four levels. The cost of a query includes the cost of reporting its output, as
a list of canonical sets.

We next consider the (more involved) situation in the last four levels of the struc-
ture. Here the query segment is replaced by its supporting oriented line �, and each
tetrahedron � is replaced by the oriented 2-plane supporting a specific 2-face of �,
one 2-face for each level. In the primal setup, the line � is represented as a point p� in
(projective) 6-space, in the manner just described, and a tetrahedron�, represented by
a suitable oriented 2-plane π supporting its 2-faces (due to the multi-level approach,
we consider only one 2-face of � a time), is represented as a semi-algebraic region
Kπ , consisting of all points that represent (directed) lines that are positively oriented
with respect to π . The problem that we face is a point-enclosure query, in which we
want to collect all the regions Kπ that contain p�. In the dual setup, the 2-planes π are
represented as points in R

6, and the (directed) query line � is represented as a semi-
algebraic region Q� that consists of all (oriented) 2-planes that are positively oriented
with respect to �. The problem here is a semi-algebraic range searching query, where
we want to collect all the input points in Q�.

The orientation test of � with respect to π amounts to computing the sign of the
5 × 5 determinant ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u0� 1
u1� 1

v
(00)
π 1

v
(01)
π 1

v
(11)
π 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3)

with a suitable orientation of the pair of points u0� , u
1
� on � (dictating the direction of

�), and of the triple of points v
(00)
π , v(01)

π , v(11)
π on π (dictating the orientation of π ).

Again, our general position assumption requires that the sign in (3) is either positive
or negative but not zero.

7 A tradeoff between storage and query time is also available, but we do not need it here.
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To compute these signs, at each of the four latter levels of the structure, we use a
primal-dual approach, where the top part of the structure is in the primal, and at each
of its leaf nodes (i.e., intermediate nodes at some suitable level) we pass to the dual.
The dual setup. The dual setup is simpler, so we begin with its description. In the
dual setup, each tetrahedron � of the current canonical subset of T is mapped to the

point qπ =
(
v

(00)
π , v

(01)
π , v

(11)
π

)
in R

6, where π is the 2-plane supporting the 2-face

of � that corresponds to the present level. More precisely, the coordinates of qπ are
suitably permuted to represent the correct orientation of π (with respect to �). As
just mentioned, the query line � is mapped to a semi-algebraic region Q� of constant
complexity in R

6, consisting of all points qπ that represent (oriented) 2-planes that
have positive orientation with respect to �, that is, the corresponding determinant in
(3) is positive. The case of negative orientation needs to be handled too, in a fully
symmetric manner, but for specificity we stick with the case of positive orientation.
(Q� is in fact defined by a single polynomial inequality, where the polynomial is cubic
in qπ .)

As already mentioned, the task at hand, at each but the last level, is to collect the
points qπ that lie in Q�, as the disjoint union of a small number of precomputed
canonical sets of tetrahedra, and the task at the last level, for detection queries, is to
determine whether Q� contains any point qπ , for π corresponding to the last 2-faces
of the tetrahedra in the present canonical subset of T . For counting queries, we add
the size of each output canonical set to a global counter, and for reporting queries we
output the elements of each output set. (For counting and reporting queries we use the
fact that the canonical sets produced by the structure for a specific query are pairwise
disjoint, as easily follows from our construction, see also Sect. 2.) In other words, we
have, at each of these levels, a problem involving range searching with semi-algebraic
ranges inR6. Using the algorithmofMatoušek and Patáková [26], which is a simplified
version of the algorithm of Agarwal et al. [8], this can be done, for N tetrahedra, with
O∗(N ) storage and expected preprocessing time, so that a detection or counting query
takes O∗(N 5/6) time (including the cost of reporting, without enumerating, the output
canonical sets). Reporting queries are handled and analyzed in a suitably modified
manner; see below. See [3, Thm. 6.1] for more details.
The primal setup. With this procedure at hand, we go back to the primal structure,
at each of the last four levels. As noted, the problem that we face there is a point
enclosure problem, where the input consists of some N constant-complexity semi-
algebraic regions in R

6 of the form Kπ , and the query is the point p� that represents
�, as defined earlier, and the task is to collect all the regions Kπ that contain p�, as the
disjoint union of a small number of precomputed canonical sets, or, at the last level, to
determine whether p� is contained in any such region (or output the number of such
regions, or report all of them). Here Kπ is given by a single polynomial inequality,
and the polynomial is quadratic in p�.

This problem has recently been studied in Agarwal et al. [5], using a multi-level
polynomial partitioning technique, for the case where we allow maximum storage for
the structure (that is, O∗(N 6) in our case) and want the query time to be logarith-
mic. We next show that the structure can be modified so that its preprocessing stops
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‘prematurely’ when its overall storage attains some prescribed value, and each of the
subproblems at the new leaves can be handled via the dual algorithm presented above.

We remark that a more recent study of similar problems [4] contains a similar
detailed analysis of this technique. We also remark that, with some care, we could
have switched the roles of the top and bottom parts of the structure, so that the top
part deals with the dual setup and the bottom part with the primal. In that case the
technique that one would have to adapt is the complementary one of Matoušek and
Patáková [26] rather than that of [5].

The crucial technical tool in [5], on which their technique is based, is Theorem 2.1,
as stated in Sect. 2.

In our case, the surfaces of � are the boundaries of the regions Kπ (each defined
by a single quadratic polynomial equation; see (3)). A straightforward enhancement
of the algorithm of [5] also yields, for each i and each ω ∈ �i , the set of regions Kπ

that fully contain ω, within the same asymptotic time bound.
We compute the partition of Theorem 2.1 and find, for each ψ = ∂Kπ ∈ �, the

sets ω ∈ �i , over all i = 0, . . . , 6, thatψ crosses, and those that are fully contained in
Kπ . For each i and ω ∈ �i , let Ki,ω (resp., K0

i,ω) denote the set of tetrahedra � ∈ T
for which ∂Kπ crosses ω (resp., Kπ fully contains ω).

The overall size of the sets K0
i,ω, over all i and ω ∈ �i , is O(N ), with a constant

that depends on δ (that is, on the sizes |�i |, which depend on δ).
For each i and ω we also have a recursive subproblem that involves the subsetKi,ω

of the tetrahedra � for which ∂Kπ crosses ω. Putting ri := |�i |, for i = 0, . . . , 6,

we have, for each i and ω, |Ki,ω| ≤ N

4r1/6−δ
i

. We run the recursion, but not all the

way through, as in [5]. Instead, we use the following storage allocation rule. We fix
the storage that we are willing to allocate to the structure, and distribute it among the
nodes of the recursion, as follows. To simplify the analysis, we distinguish between
the storage itself, and the so-called storage parameter s, which is what we actually
manage, but we have the property that the actual storage will always be O∗(s), as will
be the preprocessing cost.

Let s be the storage parameter that we allocate at the root of the structure. For each i
and each set ω ∈ �i , we allocate the storage parameter s/(4|�i |) for ω. Hence, when
we reach some set ω at a deeper level of recursion, say level j , the storage parameter

allocated to ω is
s

4 j |�(1)
i1

| · |�(2)
i2

| · · · |�( j)
i j

|
, where �

(1)
i1

, �
(2)
i2

, . . . , �
( j)
i j

, for indices

0 ≤ i1, i2, . . . , i j ≤ 6, are the partition families at the ancestors of ω in the recursion.
We stop the recursion when we reach nodes for which the allocated storage parame-

ter is (roughly) equal to the number of tetrahedra at the node; a more precise statement
of the termination rule is given shortly.

Put, for each set ω, rω := |�(1)
i1

| · |�(2)
i2

| · · · |�( j)
i j

|, using the above notation for ω.

The storage parameter allocated to ω is thus s/(4 j rω). Also, by Theorem 2.1, the
number of tetrahedra � that participate in the subproblem at ω is at most

n

4 j |�(1)
i1

|1/6−δ · |�(2)
i2

|1/6−δ · · · |�( j)
i j

|1/6−δ
= n

4 j r1/6−δ
ω

,
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and the stopping condition that we use is that

s

4 j rω
= n

4 j r1/6−δ
ω

, or rω = (s/n)(6/5)/(1+6δ/5).

The size of a subproblem at a leaf is (using the O∗(·) notation to hide exponents
that are proportional to δ and constants of proportionality that depend on δ)

nω = n

4 j r1/6−δ
ω

= 1

4 j
O∗

(
n6/5

s1/5

)

= O∗
(
n6/5

s1/5

)

.

At each leaf ω we pass to the dual structure reviewed above. It uses O∗(nω) storage
and answers a query in time O∗(n5/6ω ) = O∗(n/s1/6). To answer a query with a line
� in the combined structure, we first begin with the primal structure (recall that it
supports point-enclosure queries), where we query with the point p� representing �,
and we locate the leaf cell ω that contains p�. From the analysis in [5] this search costs
O(log n) time, with a constant of proportionality that depends on δ (see below). We
then search with Q� in the dual structure at ω, which takes, as just noted, O∗(n/s1/6)
time. The overall cost of the query is therefore O∗(n/s1/6).

As to the actual storage used by the structure, the allocationmechanism ensures that
each level of the recursion uses storage that is at most 7/4 times larger than the storage
used in the previous level, because each node has seven child collections �0, . . . , �6,
each of which is allocated an amount of storage s/4. Hence the overall storage used
is O((7/4) j s), where j is the recursion depth. Arguing as in the query time analysis,
we can make the factor (7/4) j to be O(sδ), for any small δ > 0. That is, the overall
storage used is O(s1+δ), or, in our notation, O∗(s).

The above description of the structure applies to any single level among the four
latter levels of the structure. The first two levels are considerably simpler and more
efficient. The primal-dual approach is straightforward for halfspace range searching,
and the parametric dimension is only four for the first two levels. The standardmachin-
ery (reviewed, e.g., in [3]) implies that, with s storage and N input tetrahedra, the cost
of a query at each of these levels is O∗(N/s1/4).

Putting everything together, and using standard arguments in the analysis of multi-
level structures (see [3, Thm. 6.1] for details, and see also the appendix in [4]), the
overall size of the six-level structure is O∗(s), for any prescribed storage parameter s
between n and n6, and a query takes O∗(n/s1/6) time. That is, this finally concludes
the proof of Theorem 1.1 for the case of intersection detection queries. Counting and
reporting queries are handled similarly, with a similar analysis, exploiting the fact that
the decomposition in Theorem2.1 is into disjoint subsets, as is a similar decomposition
used in the machinery of [26]. For reporting queries, their cost involves an additional
term O(k), where k is the output size, which is obtained simply by reporting all the
tetrahedra in each canonical set that the search reaches. 	

Remark Ourmechanism is in fact a special instantiation of the following general result,
which is of independent interest, andwhich yields a trade-off bound for semi-algebraic
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range searching in any dimension d. That is, consider a general problem of this kind,
that involves n points in Rd , and aims to answer semi-algebraic range queries, where
the ranges have constant complexity, and each range has d degrees of freedom (so the
problem has a symmetric dual version). One can then show, using the suitable general
forms of the constructions in [5, 26], that our analysis can be applied almost verbatim
in order to solve such a problem in time O∗(n/s1/d) per query, using O∗(s) space and
preprocessing, where s is any parameter between n and nd ; see Sect. 2 and [3]. These
queries include detecting whether a query range contains any input point, counting
the number of such points, or reporting them (with an additional term O(k) in the
query cost, where k is the output size). Using duality, we obtain the same performance
bounds for point-enclosure queries, where the input consists on n constant-complexity
semi-algebraic regions in R

d , and the query is with a point p, where the goal is to
detect, count or report containments of p in the input regions. The same asymptotic
bound is obtained for simplex range searching [3], but our analysis shows that this
bound corresponds to a much more general family of query ranges. The two extreme
cases s = n and s = nd have been treated in [26] and [5], respectively, but the tradeoff
between these extreme cases has not been treated explicitly (for d > 4), as far as we
can tell. As evidenced in the preceding analysis, this tradeoff is not as routine as one
might think, because of the complicated nature of the partitioning used in Theorem 2.1
(as well as in [26, Thm. 1.1]). We summarize this result in the following corollary:

Theorem 3.1 Let P be a set of n points in R
d , for any dimension d, and let � be

a family of semi-algebraic ranges of constant complexity in R
d , each of which has

d degrees of freedom. Let n ≤ s ≤ nd be a prespecified storage parameter. Then
one can preprocess P into a data structure of storage and preprocessing O∗(s), such
that a range-query, with a range γ ∈ �, can be answered in O∗(n/s1/d) time. Such
queries include detecting whether γ contains any point of P, counting the number
of such points, and reporting them (with an additional O(k) term in the latter case,
where k is the number of these points). The same performance bounds apply to the
dual point-enclosure case, where the input consists of n regions from � and the query
is with a point p ∈ R

d .

Remarks (a) Theorem 3.1 can be extended to the case where the number of degrees
of freedom of the ranges is different from d, but the resulting performance bound has
a more complicated expression, which is not spelled out in this work. See, e.g., the
appendix in [4] for a recent study that handles the asymmetric setup. See also the
recent studies of Afshani and Cheng [1, 2] for larger lower bounds on semi-algebraic
range searching, which arise when the ranges have more degrees of freedom.
(b) We note that our technique can be extended to segment intersection detection
queries amid a collection of n (d − 1)-simplices in any dimension d. In that case the
structure has d + 2 levels. The first two levels ensure that the endpoints of the query
segment e lie on different sides of the hyperplane containing the input simplex �,
and are implemented by halfspace range searching structures in Rd . The last d levels
ensure that the line containing e has positive orientation with respect to each of the
(d − 2)-flats containing the facets of �, with suitable orientations of the line and the
flats. Since lines and (d − 2)-flats in Rd have 2d − 2 degrees of freedom, these levels
are implemented using semi-algebraic range searching structures, where both primal
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and dual parts are in R
2d−2. Hence the cost of the query at each of the last d levels

dominates the overall cost, which is thus O∗(n/s1/(2d−2)). The parameter s can vary
between n and n2d−2.
Setup (iii).Avery similar mechanism, with the same performance bounds, handles the
reverse situation of setup (iii), in which the input is a set of n segments in R4, and the
query is with a tetrahedron T , and the goal is to detect, count, or report intersections
between T and the input segments. The algorithm and its analysis are very similar to
those given above (see once again conditions (i)–(ii), as well as (3) and the discussion
around that part), except that we have to flip the roles of points and hyperplanes (in
the first two levels of the structure) and of lines and 2-planes (in the last four levels of
the structure).

The resulting algorithm is what is asserted in Theorem 1.9.

4 Triangle-Triangle Intersection Queries inR
4

Let � be a set of n triangles in R
4. We consider various triangle-triangle intersection

problems, the simplest of which is just to detect whether a query triangle intersects any
triangle of �. Alternatively, we may want to count or to report all such intersections.
For concreteness we focus on the detection problem in what follows, but, as in the
previous section, the algorithm can easily be extended to also handle the other kinds
of problems.

Similar to the preceding section, we use a multi-level data structure, where each
level caters to one aspect of the condition that a triangle crosses another triangle.
Specifically, let �1 and �2 be two triangles, and let π1, π2 be the respective 2-planes
that contain them. Our general position assumption allows us to assume that π1 and
π2 always intersect at a single point ξ , and �1 intersects �2 if and only if ξ belongs
to both triangles. Note that �1 and �2 intersect if and only if π1 intersects �2 and
π2 intersects �1. As is easily verified, this latter pair of conditions is equivalent, with
suitable orientations of π1, π2, and of the lines supporting the edges of both triangles,
as defined earlier in this paper, to the conjunction of the following conditions:

(i) π1 is positively oriented with respect to each of the lines that support the edges
of �2.

(ii) π2 is positively oriented with respect to each of the lines that support the edges
of �1.

As in the preceding section, we focus here only on the case of positive orientations,
as stated in the above conditions. Handling the case of negative orientations is done
in a fully symmetric manner.

Conditions (i) and (ii) are the conjunction of a total of six sub-conditions, each of
which tests the orientation of, say, the 2-plane π1 with respect to the line supporting
some specific edge of �2, or vice versa.

We can therefore apply a suitable variant of the same primal-dual machinery of
the preceding section, where at each of level of the structure we have a problem
involving range searching with semi-algebraic ranges in R

6. Note that, unlike the
problem studied in Sect. 3, here all levels of the structure involves semi-algebraic
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range searching, with quadratic or cubic polynomial inequalities, in six dimensions;
see (3) and the discussion around it for the degrees of these polynomials. This yields
a proof of Theorem 1.5.
Thebatchedbichromatic version.Wenext applyTheorem1.5 for the batched version
of the triangle-triangle intersection problem. That is, we have m red triangles and n
blue triangles (see Theorem 1.6), and we choose the storage parameter s to be such
that the cost of m queries with the red triangles is asymptotically roughly the same
as the cost of preprocessing the blue triangles. That is, we set s = mn/s1/6 (where
the right-hand side is roughly the cost of m queries, each taking O∗(n/s1/6) time), or
s = m6/7n6/7. For this choice to make sense, we need to ensure that n ≤ s ≤ n6, or
that n1/6 ≤ m ≤ n6. When m > n6 we only use the data structure of [5] and obtain
the running time O∗(m + n6) = O∗(m), and when m < n1/6 we only use the data
structure of [26] and obtain the running time O∗(mn5/6 + n) = O∗(n) (refer once
again to Sect. 3 for more details about these data structures). Altogether we obtain the
bound in Theorem 1.6.

5 Segment-Intersection amid Tetrahedra: An Improved Solution

In this section we present an improved algorithm for setup (i) of the paper, for a data
structure of roughly quadratic size. This improvement applies for segment-intersection
detection and reporting, but is not guaranteed for counting, because a tetrahedron
intersected by the query segment may arise more than once in the output. Let T be
a collection of n tetrahedra in R

4. Our improved solution constructs a data structure
that uses O∗(n2) storage (and expected preprocessing time), and answers a query in
O∗(n1/2) time. This is indeed a significant improvement over the standard algorithm
in Sect. 3, in which, with storage O∗(n2), the query cost is O∗(n2/3). With a suit-
able tradeoff, presented in Sect. 6, the improvement can be extended for any storage
parameter between n and n6, although it is most substantial when the storage is nearly
quadratic; see Fig. 1.

Assume, without loss of generality, that the query segment is bounded (i.e., not
a ray or a full line). The algorithm constructs a partitioning polynomial F in R

4 of
degree O(D), for some large but constant parameter D, so that each of the O(D4)

cells of the partition is crossed by at most n/D2 2-faces of the tetrahedra in T and by
a total of at most n/D tetrahedra. The existence of such a polynomial follows from
Guth [20], and an expected linear-time algorithm for its construction (for constant D)
is given in [5]. We classify each tetrahedron � ∈ T with respect to a partition cell
τ that it intersects, as being either narrow in τ , if a 2-face of � crosses τ , or wide
otherwise (that is, � crosses τ but none of its 2-faces crosses τ ). Let Nτ (resp., Wτ )
denote the set of narrow (resp., wide) tetrahedra at τ .

There are two cases to consider in our analysis, depending on whether the query
segment ρ is contained or not contained in the zero set Z(F) of F . Each of these cases
requires its own data structure. The latter case is an extension of the analysis in [18]
(given there for the three-dimensional version of the problem), and the case where
ρ ⊂ Z(F) requires a different approach than that taken in [18] for handling queries
on the zero set. See below for full details.
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5.1 A Sketch of the Analysis

A query segment ρ that is not contained in Z(F) crosses at most O(D) cells of the
partition. For each partition cell τ (an open connected component of R4 \ Z(F))
we construct an auxiliary data structure on the wide tetrahedra at τ , and preprocess
the narrow tetrahedra at τ recursively. As we show in Sect. 5.2, the structure for
the wide tetrahedra uses S0(n) = O∗(n2) storage, and a query amid them takes
Q0(n) = O∗(n1/2) time. We then query the auxiliary structure at τ , in order to
detect if such a segment-tetrahedron intersection exists. Otherwise, we detect such
intersections recursively. If no intersection with a wide or a narrow tetrahedron has
been found, we proceed to the next cell8 τ ′ crossed by ρ, repeat the whole procedure
at τ ′, and keep doing this till we either find a tetrahedron hit by ρ or run out of cells,
and then conclude that ρ does not hit any tetrahedron of T . The correctness of this
procedure is clear (modulo that of the procedure for handling wide tetrahedra).

When the query segment ρ is contained in Z(F), we apply a secondary partition
over Z(F), where the underlying regions are the intersections of the input tetrahedra
with Z(F). In this case, we apply a recursive mechanism, with a similar framework
as described above. That is, we construct an auxiliary data structure for the wide
tetrahedra, and recurse with the narrow tetrehedra. However, the analysis in this case
requires special handling, which exploits some further algebraic properties of zero
sets—see below.

Denote by S(n) (resp., Q(n)) the maximum storage (resp., query time) required
by the overall structure for n tetrahedra. Also denote by S1(n) (resp., Q1(n)) the
maximum storage (resp., query time) required for processing the input tetrahedra for
intersection queries with segments contained in Z(F), for any set of n tetrahedra in
R
4. We then have, for a suitable absolute constant c > 0 (where the constant hidden

in the OD(·) notation depends on D),

S(n) = OD(S0(n/D)) + S1(n) + cD4S(n/D2)

Q(n) = max
{
OD(Q0(n/D)) + cDQ(n/D2), Q1(n)

}
.

We show, in Sect. 5.3, that S1(n) = O∗
D(n2) and Q1(n) = O∗

D(n1/2). Substituting
these bounds, as well as the bounds for S0(n) and Q0(n), the solutions of these recur-
rences are easily seen to be (for D a constant) S(n) = O∗(n2) and Q(n) = O∗(n1/2).
Modulo the missing details, to be provided in the following two subsections, this
establishes Theorem 1.2.

5.2 Handling theWide Tetrahedra

Handling the wide tetrahedra at a partition cell τ resembles, and extends to four
dimensions, a similar machinery recently developed by the authors in [18]. It is done
via the following secondary recursion. We first assume, without loss of generality, that

8 The order of processing the cells during a query is important for ray-shooting queries, but is immaterial
for segment intersection queries.
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xd is a good direction in the sense that, for any fixed a ∈ R
3, we have that F(a, xd),

viewed as a polynomial in xd , has finitely many roots. We next choose some large
constant parameter r0 � D, and partition ∂τ into OD(1) x1x2x3-monotone strata,
that is, this is a decomposition of ∂τ into strata (also referred to as “pseudo-prisms”),
where each such portion is crossed at most once by any x4-parallel line. This is fairly
standard to do, using the cylindrical algebraic decomposition [14, 30], or CAD for
short, of F , and the resulting strata are of dimension three or lower (see [11, 14, 30]
for details concerning this decomposition).

We construct, for each stratum σ , a (1/r0)-cutting for the set of (constant-degree
algebraic) 2-surfaces of intersection of σ with the wide tetrahedra in Wτ (since the
tetrahedra are wide, these are portions of hyperplanar cross-sections of Z(F)). The
cutting is constructed by projecting σ and the 2-surfaces that it contains onto the
x1x2x3-subspace, constructing a (1/r0)-cutting, within that subspace, on the projected
surfaces, and then lifting the resulting cutting back to σ . Using standard results on ver-
tical decomposition in three dimensions (see, e.g., [31]) and the theory of cuttings [22],
we obtain O∗(r30 ) cells of the cutting (referred to as (pseudo-)prisms, in accordance
with the way in which the vertical-decomposition–based cutting is constructed), each
of which is crossed by (intersects but not contained in) at most n/r0 wide tetrahedra.
The prisms can be of any dimension ≤ 3 and are assumed to be relatively open, and
are thus pairwise disjoint.

For each pair ψ1, ψ2 of prisms, over all possible pairs of strata, we define Sψ1,ψ2

to be the set of all segments e so that e has an endpoint in ψ1 and an endpoint in ψ2,
and the relative interior of e is fully contained in τ . Clearly, Sψ1,ψ2 is a semi-algebraic
set of constant complexity in a 6-dimensional parametric space,9 and we decompose
it into its O(1) connected components.

For each segment e ∈ Sψ1,ψ2 , let T (e) denote the set of all wide tetrahedra � of
Wτ that e crosses. We have the following crucial technical lemma, akin to Lemma 2.2
in [18]:

Lemma 5.1 Each connected component C of Sψ1,ψ2 can be associated with a fixed
set TC of wide tetrahedra � of Wτ , none of which crosses ψ1 ∪ ψ2, so that, for each
segment e ∈ C, TC ⊆ T (e), and each tetrahedron � in T (e) \ TC crosses ψ1 ∪ ψ2.

Proof Pick an arbitrary but fixed segment e0 in C , and define TC to consist of all the
tetrahedra in T (e0) that do not cross ψ1 ∪ ψ2. See Fig. 3 for an illustration.

Let e be another segment inC . SinceC is connected, as a set in the six-dimensional
parametric space F of segments connecting a point on ψ1 with a point on ψ2, there
exists a continuous path π in C that connects e0 and e. That is, each point on π

represents a segment with one endpoint on ψ1 and the other on ψ2, and π represents
a continuous variation of such a segment (in the Hausdorff metric sense) from e0 to
e. Let � be a tetrahedron in T (e0) that does not cross ψ1 ∪ ψ2 (that is, � ∈ TC ). For
a segment e′ ∈ π , define the point q�(e′) to be the unique point e′ ∩ �. (q�(e′) is
indeed unique, if it exists, unless e′ gets to be contained in or partially overlap �, a
situation that we will shortly rule out.) As e′ starts traversing π from e0 to e, the point

9 Each segment is specified by its two endpoints; since they lie on ∂τ , each has three degrees of freedom.
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e0

ψ1

ψ2

τ

e

Fig. 3 The set TC (consisting of the tetrahedra depicted as black segments), and an illustration of the proof
of Lemma 5.1: The tetrahedra that cross some fixed segment e0 between ψ1 and ψ2 are the same tetrahedra
that cross any other such segment e, except for those that cross ψ1 or ψ2 (like those depicted as magenta
segments)

q�(e′) is well defined and varies continuously in τ ∩ �, until we reach an instance at
which either (i) the relative interior of e′ touches ∂�, or (ii) an endpoint of e′ touches
�, or (iii) e′ comes to overlap � in an interval with a nonempty interior.

Case (i) cannot arise because the relative interior of e′ is fully contained in τ and �

is wide at τ . Case (ii) also cannot arise because then � would have to intersect either
ψ1 or ψ2 (since, by assumption, the endpoints of e′ lie in ψ1 ∪ ψ2), which we have
assumed not to be the case. Case (iii) is also impossible, because it implies that either
Case (i) or Case (ii) must also arise, which cannot happen as just argued.

To recap, as e′ varies along π , it keeps intersecting� for every tetrahedron� ∈ TC .
Thus the endpoint e of π is also a segment that crosses �, and this establishes the first
assertion of the lemma.

We next need to show that each tetrahedron in T (e) \ TC must cross either ψ1 or
ψ2 (or both), which is our second assertion. Let � be a tetrahedron in T (e) \ TC , and
assume to the contrary that � does not cross ψ1 ∪ψ2. We run the preceding argument
in reverse (moving from e to e0), and observe that, by assumption and by the same
argument (and notations) as above, q�(e′) remains well defined and inside e′, for all
intermediate segments e′ along the connecting path π , and does not reach ∂(� ∩ τ),
so � ∈ T (e0) and thus we have � ∈ TC (by definition of TC ), contradicting our
assumption. This establishes the second assertion, and thereby completes the proof. 	

Remark We comment that the closure of ψ1, ψ2 may share a boundary, in this case
any wide tetrahedron of TC must intersect their common boundary but avoid their
interiors.

The analysis for wide tetrahedra. For each prism ψ , the conflict list Kψ of ψ is the
set of all wide tetrahedra that crossψ . By construction, |Kψ | ≤ n/r0. The same bound
for crossing tetrahedra holds when ψ is lower-dimensional. If a lower-dimensional
prism is contained in some tetrahedron there is no need to processψ further, since any
segment that meets ψ hits all these tetrahedra.

Lemma 5.1 and its proof show that, for each connected component C of Sψ1,ψ2 ,
the set TC is unique and is independent of the choice of the defining segment e.
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For each pair of prisms ψ1, ψ2, we compute Sψ1,ψ2 and decompose it into its
connected components. For each component C we compute the set TC of the wide
tetrahedra, as inLemma5.1. For this,we pick an arbitrary segment e0 inC , compute the
set T (e0) as defined above, and remove from it all the tetrahedra that cross ψ1 ∪ ψ2.
All these operations can be implemented in OD(1), for a fixed pair ψ1, ψ2, in the
algebraic model that we assume (see [11]), for a total of O∗

D(r60 ) · n = OD(n) storage
and computation time.

Let s be the storage parameter associated with the problem; we require (and will
ensure) that n ≤ s ≤ n3. For each canonical set TC , we replace its (wide) tetrahedra
by their supporting hyperplanes (recall our comment above that this set is unique), and
preprocess the resulting collection of hyperplanes for efficient segment intersection
queries amid hyperplanes in R

4. Using the technique of Agarwal and Matoušek [7],
this problem can be solved using O∗(s) storage (and preprocessing), and a query takes
O(n polylog(n)/s1/4) = O∗(n/s1/4) time (see also [3]). Lemma 5.1 guarantees the
correctness of this procedure, namely, that replacing each tetrahedron in TC by its
supporting hyperplane does not cause any “false positive” answer. This is because,
with the exception of the tetrahedra that cross ψ1 ∪ ψ2, a segment in Sψ1,ψ2 crosses
all the tetrahedra in TC . Hence a subsegment crosses a tetrahedron in TC if an only if
it crosses its supporting hyperplane.

We now process recursively each conflict list Kψ , over all prisms ψ of the parti-
tion of ∂τ . Each recursive subproblem uses the same parameter r0, but the allocated
storage parameter is now set to s/r30 . Since the number of subproblems is O∗(r30 ),
this allocation guarantees that the overall storage, over all recursive steps, remains
O∗(s). We keep recursing until we reach conflict lists of size close to n3/2/s1/2. More
precisely, using the explicit bound O(r3+ε

0 ) for the number of cells in the (1/r0)-
cutting (as described above), after j levels of recursion, we get a total of at most
(c0r

3+ε
0 ) j = c j0r

(3+ε) j
0 subproblems, each involving at most n/r j

0 wide tetrahedra, for
an arbitrarily small ε > 0 and a constant c0 that depends on D and ε (recall that r0 is
taken to be sufficiently large).

We stop the recursion at the first level j∗ at which n/r j∗
0 ≤ n3/2/s1/2. As a result,

we have r0 j
∗ = O(s1/2/n1/2), and we get c j

∗
0 r (3+ε) j∗

0 = O∗(s3/2/n3/2) subproblems.

Each of these subproblems involves atmost n/r j∗
0 = O∗ (

n3/2/s1/2
)
tetrahedra.Hence

the overall size of the inputs, as well as of the canonical sets, at all the subproblems

throughout the recursion, is O∗
(
s3/2

n3/2
· n

3/2

s1/2

)

= O∗(s). In particular, this is the

asymptotic cost at the bottom level of the recursion.
As just described, at the bottom of the recursion, each subproblem contains at most

O∗(n3/2/s1/2) wide tetrahedra, and we detect intersections with them by brute force.
We thus obtain the following recurrence for the overall storage S0(NW , sW ) for the
structure constructed on NW wide tetrahedra, where sW denotes the storage parameter
allocated to the structure (at the root NW = n, sW = s). The overhead term in the first
inequality is

O∗
D(r60 sW ) + O∗

D(r60 )NW = O∗(sW ),
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due to the cost of processing all O∗(r60 ) pairs of prisms. This term also depends on D,
and we choose r0 sufficiently large with respect to D, to hide this dependence in the
O∗(·) notation. That is, we have

S0(NW , sW ) =
⎧
⎨

⎩

O∗(sW ) + c0r
3+ε
0 S0

(
NW
r0

,
sW
r30

)

for NW ≥ �∗(n3/2/s1/2),

O(NW ) for NW < �∗(n3/2/s1/2).

⎫
⎬

⎭

Unfolding the recurrence up to the terminal level j∗, where NW = O∗(n3/2/s1/2),
and recall that r0 is a large constant ( r0 � D), the sum of the nonrecursive overhead
terms, over all nodes at a fixed level j , is

c j0r
(3+ε) j
0 · O∗

(
sW

r3 j0

)

= O∗ (sW ) .

Hence, starting the recurrence at (NW , sw) = (n, s), the overall contribution of the
overhead terms is O∗(s). We showed above that this is also the asymptotic cost at the
bottom of the recurrence. Therefore, the overall storage used by the data structure is
O∗(s). Using similar considerations, one can show that the overall expected prepro-
cessing time is O∗(s) as well, since the time obeys a similar asymptotic recurrence.
Answering a query. Given a query segment ρ, which is not contained in Z(F), we
find its O(D) intersections with Z(F), which decompose it into O(D) subsegments,
each fully contained in some partition cell. Moreover, except for the first and last
subsegments, the endpoints of each of the other subsegments lie on the boundary of
its cell. We process the subsegments in their order10 along ρ. Let e be the currently
processed subsegment. If e is not the first or last subsegment, we find the prisms ψ1,
ψ2 that contain its endpoints, and find the component C of Sψ1,ψ2 that contains e. If
e is the first or last subsegment, we extend it backwards or forwards, respectively, till
the first time it meets the boundary of its cell, and call the resulting subsegment e′. We
now compute for e′ the corresponding set Sψ1,ψ2 and its component C that contains
e′. Since D and r0 are constants, all this takes constant time.

The query, on the wide tetrahedra at the present cell τ , proceeds as follows. If the
present subsegment e is not the first or the last subsegment, we know, fromLemma 5.1,
that it crosses all the tetrahedra of TC , so we return a positive answer if this set is
nonempty. If e is the first or the last subsegment, we perform a segment intersection
detection query with e in the set of hyperplanes containing the tetrahedra of TC , and, if
no intersection is detected, or if TC is empty in the other cases, we continue recursively
with the conflict lists Kψ1 and Kψ2 (at the bottom of recursion we apply a brute-force
search). If no tetrahedron is found, in all the r0-recursive steps, we conclude that (the
present subsegment of) ρ does not hit any wide tetrahedron within τ . Once again, the
correctness of this procedure follows from Lemma 5.1.

10 As alreadymentioned, the order is immaterial for segment intersection detection queries, but is important
for ray shooting.
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Within a fixed cell τ , that has NW wide tetrahedra and has storage parameter sW ,
the query time Q0(NW , sW ) on these wide tetrahedra satisfies the recurrence

Q0(NW , sW ) =
⎧
⎨

⎩

OD(1) + O∗
(

NW

s1/4W

)

+ 2Q

(
NW
r0

,
sW
r30

)

for NW ≥ �∗(n3/2/s1/2),

O(NW ) for NW < �∗(n3/2/s1/2).

⎫
⎬

⎭

Unfolding the recurrence, we see that when we pass from some recursive level to
the next one, we get two descendant subproblems from each recursive instance, and
the term NW

s1/4W

is replaced in each of them by the term

NW /r0
(sW /r30 )

1/4
= NW

s1/4W r1/40

.

Hence the overall bound for the nonrecursive overhead terms in the unfolding,
starting from (NW , sW ) = (n, s), is at most

O∗
⎛

⎝
∑

j≥0

(
2

r1/40

) j

· n

s1/4

⎞

⎠ = O∗ ( n

s1/4

)
.

(The sumof this geometric sequence is just a small constant that depends on r0.)Adding
the cost at the (at most) 2 j∗ subproblems at the bottom level j∗ of the recursion that
the query reaches, where the cost of each subproblem is at most O∗(n3/2/s1/2), we
obtain the query time

Q0(n, s) = O∗
(

n

s1/4
+ n3/2

s1/2

)

. (4)

Therefore, for s = n2 the query time isO∗(n1/2). The bounds S0(n) := S0(n, n2) =
O∗(n2) and Q0(n) := Q0(n, n2) = O∗(n1/2) are the bounds promised earlier for the
wide tetrahedra at a cell.

5.3 Query Segments on Z(F)

Consider next segments ρ that are contained in Z(F). Without loss of generality
we may assume that F is irreducible; otherwise we apply the forthcoming machinery
separately to each irreducible factor of F . (Decomposing F into its irreducible factors,
over the reals, can be done in OD(1) time in the real RAM algebraic model that we
are using; see [11, 15, 19, 23] for the relevant literature.) We may also assume that
Z(F) is not a hyperplane. If it is, we simply face an intersection detection problem
in three dimensions amid a collection of triangles (each tetrahedron crosses Z(F)

in a convex polytope of constant complexity, and we replace it by its triangulated
boundary, ignoring the easy-to-handle special case where the query is fully contained
inside such a polytope). This latter task has been studied in [18], where a solution with
better performance bounds has been given.
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We partition Z(F) into OD(1) x1x2x3-monotone strata, as we did in the algorithm
for wide tetrahedra. These strata cover Z(F) for a generic choice of the coordinate
frame. Each tetrahedron� ∈ T intersects Z(F) in a semi-algebraic set�F of constant
complexity (that depends on D), and we distribute �F among all the strata that it
intersects, where each stratum inherits the portion of �F clipped to that stratum.
We project each stratum σ , and the portions of the sets �F that it contains, onto
the x1x2x3-space. For a stratum σ and a tetrahedron � that crosses σ , we denote
the x1x2x3-projection of � ∩ σ (i.e., �F ∩ σ ), which is also a semi-algebraic set
of constant complexity, as K�. We also denote by B� the x1x2x3-projection of the
intersection of ∂� with σ ; note that B� is the union of up to four subsets, each of
which is the intersection of a different 2-face of � with Z(F). Excluding degenerate
scenarios, which are mentioned later, each K� is at most two-dimensional, and each
B� is atmost one-dimensional. Indeed,�∩Z(F) is two-dimensional (unless� is fully
contained in Z(F)), and each of the four subsets of B� is contained in the intersection
of a 2-plane with Z(F), which is a constant-degree algebraic curve (unless this 2-
plane is fully contained in Z(F)). Handling the degenerate cases, where � or one of
its 2-faces is fully contained in Z(F), is easier. The former situation can arise only
when Z(F) is a hyperplane, which we have assumed not to be the case. In the latter
case, we simply collect all these facets and add them to the two-dimensional surfaces
Z(F), to which we apply the procedure described shortly.

We thus face the problem of segment intersection detection in three dimensions
(the query segment projects to a segment in 3-space) amid a collection K of n
two-dimensional semi-algebraic sets of constant complexity. We are not aware of
an efficient solution to this problem. (A standard solution that maps the problem to
semi-algebraic range searching in a higher-dimensional parametric space, results in
a much less efficient solution.) We obtain an efficient procedure by exploiting sev-
eral special properties of our setting. Specifically, we exploit two constraints on the
problem:
(a) The sets in K have a special structure—each of them is the x1x2x3-projection of
the intersection of a tetrahedron with Z(F).
(b) The query segments also have a special structure—each such segment is the x1x2x3-
projection of a segment supported by a line that is fully contained in Z(F).

To exploit property (b), let L denote the set of all lines that are fully contained in
Z(F), and letL∗ denote the set of the x1x2x3-projections of these lines.We claim that,
since Z(F) is not a hyperplane, L∗ cannot be the set of all lines in the x1x2x3-space
(this property does not hold when Z(F) is a hyperplane). Indeed, take some generic
smooth point w ∈ Z(F), let w∗ denote its x1x2x3-projection, and let πw denote the
tangent hyperplane to Z(F) atw. By assumption, all the lines in the x1x2x3-space that
pass through w∗ are in L∗, so each of them has a lifted image in R

4 that is contained
in Z(F), and also in πw. This is easily seen to imply that the entire hyperplane πw

is contained in Z(F), which is impossible since F is irreducible and Z(F) is not a
hyperplane.

Since F is of constant degree, standard arguments in real algebraic geometry imply
that L∗ is a semi-algebraic set of constant complexity, which is not the entire 3-space;
see, e.g., [11].
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We tackle our problembyprocessing each stratumσ in turn.We construct a (second)
trivariate partitioning polynomial G, of degree O(D1), where D1 � D is another
constant parameter, so that each cell of R3 \ Z(G) is crossed by at most n/D2

1 one-
dimensional curves B�, and by at most n/D1 two-dimensional sets K�.

A query segment ρ contained in Z(F) is projected to a segment ρ∗ in R
3 (the

x1x2x3-space), whose supporting line belongs to L∗. Two cases can arise:
ρ∗ is not contained in Z(G). We say that a tetrahedron � ∈ T is narrow at a cell τ

of the partition induced by G if B� crosses τ , and � is wide at τ if K� crosses τ but
B� does not. As in the four-dimensional case, we denote byWτ (resp., byNτ ) the set
of wide (resp., narrow) tetrahedra at τ . We preprocess the wide tetrahedra at τ using
a special substructure, and handle the narrow tetrahedra recursively.
Handling the wide tetrahedra. The analysis is similar to that for wide tetrahedra in
four dimensions, as presented in Sect. 5.2, but we spell it in detail, risking repetition
of some of the arguments, as the actual technical details are different in the current
setup.

Let τ be a cell of R3 \ Z(G). Using properties of planar cuttings [22], and slightly
abusing the notation of r0, we partition ∂τ into O∗(r20 ) pseudo-trapezoids (trapezoids
for short), for some suitable constant parameter r0 � D1, so that each trapezoid
is crossed by at most |Wτ |/r0 regions K�, for � ∈ Wτ . For each pair ψ1, ψ2 of
trapezoids, we define Sψ1,ψ2 to be the set of all segments e so that (a) e has an endpoint
inψ1 and an endpoint inψ2, (b) the relative interior of e is fully contained in τ , and (c)
the line supporting e belongs to L∗. Clearly, Sψ1,ψ2 is a semi-algebraic set of constant
complexity (in a 4-dimensional parametric space), as each of the conditions (a)–(c)
can be expressed as a semi-algebraic predicate of constant complexity, possibly using
quantifiers (which can then be eliminated [15]). We decompose Sψ1,ψ2 into its O(1)
connected components.

For each segment e ∈ Sψ1,ψ2 , let T (e) denote the set of all wide tetrahedra � of
Wτ such that e crosses their associated sets K�. As in the four-dimensional case,
our technique depends on the following crucial technical lemma. (Intuitively, in four
dimensions, the intersections of the wide tetrahedra with Z(F) have the crucial prop-
erty, which is needed in the proof, that any segment on Z(F) meets each of them
only once. It is used in tracking down this point as we vary the segment continuously;
see the third paragraph of the proof. (We exploited a similar property in the proof of
Lemma 5.1. This property, however, does not necessarily hold in the three-dimensional
projection, but, as we argue below, this does not hurt the analysis.)

Lemma 5.2 Each connected component C of Sψ1,ψ2 can be associated with a fixed set
TC of wide tetrahedra� ofWτ , none of whose associated sets K� crossesψ1∪ψ2, so
that, for each segment e ∈ C, TC ⊆ T (e), and for each tetrahedron � in T (e) \ TC ,
K� crosses ψ1 ∪ ψ2.

Proof Pick an arbitrary but fixed segment e0 in C , and define TC to consist of all the
tetrahedra in T (e0) that do not cross ψ1 ∪ ψ2. See Fig. 4 for an illustration.

Let e be another segment in C . The set Sψ1,ψ2 has four degrees of freedom, two
for representing the endpoint of a segment e in Sψ1,ψ2 that lies on ψ1, and two for
the other endpoint (on ψ2). Since C is connected, as a subset of Sψ1,ψ2 , there exists a
continuous path π in C that connects e0 and e. (As in the four-dimensional case, each
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e0

ψ1

ψ2

τ

e

Fig. 4 The set TC (consisting of the tetrahedra � whose associated sets K� are depicted as black arcs),
and an illustration of the proof of Lemma 5.2

point on π represents a segment with one endpoint on ψ1 and the other on ψ2, which
is contained in a line of L∗ and is fully contained in the interior of τ , and π represents
a continuous variation of such a segment from e0 to e.)

Let � be a tetrahedron in T (e0) such that K� does not cross ψ1 ∪ ψ2 (that is,
� ∈ TC ). For e0, the intersection e0 ∩ K�, if nonempty, contains the projection of
the single intersection point of the pre-image of e0 with � (and might also contain
additional points).We denote this point as q�(e0). As e′ varies alongπ from e0 towards
e, the corresponding point q�(e′) is well defined and varies continuously in τ , until
we reach an instance at which either (i) the relative interior of e′ touches ∂K�, or (ii)
e′ becomes tangent to K�, or (iii) an endpoint of e′ touches K�, or (iv) e′ comes to
overlap K� in an interval with a nonempty interior.

Case (i) cannot arise because the relative interior of e′ is fully contained in τ and
K� is wide at τ . Case (iii) cannot arise because then K� would have to intersect
either ψ1 or ψ2, which we have assumed not to be the case. Case (ii) can occur, but
then, assuming that Cases (i) and (iii) do not occur at the same time, the line � in R4,
which is contained in Z(F) and projects to the line supporting e′, continues to cross
�, and its intersection point with � continues to project to a point in K� (because
� ⊂ Z(F)). That is, as we continue to vary e′ further towards e, the line � changes
continuously and keeps crossing � (because Case (iii) does not arise), and thus e′
also keeps crossing K� (because Case (i) does not arise). That is, the instantaneous
tangency does not cause q�(e′) to disappear, or to experience any jump discontinuity.
In an instance of Case (iv), which is not an instance of Case (i), (ii), or (iii), the line
� must be fully contained in the hyperplane supporting �, so the projection of � cuts
K� in a connected segment, from which it easily follows that one of Cases (i), (iii)
must arise for e′, a contradiction that takes care of this case too.
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To recap, as e′ varies along π , it keeps intersecting K� for every tetrahedron � ∈
TC . Thus the endpoint e of π is also a segment that crosses K�, and this establishes
the first assertion of the lemma.

We next need to show that, for each tetrahedron � ∈ T (e) \ TC , the associated set
K� must cross either ψ1 or ψ2 (or both), which is our second assertion. Let � be a
tetrahedron in T (e) \ TC , and assume to the contrary that K� does not cross ψ1 ∪ ψ2.
We run the preceding argument in reverse (moving from e to e0), and observe that, by
assumption and by the same argument (and notations) as above, q�(e′) remains inside
e′, for all intermediate segments e′ along the connecting path π , and does not reach
∂K� ∩ τ , so� ∈ T (e0) and thus we have� ∈ TC (by definition of TC ), contradicting
our assumption. This establishes the second assertion, and thereby completes the proof.

	


For each pair of trapezoids ψ1, ψ2, and each connected component C of Sψ1,ψ2 ,
we take the set TC of tetrahedra (back in R

4), replace each � ∈ TC by its support-
ing hyperplane, and preprocess the resulting collection of hyperplanes for efficient
segment intersection detection amid hyperplanes in R

4. Using the technique of [7],
this can be done, with O∗(s) storage and preprocessing, with query time O∗(n/s1/4).
Choosing s = n2, the storage complexity is O∗(n2) and the query time is O∗(n1/2).
Lemma 5.2 guarantees the correctness of this procedure (namely, of replacing each
tetrahedron by its supporting hyperplane).

We then preprocess recursively each of the setsTψ , of the tetrahedra� forwhich K�

crossesψ , over all trapezoidsψ of the partition of ∂τ . A query, with a segment ρ that is
contained in Z(F) but its projection ρ∗ is not contained in Z(G), is then processed as
follows. As in the four-dimensional setup, we need a special treatment for the first and
last subsegments of ρ, but we omit here the straightforward details, which are similar
to those in the preceding analysis. We first perform a segment intersection detection
query in the set of hyperplanes of the tetrahedra in TC , for the suitable component C
that contains the intersection segment of ρ∗ and τ , and then continue recursively with
Tψ1 and Tψ2 , where ψ1 and ψ2 are the trapezoids that contain the endpoints of the
segment. We stop the recursion at nodes ψ for which |Tψ | becomes roughly n2/s. If
no intersection with any wide tetrahedron has been detected, we query recursively the
set of narrow tetrahedra at τ . If no tetrahedron is found to intersect the present portion
of ρ within τ , we proceed to the next cell τ ′ crossed by the projected segment, and
keep doing this until we either find a tetrahedron intersected by ρ, or run out of cells,
and then conclude that ρ does not intersect any tetrahedron of T .

The correctness of this procedure is clear.We next present the storage and the query
cost for the wide tetrahedra at a cell.We then conclude this discussionwith the analysis
for the narrow tetrahedra, where we show the bounds on S1(n) and Q1(n) introduced
in Sect. 5.1.

For the recurrence on the wide tetrahedra, denote by S′
0(NW , sW ) the maximum

storage required by the structure for NW wide tetrahedra, where sW is the storage
parameter allocated to the structure. Similarly to the analysis of the four-dimensional
setup, the allocated storage parameter for each subproblem is set to be sW /r20 (since the
overall number of subproblems is now O∗(r20 )). Each step of the recurrence requires
a cost of O∗

D1
(r40 sW ) for the amount of storage allocated for each pair of trapezoids

123



Discrete & Computational Geometry

ψ1, ψ2, as described above. We then have

S′
0(NW , sW ) =

⎧
⎨

⎩

O∗
D1

(r40 sW ) + c0r20 S
′
0

(
NW
r0

,
sW
r20

)

for NW ≥ �∗(n2/s),

O(NW ) for NW < �∗(n2/s).

⎫
⎬

⎭

The constant c0 depends on D1, but is considerably smaller than r0 (that is, we
choose r0 to be considerably larger). We also comment that throughout this recursion
NW ≤ sW ≤ N 2

W . The terminal level j∗ of the recurrence satisfies r0 j
∗ ≤ s/n. It is

then easily checked that the total contribution of all the overhead terms, as well as the
terms at the bottom of the recurrence, is O∗(s), where n ≤ s ≤ n2. Therefore the
overall storage used by the data structure is O∗(s).

Concerning the query time, denote by Q′
0(NW , sW ) the maximum query time

required by the structure for NW wide tetrahedra. We then have:

Q′
0(NW , sW ) =

⎧
⎨

⎩

OD1(1) + O∗
(

NW

s1/4W

)

+ 2Q

(
NW
r0

,
sW
r20

)

for NW ≥ �∗(n2/s),

O(NW ) for NW < �∗(n2/s).

⎫
⎬

⎭

Wenote that, similarly to the four-dimensional setup,whenwe pass from a recursive
level to the following one, we get two descendant subproblems from each recursive
instance, one for each of the trapezoids ψ1, ψ2, and the term NW

s1/4W

is replaced in each

of them by the term

NW /r0
(sW /r20 )1/4

= NW

s1/4W r1/20

.

Hence, unfolding the recurrence, the overall bound for the nonrecursive overhead
terms in the unfolding (up to the bottom level j∗), starting from (NW , sW ) = (n, s),
is at most:

O∗
⎛

⎝
∑

j≥0

(
2

r1/20

) j

· n

s1/4

⎞

⎠ = O∗ ( n

s1/4

)
.

The cost at the bottom level j∗ of the recursion is at most O∗(n2/s) (by the choice of
j∗). This yields an overall bound for the query time of

Q′
0(n, s) = O∗

(
n

s1/4
+ n2

s

)

. (5)

We thus obtain S′
0(n) := S0(n, n2) = O∗(n2) and Q′

0(n) := Q0(n, n2) = O∗(n1/2)
for the overall storage and query cost of this subprocedure.
The analysis for narrow tetrahedra. For the recurrence, on narrow tetrahedra, recall
our notation introduced in Sect. 5.1, that is, S1(n) (resp., Q1(n)) is the maximum
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storage (resp., query time) required by the structure for n tetrahedra. We then have

S1(n) = OD1(S
′
0(n/D1)) + S2(n) + O(D1

3)S1(n/D1
2),

Q1(n) = max
{
OD1(Q

′
0(n/D1)) + (D1 + 1)Q1(n/D1

2), Q2(n)
}
,

where S2(n) (resp., Q2(n)) is the maximum storage (resp., query time) for segments
ρ such that ρ ⊂ Z(F) and ρ∗ ⊂ Z(G). As we show next, these quantities satisfy
the bounds S2(n) = O∗(n2) and Q2(n) = O∗(n1/2). With these bounds at hand, the
solutions of these recurrences are S1(n) = O∗(n2) and Q1(n) = O∗(n1/2).
ρ∗ is contained in Z(G).

It remains to handle query segments ρ∗ that are contained in Z(G). Wemay assume
that Z(G) is irreducible; otherwise we apply the following reasoning within each
irreducible component of Z(G). As Z(G) is a two-dimensional algebraic surface of
degree O(D1), it is either ruled (by lines) or not ruled. In the latter case, Z(G) contains
onlyO(D1

2) lines, as implied by theCayley–Salmon theorem [28], andwe can prepare
the answers to all possible queries along such lines (only for those lines that belong to
L∗). Although not a trivial step, all these lines can be computed in OD1(1) time, which
is constant since D1 is constant, by solving a suitable set of equations that characterize
these lines; see [28] and [11].

In the former case, Z(G) is either singly ruled, or doubly ruled (a regulus), or
infinitely ruled (a plane). Assume first that Z(G) is singly ruled. Then (see, e.g., [21]),
except for at most two exceptional lines, the lines ruling Z(G) form a 1-parameter
family of lines. For each tetrahedron �, the set of parameters of the lines whose pre-
images, back in R4, cross � is the union of OD1(1) intervals, as is easily verified, and
they can all be computed in OD1(1) time. We store the OD1(n) resulting intervals,
obtained over all tetrahedra� ∈ T , in a segment tree11. For each node ν of the tree, we
take the set Tν of tetrahedra stored at ν and preprocess the set Hν of the hyperplanes
supporting these tetrahedra into a segment intersection data structure based on the
machinery in [7], as in the previous steps of the algorithm. We allocate a storage
parameter s to each level of the segment tree just constructed. At each node ν, at
any fixed level of the tree, we allocate a storage parameter that is proportional to the
number of tetrahedra stored at ν. Specifically, we allocate s · |Hν |

n to ν. In this manner
we obtain a segment-intersection data structure at ν that uses O∗(s|Hν |/n) storage
and answers a query in time

O∗

⎛

⎜
⎝

|Hν |
(
s · |Hν |

n

)1/4

⎞

⎟
⎠ = O∗

( |Hν |3/4n1/4
s1/4

)

= O∗ ( n

s1/4

)
,

since |Hν | ≤ n. A query with a segment ρ finds the atomic (leaf) interval of the tree
that contains the line supporting ρ, retrieves the O(log n) nodes on the path to that
leaf, performs segment intersection queries with ρ in the sets Hν of these nodes ν, and
returns a tetrahedron from the output to these queries (if such a tetrahedron exists).

11 This is a standard data structure, see, e.g., [16, Chap. 10] for details.
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It is easily checked, using standard properties of segment trees (i.e., that each
tetrahedron appears in at most two sets Tν at any level of the tree), that the overall
storage used by this structure is O∗(s), and that the query cost is O∗(n/s1/4).

The case where Z(G) is doubly ruled (a regulus) is handled similarly, applying the
above machinery to each of the two families of ruling lines, each of which has a very
simple structure.

The case where Z(G) is a plane is easier to handle. In this case we do not lift the
scenario back toR4 but instead remain on the plane Z(G), and face there the problem
of segment intersection detection amid a collection of n constant-complexity polygons
(the intersections of the tetrahedra with the plane Z(G)). This can be done with O∗(s)
storage (and preprocessing) and O∗(n/s1/2) query time (see, e.g., [3]).

We thus achieve in this case faster query time.
Summarizing all the above cases, we indeed obtain that for s = n2, the resulting

storage (and expected preprocessing time) and query time bounds are S2(n) = O∗(n2)
and Q2(n) = O∗(n1/2). As already noted, this implies that the solutions of the pre-
ceding recurrences for S1(n) and Q1(n) are S1(n) = O∗(n2) and Q1(n) = O∗(n1/2).

Regarding the reporting procedure, since the canonical sets TC that we construct
are not necessarily pairwise disjoint, we need to apply some processing to the output
in order to guarantee that all reported tetrahedra are distinct. Following the approach
in [18], this can be done in overall time of O(k log k), where k is the output size. We
comment, however, that since this output is a subset of a set of n fixed elements, we can
use fast sorting algorithms in order to speed up the total query time to O∗(n1/2)+O(k).
This can be done, e.g., by radix sort of two-digit numbers represented in base O(

√
n).

We thus have finally completed the proof of Theorem 1.2.

Remark Informally, the reason why we have managed to improve the solution only for
Setup (i) (for segment queries) is that when the queries are triangles (in Setup (ii)) or
tetrahedra (in Setup (iii)), the query object intersects too many cells of the polynomial
partition, and the resulting recurrence for the query time does not yield any more
efficient solution. It is an interesting open challenge to find improved solutions for
these setups too. In particular, setup (iii) seems promising for such an improvement.

6 Tradeoff Between Storage and Query Time

In this section we extend the technique in Sect. 5 to obtain a tradeoff between storage
(and expected preprocessing) and query time, which improves the standard tradeoff
of Theorem 1.1, for any value n < s < n6 of the storage parameter.

For a quick overview of our approach, consider the segment-intersection structure
of Sect. 5, and let s be the storage parameter that we allocate to the structure, which
now satisfies n ≤ s ≤ n6. We modify the procedure for segment intersection inside
a cell τ by (i) stopping potentially the r0-recursion at some earlier ‘premature’ level,
and (ii) modifying the structure at the bottom of recursion so that it uses the segment-
intersection technique for hyperplanes, as discussed in Sect. 3, instead of a brute-force
scanning of the tetrahedra (the current cost of O(n3/2/s1/2), a consequence of this
brute-force approach, is too expensive when s is small). A similar adaptation is applied
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to the recursionon thenarrow triangles, aswell as the procedure of segment intersection
within the zero set of the partitioning polynomial.With some additional care we obtain
the query time bound in (1) and the bound (2) for batched segment intersection queries,
as announced in the introduction; refer also to Fig. 1.

We now present the technique in detail. Consider the segment-intersection structure
of Sect. 5, and let s be the storage parameter that we allocate to the structure, which
satisfies n ≤ s ≤ n6. As before, we use this notation to indicate that the actual storage
(and expected preprocessing) that the structure uses may be O∗(s). We comment that
in Sect. 5 s is assumed to be (at most) n2. Handling larger values of s requires some
care, detailed below. For the time being, we continue to assume that s ≤ n2, and will
later show how to extend the analysis for larger values.

Consider first the subprocedure for handling segment intersection for segments that
are not contained in the zero set of the partitioning polynomial. We run the recursive
polynomial partitioning procedure described in Sect. 5 up to some ‘premature’ level k
that wewill fix later.We obtain O∗(D4k) subproblems at the bottom level of recursion,
each involving at most n/D2k (narrow) tetrahedra.
Handling wide tetrahedra. Except for the bottom level, we build, at each node τ

of the recursion, the same structure on the set Wτ of wide tetrahedra in τ , with two
(significant) differences. First, sincewe start the recursion on the partitioningwith stor-
age parameter s, we allocate to each subproblem, at any level j , the storage parameter
s/D4 j , thus ensuring that the storage used by the structure is O∗(s). However, the cost
of a query, even at the first level of recursion, given in (4), has the term O∗(n3/2/s1/2),
which is the cost of a naïve, brute-force processing of the conflict lists at the bottom
instances of the r0-recursion within the partition cells. This is fine for s = �∗(n2)
but kills the efficiency of the procedure when s is smaller. For example, for s = n
we get (near) linear query time, much more than what we aim to have. We therefore
improve the performance at the bottom-level nodes of the r0-recurrence (within a par-
tition cell), by constructing, for each respective conflict list, the segment-intersection
data structure of Sect. 3 for segment intersection amid hyperplanes in R

4, which, for
N tetrahedra and with storage parameter s, answers a query in time O∗(N/s1/6).
Since at the bottom of the r0-recursion, both the number of tetrahedra and the storage
parameter are O∗(n3/2/s1/2), the cost of a query at the bottom of the recursion is

O∗((n3/2/s1/2)5/6) = O∗(n5/4/s5/12).

That is, the modified (improved) cost of a query at such a node is

Q(n, s) = O∗
(

n

s1/4
+ n5/4

s5/12

)

, (6)

where the bound O∗(n/s1/4) is contributed by the recursion from the root, as shown
in Sect. 5.
Handling the recursion on the polynomial partitions. At each of the O∗(D4k)

bottom-level cells τ , we take the set Nτ of (narrow) tetrahedra that have reached τ ,
whose size is now at most n/D2k , allocate to it the storage parameter s/D4k , and
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preprocess Nτ using the aforementioned technique of Sect. 3, which results in a data
structure, with storage parameter s/D4k , which supports segment-intersection queries
in time

O∗
( |Nτ |

(s/D4k)1/6

)

= O∗
(

n/D2k

(s/D4k)1/6

)

= O∗ ( n

s1/6D4k/3

)
.

Multiplying this bound by the number O∗(Dk) of cells that the query segment crosses,
the cost of the query at the bottom-level cells is

Qbot(n, s) = O∗ ( n

s1/6Dk/3

)
. (7)

The cost of a query at the inner recursive nodes of some depth j < k is the number,
O∗(D j ), of j-level cells that the segment crosses, times the cost of accessing the data
structure for the wide tetrahedra at each visited cell. Since we have allocated to each
of the O∗(D4 j ) cells at level j the storage parameter s/D4 j , the cost of accessing the
structure for wide tetrahedra at a j-level cell is, according to (6), at most

Qinner(n, s) = O∗
(

n/D2 j

(s/D4 j )1/4
+

(
(n/D2 j )3/2

(s/D4 j )1/2

)5/6)

= O

(
n

D j s1/4
+ n5/4

D5 j/6s5/12

)

.

Summing this bound over all j-level cells, for all j , and then adding the bottom-
level cost from (7), and the cost of traversing the structure with the query segment
(which is proportional to the number of cells intersected by the query segment), the
overall cost of a query is (we remind the reader that so far we only consider the case
where s ≤ n2):

O∗
(

Dk + n5/4Dk/6

s5/12
+ n

s1/4
+ n

s1/6Dk/3

)

. (8)

We choose k to (roughly) balance the second and the last terms; specifically, we choose

Dk =
√
s

n
.

Since Dk should not exceed O∗(n1/2), we require for this choice of k that s = O∗(n2),
which is what we are assuming so far. In this case it is easily verified that the second
and last terms, which are O∗(n7/6/s1/3), dominate both the first and third terms (recall
that we assume s ≥ n), and the query time is therefore

O∗(n7/6/s1/3).
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For larger values of s, that is, when s = �∗(n2) (but we still assume s ≤ n3), we
balance the first term with the last term, so we choose

Dk = O∗
(
n3/4

s1/8

)

.

Note that in this range we indeed have that Dk = O∗(n1/2). Moreover, in this case the
first and last terms dominate the second and third terms, as is easily verified. Therefore
the query time is

O∗(n3/4/s1/8).

As already promised, the case where the query segment lies on the zero set in the
current subproblem will be presented later.
Handling the range n3 < s ≤ n6. It remains to handle the range n3 < s ≤ n6.
Informally, at each cell τ of the polynomial partition, at any level j of the D-recursion,
we have nτ ≤ n/D2 j wide tetrahedra and storage parameter sτ = s/D3 j . Since
s ≥ n3, we also have sτ ≥ n3τ . With such ‘abundance’ of storage, we run the r0-
recursion until we reach subproblems of constant size, in which case we simply store
the list of wide tetrahedra at each bottom-level node, and the query simply inspects
all of them, at a constant cost per subproblem. Hence the cost of a query at τ is
O∗(nτ /s

1/4
τ ). To be precise, this is the case as long as sτ ≤ n4τ . If n

3 ≤ s ≤ n4 there
will be some level j of the D-recursion at whose cells τ sτ = s/D4 j becomes larger
than (n/D2 j )4 ≥ n4τ , and then the cost becomes O∗(1). When n4 < s ≤ n6 the cost
becomes O∗(1) right away (and stays so). That is, the cost of a query in the structure
for wide tetrahedra at a cell τ at level j is

O∗
(

(n/D2 j )

(s/D4 j )1/4

)

= O∗ ( n

s1/4D j

)
, for s ≤ n4

D4 j ,

O∗ (1) , for s >
n4

D4 j .

Since a query visits O∗(D j ) cells τ at level j , the overall cost of searching amid the
wide tetrahedra, over all levels, is easily seen to be

O∗ ( n

s1/4

)
, for n3 ≤ s ≤ n4,

O∗ (
Dk

)
, for n4 < s ≤ n6,

where k is the depth of the D-recursion.
Querying amid the narrow tetrahedra is again done as in Sect. 5 (once again, recall

that we now consider the case where s > n3, whereas earlier in this section we
assumed s ≤ n3). At each node τ at the bottom level k of the D-recursion we use the
data structure described in Sect. 3, which, with at most n/D2k narrow tetrahedra and
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storage parameter s/D4k , answers a query in time

O∗
(

(n/D2k)

(s/D4k)1/6

)

= O∗ ( n

D4k/3s1/6

)
.

Wemultiply by the number of cells that the query visits, namely O∗(Dk), and add the
cost O∗(Dk) of traversing these cells, for a total of

O∗ (
Dk + n

s1/4
+ n

Dk/3s1/6

)
.

In other words, we get the same asymptotic bound as in (8), except for the second term
which is missing now (this term corresponds to querying at the bottom-level nodes of
the r0-recursion on the wide tetrahedra, which is not needed when s > n3, since these
bottom-level subproblems now have constant size). Repeating the same analysis as
above, we get the same bound O∗(n3/4/s1/8) for the query cost.
Handling the zero set. The analysis for the zero set is done similarly to the analysis
presented earlier in this paper, and to the one in [18], and is quite straightforward. We
do not provide a full description of these details, but only highlight the differences,
fromwhich we conclude that the query time bound is subsumed by that obtained when
the query segment ρ does not lie on the zero set.

Specifically, let us consider the query time bound obtained for the wide tetrahedra
in (5). This bound also subsumes the bounds obtained for the casewhereρ∗ is contained
in the zero set Z(G) of the second partitioning polynomial. The bound holds for
n ≤ s ≤ n2, and for larger values of s it becomes O∗(n/s1/4), as long as n2 ≤ s ≤ n4,
and O∗(1) for n4 < s ≤ n6. We note that at every level j of the recursion on the
narrow tetrahedra we allocate to each subproblem the storage parameter s/D3 j , and
the bound on the number of (wide and narrow) tetrahedra is still O(n/D2 j ). Therefore
at the bottom level k we obtain an overall query time of

O∗
(

Dk + n5/3Dk/6

s5/6
+ n

s1/4Dk/4 + n

s1/6D3k/2

)

.

This bound is subsumed by the bound in (8), for s ≥ n, as is easily verified. There-
fore adding the query time for segment intersection within Z( f ) does not increase the
asymptotic bound in (8).

We next analyze the case where the query segment lies on the zero set. In order
to obtain the trade-off bounds for segment intersection within Z( f ), we recall the
multi-level data structure presented in Sect. 5.3. Each level in this data structure is
either a one- or a two-dimensional search tree, where the dominating levels are those
where we need to apply a planar decomposition over a set of planar regions (or in an
arrangement of algebraic arcs) and preprocess it into a structure that supports point-
location queries. A standard property of multi-level range searching data structures
is that the overall complexity of their storage (resp., query time) is governed by the
level with dominating storage (resp., query time) bound, up to a polylogarithmic factor
[6]. Recall that in each level of our data structure we form a collection of canonical
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sets of the arcs in �, which are passed on to the next level for further processing.
Our approach is to keep forming these canonical sets, where at the very last level we
apply the segment-intersection data structure of Pellegrini [27], as described above.
Therefore the overall query cost (resp., storage and preprocessing complexity) is the
sum of the query (resp., storage and preprocessing time) bounds over all canonical
sets of arcs that the query reaches (resp., all the sets) at the last level.

We now sketch the analysis in more detail. In order to simplify the presentation,
we consider one of the dominating levels, and describe the segment-intersection data
structure at that level. As stated above, we build this data structure only at the very
last level, but the analysis for the dominating level subsumes the bounds for the last
level, and thus for the entire multi-level data structure, up to a polylogarithmic factor.
In such a scenario we have a set of algebraic arcs (or graphs of functions, or semi-
algebraic regions represented by their bounding arcs), which we need to preprocess
for planar point location. This is done using the technique of (1/r)-cuttings (see [13]),
which forms a decomposition of the plane into O(r2) pseudo-trapezoidal cells, each
meeting at most n/r arcs (forming the “conflict list” of the cell). The overall storage
complexity is thus O(nr). More precisely, to achieve preprocessing time close to
O(nr), one needs to use so-called hierarchical-cuttings (see [25]) and also [9]), in
which we construct a hierarchy of cuttings using a constant value r0 as the cutting
parameter, instead of the nonconstant r that we will want to use. Using this approach,
both storage and preprocessing cost are O∗(nr). Let s be our storage parameter as
above, so we want to choose r such that s = rn. Thus we obtain that each cell of the
cutting meets at most n2/s arcs. Following our approach above, for each cell of the
cutting, the amount of allocated storage is s/r2 = n2/s. We are now ready to apply

Pellegrini’s data structure, leading to a query time of O∗
(
n3/2

s3/4

)
. Integrating this bound

into the query time in (8), we recall that at each level 0 ≤ j ≤ k the actual storage
parameter is O(s/D3 j ), and the number of tetrahedra at hand is O(n/D2 j ). We now
need to sum the query bound over all O(D j ) cells reached by the query at the j th
level, and over all j . We thus obtain an overall bound of

O∗
(

Dk (n/D2k)3/2

(s/D3k)3/4

)

= O∗
(
n3/2Dk/4

s3/4

)

.

This is exactly the second term in (8). Therefore adding the query time for segment
intersection within Z( f ) does not increase the asymptotic bound in (8).

We comment that the overall storage and preprocessing time is O∗(s) (see our
discussion below). We also comment that the query bound we obtained applies when
n ≤ s ≤ n2. When s exceeds n2, every cell of the cutting has a conflict list of O(1)
elements, which the query can handle in brute-force. This immediately brings the
query time, for queries on the zero set, to O∗(1).
Wrappingup. In summary, our analysis implies that the query bound Q(n, s) satisfies:

Q(n, s) =
⎧
⎨

⎩

O∗
(
n7/6

s1/3

)
, s = O∗(n2),

O∗
(
n3/4

s1/8

)
, s = �∗(n2).

(9)
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The overall storage (and expected preprocessing) is O∗(s). Indeed, we allocate to
each subproblem, at any level j , the storage parameter s/D4 j , so at each fixed level
the total storage (and expected preprocessing) complexity is O∗(s). Since there are
only logarithmically many levels, the overall storage (and expected preprocessing) is
O∗(s) as well. This completes the proof of Theorem 1.3.

Note that for the threshold s = n2, both bounds yield a query cost of O∗(n1/2).
Note also that in the extreme cases s = n6, s = n (extreme for the ‘six-dimensional’
tradeoff mentioned in Sect. 3), we get the respective bounds O∗(1) and O∗(n5/6) for
the query time. In this case, when either s = n or s = n6 we have Dk = O(1),
implying that we handle all the narrow tetrahedra at the root of the recursion tree. That
is, we use the technique of Sect. 3 only once. Informally, the bound in (9) ‘pinches’
the tradeoff curve and pushes it down. The closer s is to �(n2), the more significant
is the improvement. See Fig. 1.
Processing m queries. The improved tradeoff in (9) implies that the overall expected
cost of processingm queries with n input tetrahedra, including (expected) preprocess-
ing cost, is

O∗(s + mQ(n, s)) =
⎧
⎨

⎩

O∗
(
s + mn7/6

s1/3

)
, s = O∗(n2),

O∗
(
s + mn3/4

s1/8

)
, s = �∗(n2).

To balance the terms in the first case we choose s = m3/4n7/8. This choice satisfies
s = O∗(n2) when m ≤ n3/2. To balance the terms in the second case we choose
s = m8/9n2/3. This choice satisfies s = �∗(n2)whenm ≥ n3/2. Recall also that s has
to be in the range between n and n6. So in the first case we must have m3/4n7/8 ≥ n,
or m ≥ n1/6. Similarly, in the second case we must have m8/9n2/3 ≤ n6, or m ≤ n6.
We adjust the bounds, allowing also values of m outside this range, by adding the
near-linear terms O∗(n) and O∗(m), respectively, which dominate the bound for such
off-range values of m. This establishes Corollary 1.4.

7 Output-Sensitive Construction of Arrangements of Tetrahedra and
of Intersections of Polyhedra inR

4

The results of Sect. 4 can be applied to construct the arrangement A(T ) of a set T of
n tetrahedra in R

4 in an output-sensitive manner. A complete discrete representation
of A(T ) requires, at the least, the collection of all faces, of all dimensions, of the
arrangement, and their adjacency structure. Concretely, for each j-dimensional face
ϕ, for j = 0, 1, 2, 3, we want the set of all ( j + 1)-dimensional faces that have ϕ on
their boundary. Conversely, for each j-dimensional face ϕ, for j = 1, 2, 3, 4, we want
the set of all ( j − 1)-dimensional faces that appear on ∂ϕ.

We begin by considering the task of computing all the nonempty intersections of
pairs, triples, and quadruples of tetrahedra of T . This will yield the set of vertices,
and provide an infrastructure for computing the j-faces, for j = 1, 2, 3. Denote the
number of these intersections as k2, k3, and k4, respectively.
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Recall that we assume that the tetrahedra are in general position, although a suitable
adaptation of the following machinery, using well known perturbation techniques, can
handle degenerate cases too.
Reporting pairwise intersections. As noted in Sect. 1, two intersecting tetrahedra
in general position in R

4 intersect in a two-dimensional convex polygon of constant
complexity, and it suffices to report one vertex of each nonempty polygon, in order
to detect all intersecting pairs of tetrahedra. As is easily checked, such a vertex is
either an intersection of an edge of one tetrahedron with the other tetrahedron, or an
intersection of two 2-faces (triangles), one from each tetrahedron.

Reporting vertices of the first kind (edge-tetrahedron intersections) can be done
using themachinery in Theorem 1.1, whose details are provided in Sect. 3, which takes
O∗(n12/7) + O(k2) time.12 We comment that in order to enforce the general position
assumption of the tetrahedraw.r.t. the query edges, we follow a similar approach to that
described in Sect. 1 around Theorem 1.7. That is, we recursively solve the bichromatic
version of this problem. The fact that input tetrahedra are in general position guarantees
that when we query with a tetrahedron edge the general position assumptions stated
in Sect. 3 are satisfied.

Reporting vertices of the second kind (triangle-triangle intersections) is done using
the machinery in Sect. 4, which also takes O∗(n12/7) + O(k2) time. Here too, the
triangular faces of the tetrahedra need to satisfy the general position assumption (see
once again Sect. 4). In order to enforce that we use, once again, the approach described
around Theorem 1.7. That is, we color each 2-face in a distinct color, and then solve
the bichromatic version of the problem (Theorem 1.6) for each pair of distinct colors.

We comment that in practice we do not return the vertices of the intersections but
the corresponding pairs of intersecting tetrahedra. The machinery in Sects. 3 and 4
actually yields this data.
Reporting triple and quadruple intersections.We iterate over the input tetrahedra.
For each fixed tetrahedron T0, the previous step provides uswith all the other tetrahedra
that intersect T0. Denote their number as kT0 , and observe that

∑
T0 kT0 = 2k2. We

form the nonempty intersections T0 ∩ T , and triangulate each of them. We obtain a
collection of O(kT0) triangles, all contained in (T0 and therefore also in) the hyperplane
hT0 supporting T0.

We have thus reduced our problem to that of reporting all pairwise and triple inter-
sections in a set ofm = O(kT0) triangles inR

3. This can be solved using the algorithm
in [18, Corr. 5.1], by a procedure that runs in O∗(m3/2) + O(�T0 log �T0) time, where
�T0 is the number of triple intersections of the triangles. Note that

∑
T0 �T0 = O(k4).

Adding up this cost over all tetrahedra T0, the overall running time is

O∗
⎛

⎝
∑

T0

k3/2T0
)

⎞

⎠ + O (k4 log k4) = O∗
⎛

⎝n1/2
∑

T0

kT0

⎞

⎠ + O (k4 log k4)

= O∗(n1/2k2) + O(k4 log k4).

12 Although this part can be performed faster, as described in Sect. 5, we use the standard solution, since
we do not have a similar improvement for the construction of vertices of the second kind.

123



Discrete & Computational Geometry

Constructing the arrangement. For each tetrahedron T0, it is fairly routine to obtain,
from the information collected so far, the full three-dimensional arrangement within
T0 in additional O(k log k) time, where k is the arrangement complexity; this is done
using standard techniques in three dimensions, see, e.g., [27]. This gives us all the j-
faces of the four-dimensional arrangement A, for j = 0, 1, 2, 3, and their adjacency
information. The local adjacency information in R

4 is also available from this data.
By local adjacency we mean the adjacency between a j-face and the j ′-faces on its
boundary, for j ′ < j , over all such pairs of faces. For completion we need to identify
disconnected pieces of the boundary of each four-dimensional cell, and record their
adjacency to that cell. This can be done by x4-vertical ray shooting from the x4-highest
point of each connected three-dimensional complex of faces. This calls for performing
O(n) x4-vertical ray shooting queries in a set of n tetrahedra inR4, which can be done
using the machinery presented in Theorem 1.1, or by an even simpler mechanism
(since all the rays are vertical).

We have thus established the bound stated in Theorem 1.8.
Output-sensitive construction of the intersection or union of polyhedra in R

4. As
another application, consider the problem where we have two not necessarily con-
vex (but bounded) polyhedra R and B in R

4 in general position, whose boundaries
consist of, or can be triangulated into O(n) faces of all dimensions, which are seg-
ments, triangles, and tetrahedra. The goal is to construct their intersection R∩ B in an
output-sensitive manner; a similar application has been shown in [18] for the three-
dimensional problem. We note that computing the union B ∪ R can be done using a
very similar approach, within the same asymptotic time bound.

In order to compute R ∩ B, we first apply the above algorithm to construct, in an
output-sensitive manner, the arrangement A(R ∪ B) of the two polyhedra R and B
(specifically, we build the arrangement of the tetrahedra comprising the boundaries
of B and R). We then label each cell (of any dimension) of A(R ∪ B) with the
appropriate Boolean operation, that is, whether it either lies in R \ B, B \ R, B ∩ R,
or in the complement of B ∪ R. Collecting all the cells of the desired kind (e.g., those
in B ∩ R), and computing the adjacency relation between them, we obtain a suitable
representation of the intersection. This establishes the bound stated in Theorem 1.8(ii).

We comment that extending the analysis to the intersection ofmore than two (albeit,
still a constant number of) input polyhedra can also be done, following the same
machinery as in the construction of an arrangement of tetrahedra, as presented above.
It is easy to verify that in this case we obtain the same asymptotic bound stated in
Theorem 1.8(ii).

8 Detecting or Reporting Intersections Between 2-Flats and Lines in
R
4R4

R
4

As a final application of our machinery, we consider the problemwhere we are given a
set R of n red 2-flats and a set B of n blue lines in R4, and the detection problem asks
whether there exists a pair of intersecting objects in R × B. In the reporting version
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we want to report all such pairs. We only consider the batched version of the problem,
but a similar approach can also handle the preprocessing-and-query variant.

We solve the detection problem by regarding the problem as a special degenerate
(andmuch simpler) instance of the segment intersection setup (and also of the triangle-
triangle intersection setup), in which we regard the, say, red 2-flats as degenerate
tetrahedra (unbounded and of zero volume), construct the data structure of Sect. 5, and
query it with each of the blue lines. There exists a red-blue pair of intersecting objects
if and only if at least one query has a positive outcome—the corresponding blue query
line hits a red 2-flat. Using the bounds and notation given in Corollary 1.4, specialized
to the case, under consideration here, where the input tetrahedra degenerate into 2-flats,
this can be performed in expected time max{O∗(m3/4n7/8 +n), O∗(m8/9n2/3 +m)},
and sincem = n in our case this bound is O∗(m13/8). This is a clear improvement over
the bound O∗(n12/7) obtained using the initial approach presented in Sect. 3. Indeed,
in this latter approach, with storage parameter s, a query takes O∗(n/s1/6) time, and
thus n queries cost O∗(n2/s1/6) time. Balancing these costs results in overall expected
running time of O∗(n12/7). Similar improvements are obtained for other values of m,
as long as n1/6 � m � n6 (see the analysis in the preceding section).

Since there are nowide tetrahedra in this special variant, there is no need to construct
the auxiliary data structure for wide tetrahedra, as in Sect. 5, and we simply construct
the recursive hierarchy of polynomial partitions, where each cell in each subproblem
is associated with the set of red 2-flats that cross it. A blue query line � is propagated
through the cells that it crosses until it either comes to lie on the zero set of the current
partitioning polynomial, or reaches bottom-level cells, and we check, in each such
cell, whether � intersects any of the O(1) red 2-flats associated with the cell.

An easy adaptation of our machinery allows us to report all k red-blue intersecting
pairs in expected time O∗(n13/8) + O(k).

In summary, we have:

Theorem 8.1 Given n blue lines and n red 2-flats in R4, one can detect whether some
blue line intersects some red 2-flat in O∗(n13/8) expected time. One can also report
all k red-blue intersections in O∗(n13/8) + O(k) expected time.

We remark that this case can also be considered as a special case of the triangle-
triangle intersection setup. We also note that, similar to the three-dimensional setup in
[18], this technique does not support counting queries, because the subproblems that
a query encounters will not in general involve pairwise disjoint sets.
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