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Abstract
A family of fractal arrangements of circles is introduced for each imaginary quadratic
field K . Collectively, these arrangements contain (up to an affine transformation)
every set of circles in the extended complex plane with integral curvatures and Zariski
dense symmetry group. When that set is a circle packing, we show how the ambient
structure of our arrangement gives a geometric criterion for satisfying the asymptotic
local–global principle. Connections to the class group of K are also explored. Among
them is a geometric property that guarantees certain ideal classes are group generators.
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1 Introduction

Let K be an imaginary quadratic field with ring of integersO and discriminant �. To
each K we associate a family of arrangements, meaning a set of oriented circles in
the extended complex plane, ̂C = C ∪ {∞}. We denote a member of this family SD ,
where D is an integer whose allowable values depend on K . Briefly stated (see Sect. 2
for details), an oriented circle with curvature r , cocurvature r̂ , and curvature-center ζ

belongs to SD for the field K if and only if i
√
Dζ ∈ O and i

√
Dr , i

√
Dr̂ ∈ √

�Z,
where i = √−1. Figure1 shows two examples for the same field.
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Fig. 1 S1 (left) and S24 (right) for Q(i
√
19), discussed in Sect. 3.2

1.1 History andMotivation

The origin of our arrangements traces back to Apollonian circle packings, which first
appeared in a 17th century notebook of Leibniz. There are sufficiently many images,
descriptions, and histories of Apollonian circle packings in the literature to warrant
omitting them here [18]. An example of a non-Apollonian circle packing is given by
the bold circles in Fig. 2. (The circles “pack” space because their interiors are pairwise
disjoint and dense.)

Instead our timeline picks up with the Apollonian superpacking, first introduced by
Graham et al. in [11]. The paragraph following Definition 4.4 defines superpackings
formally, but for now the reader can imagine something like the background circles
in Fig. 2—an organized union of infinitely many circle packings nested inside one
another. The Apollonian superpacking is the first of our arrangements to appear in
print; it is S1 for Q(i). Superpackings have been used in [2, 6, 11–13, 16, 17, 28] as a
tool for studying and classifying the circle packings they contain. We employ SD for
the same purpose here, especially in Sect. 4.3 to prove results on the so-called local–
global principle for circle packings, which was also introduced by Graham, Lagarias,
Mallows, Wilks, and Yan. Indeed, their series of papers [10–13] helped generate sig-
nificant interest in the algebraic and number theoretic properties of arrangements like
ours. The reader might see [8] or [25] for expositions of the mathematics that has since
developed.

Several other appearances of SD followed shortly after. The next was that of S2 for
Q(i

√
2) in [14]. Following [11], Guettler and Mallows also treat the arrangement as

a superpacking, but they build it from a different (non-Apollonian) structure of initial
circles.

An infinite family of arrangements was then introduced by Stange [27], whosework
motivated this paper. She defined the Schmidt arrangement of an imaginary quadratic
field K and studied its relationship to the corresponding ring of integers O. The
Schmidt arrangement is always contained in S1, and the two coincide whenever the
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class group of K contains only 2-torsion (like forQ(i
√
19)—the first image in Fig. 1 is

the Schmidt arrangement). Stange also found additional arrangements that she called
“ghost circles,” and she used them to prove the Schmidt arrangement is disconnected
when O is non-Euclidean. Ghost circles are SD for D = (�2 + 14� + 1)/16 when
4 � � and D = (�2 + 12�)/16 when 4 | �. Stange’s theorem on connectivity and
Euclideaneity is the first example of how the geometry of an arrangement provides
arithmetic information about the underlying field. But the Schmidt arrangement is
limited in that it does not manifest properties of the ideal class group. As Sect. 5 shows,
however, our generalization creates a richer geometry-to-arithmetic connection with
K , and the class group in particular.

While these are the only SD that have already appeared in the literature to the
author’s knowledge, it is likely that some of the superpackings defined by Kontorovich
and Nakamura in [17] and Kapovich and Kontorovich in [16] would also turn out to be
among our arrangements. But their definition of a superpacking does not encompass
our definition of SD , nor is the reverse containment true. Rather, our work here is
complementary to theirs; results from [16] are used in Sect. 4.1 to prove a fundamental
property of SD (Theorem 1.1), and we return the favor in Sects. 4.2 and 4.3 by proving
properties of objects defined in [16].

Finally, many circle packings in print are subarrangements of some SD . Those in
[4, 17, 20, 26] are contained in SD for Q(i

√
D) with either D = 2, 3 or 6. Each of

the infinitely many circle packings discovered by Baragar and Lautzenheiser in [1] is
also contained in SD for Q(i

√
D) for some D; we derive properties of these from SD

in Sects. 4.2 and 4.3. And the circle packing in [16] is contained in S24 for Q(i
√
30).

One of the primary purposes of this work is to provide a common thread among the
papers listed above. As we show, SD turns out to be a wonderful tool for investigating
the algebra and number theory at play behind the aforementioned circle packings and
superpackings.

1.2 Summary of Results

Section 2 is devoted to background, then SD is introduced formally in Definition 3.1.
The main result of Sect. 3 is Theorem 3.11, which splits our arrangements into two
very different categories. Figure1 shows one arrangement from each. Those in the
same category as S1 (first image) are “orbits” under subsets of PGL2(K )—a fact used
throughout the rest of the paper to connect the geometry of SD to the number theory
of K . All of the arrangements from literature belong to this category except the circle
packing from [16] and certain ghost circles from [27].

Section 4 begins with the result below, the proof of which relies crucially on the
“Subarithmeticity Theorem” of Kapovich and Kontorovich [16]. It shows the extent
to which SD is universal, explaining why our paper connects to so many past works.
Integral means that all curvatures are integers up to a single scaling factor.

Theorem 1.1 Any integral arrangement that is fixed by a Zariski dense subgroup of
PSL2(C) is contained in some SD after scaling, rotating, and translating.

Consequences of Theorem 1.1 include a restriction on possible intersection angles
within certain subarrangements called bugs from [16] (Corollary 4.3), a criterion for
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Fig. 2 New circle packing from S9 for Q(i
√
39)

determining superintegrality (Definition 4.4; Proposition 4.6), and a geometric con-
nection between SD and the local–global principle for curvatures in an integral circle
packing (Theorem 4.11 and Corollary 4.13).

Regarding the last result, the relative position of a circle packing in SD can give
a sufficient condition for applying a theorem of Fuchs et al. [9], which states that
curvatures in certain packings have asymptotic density 1 among integers that pass a
set of local obstructions. Figure2 displays our sufficient condition: at each intersection
point on a given bold circle, it is always the largest exteriorly tangent circle from S9
that also belongs to the packing. Stange calls such circles immediately tangent [28],
and we name the circle packing accordingly.

Corollary 1.2 Immediate tangency packings (Definition 4.12) in SD satisfy the local–
global principle up to density 1.

Section 5 proves connections between SD and the class group of K . If α0 ∈ K
lies on a circle in SD , then so does each α ∈ K for which the fractional ideals (α, 1)
and (α0, 1) belong to the same ideal class. So it makes sense to ask whether or not
an ideal class is covered (Definition 5.4) by SD . Those that are covered can often be
distinguished by the geometry of SD . In Fig. 3, circles intersect non-tangentially at
some α ∈ Q(i

√
39) if and only if the ideal class of (α, 1) generates the class group (a

consequence of Proposition 5.3).
Also in Fig. 3, note that any two circles appear to be linked by a chain of circles.

This arrangement turns out to be finitely connected (Definition 5.11), meaning there is
an upper bound on the chain length needed to connect any circle of nonzero curvature
to one at least twice as large.

Theorem 1.3 If SD is finitely connected, then the class group of K is generated by
ideal classes of primes with norm dividing D�.
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Fig. 3 Connectivity of S4 for Q(i
√
39) implies a cyclic class group

Primes dividing � generate the 2-torsion subgroup of the class group, so primes
dividing D are responsible for each 2-torsion coset in Theorem 1.3. If we strengthen
the connectivity hypothesis by assuming consecutive circles in a chain intersect at a
point in K , then D� can be replaced by D in the theorem (Corollary 5.13). This is the
case in Fig. 3. So S4 is a kind of geometric assertion that the class group of Q(i

√
39)

is cyclic, generated by a prime over 2.

2 Background

As detailed in [27], an oriented circle C is the set of α/β ∈ ̂C solving

r |α|2 − 2�(αβζ ) + r̂ |β|2 = 0 (1)

for some ζ ∈ C and r , r̂ ∈ R satisfying |ζ |2 − r̂r = 1. Given C , let vC = [ζ ζ r̂ r ].
If r �= 0, (1) rearranges to the equation of a circle with center ζ/r and radius 1/|r |:

|α/β − ζ/r | = 1/|r |. The sign of r indicates orientation. Positive defines the interior
of C so as to contain its center, while this is the exterior when r is negative. If r = 0,
then the point at infinity, 1/0, is a solution, and C appears as a line orthogonal to ζ .
In this case, interior is defined as the side to which ζ points.

The curvature of C is r , the curvature-center is ζ , and the cocurvature is r̂ .
PSL2(C) acts on ̂C as Möbius transformations, which map oriented circles to ori-

ented circles and preserve the orientation just described. This action corresponds to a
linear transformation on vectors vC . See [5] for a proof of the following.

Proposition 2.1 If M ∈ PSL2(C), then

M =
[

α γ

β δ

]

and N =

⎡

⎢

⎢

⎣

αδ βγ αγ βδ

βγ αδ αγ βδ

αβ αβ |α|2 |β|2
γ δ γ δ |γ |2 |δ|2

⎤

⎥

⎥

⎦

(2)

are such that vMC = vC N.
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The map M �→ N is called the spin homomorphism. Those M for which N has
entries in O form the extended Bianchi group.

Vectors of the form vC generate a four-dimensional subspace of C
2 × R

2, which
we identify with Minkowski space via the Hermitian form of signature (1, 3),

Q = 1

2

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 −1
0 0−1 0

⎤

⎥

⎥

⎦

.

With respect to Q, each vC is a unit vector: ‖vC‖Q = 〈vC , vC 〉Q = |ζ |2 − rr̂ = 1. In
particular, N from (2) preserves unit vectors (a so-called Lorentz transformation).

A modern perspective on the following properties is to treat them as inheritance
from the geometry of Minkowski space. But they can also be verified directly with
Euclidean geometry.

Proposition 2.2 C and C ′ intersect if and only if 〈vC , vC ′ 〉Q ∈ [−1, 1], in which case
arccos(〈vC , vC ′ 〉Q) is the intersection angle.

Proposition 2.3 The vector associated to the image of C ′ reflected in C is vC ′ −
2〈vC , vC ′ 〉QvC . In terms of Möbius transformations, this image is

[

ζ −r̂
r −ζ

]

C ′,

where [ζ ζ r̂ r ] = vC and C ′ is the image of C ′ under complex conjugation.

3 The Object of Study

Definition 3.1 Given a fixed imaginary quadratic field, for nonzero D ∈ R let SD

denote the set of oriented circles C for which i
√
DvC ∈ O2 × (

√
�Z)2.

As an example, consider a circle with curvature-center ζ = √
5 + i

√
11. Since

i
√
11ζ is an integer in Q(i

√
55), such a circle might possibly belong to S11 for

Q(i
√
55). In order to be in S11, the curvature of our circle must satisfy i

√
11r ∈

i
√
55Z. So let us try r = 7

√
5. Then the cocurvature is r̂ = (|ζ |2 − 1)/r = 3

√
5/7.

Since i
√
11r̂ /∈ i

√
55Z, the circle of radius 1/7

√
5 and center (

√
5 + i

√
11)/7

√
5

does not belong to S11 (though it is in S11d2 for any nonzero d ∈ 7Z). On the other
hand, r = 3

√
5 gives r̂ = √

5, and therefore i
√
11r̂ ∈ i

√
11Z. Thus the circle of

radius 1/3
√
5 and center (

√
5 + i

√
11)/3

√
5 does belong to S11.

Proposition 3.2 SD is nonempty if and only if D is a positive integer for which there
exists α ∈ O satisfying |α|2 ≡ Dmod�.

Proof Suppose the congruence holds for some α ∈ O and positive integer D. Then

v =
[

iα√
D

iα√
D

|α|2 − D√
D|�|

√|�|√
D

]
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corresponds to a circle in SD since ‖v‖Q = 1, and i
√
Dv ∈ O2 × (

√
�Z)2.

Conversely, let C ∈ SD and let vC = [ζ ζ r̂ r ]. Set α = i
√
Dζ ∈ O. Scaling

1 = ‖vC‖Q by D gives D = |α|2 − Dr̂r ≡ |α|2 mod�, where the congruence is due
to i

√
Dr , i

√
Dr̂ ∈ √

�Z. This shows D ∈ Z, and i
√
Dr ∈ √

�Z shows D > 0. ��
As a consequence of D being a rational integer, we see that if the curvature-center

ζ of an oriented circle in SD for some field K has nonzero real and imaginary parts,
then i

√
Dζ ∈ K implies K = Q(i�(i

√
Dζ )�(i

√
Dζ )) = Q(i D�(ζ )�(ζ )) =

Q(i�(ζ )�(ζ )). Furthermore, �(i
√
Dζ ) ∈ Q implies Q(�(ζ )) = Q(

√
D). So just

from knowing the curvature-center
√
5+ i

√
11 in the example above, Proposition 3.2

already forbids containment in anything but S11d2 for Q(i
√
55) for some nonzero

integer d.
Henceforth, all arrangements are assumed to be nonempty.

3.1 Basic Properties

Here we determine the symmetries of SD as well as its geometry at points where
circles intersect.

Proposition 3.3 The extended Bianchi group is the maximal subgroup of PSL2(C) that
fixes SD.

Proof Any subgroup of PSL2(C) that preserves SD is discrete since its image under
the spin homomorphism preserves the lattice O2 × (

√
�Z)2. So it suffices to show

the extended Bianchi group is such a subgroup, as it is the maximal discrete subgroup
of PSL2(C) containing PSL2(O) [7].

Let C ∈ SD . Let M belong to the extended Bianchi group so that N from (2) has
entries from O. Then the first two entries of i

√
DvC N also belong to O. Next, the

third entry of i
√
DvC N is

2i�(αγ (i
√
Dζ )) + (i

√
Dr̂)|α|2 + (i

√
Dr)|γ |2 ∈ √

�Z.

The fourth entry takes a similar form and is also in
√

�Z. Thus Proposition 2.1 gives
i
√
DvMC = i

√
DvC N ∈ O2 × (

√
�Z)2, implying MC ∈ SD . ��

Affine transformations in the extended Bianchi group are translations by O and
rotations by the unit groupO∗. Translative symmetry can be seen in the first image of
Fig. 4, which shows S8 centered on a fundamental region for the integers in Q(i

√
31).

Some reflective symmetries generated by complex conjugation (which always fixes
SD), negation, and translation are also visible in Fig. 4.

Corollary 3.4 SD is dense in ̂C.

Proof The orbit of any point under the extended Bianchi group is dense. ��
Proposition 3.5 The angle between intersecting circles in SD is θ = arccos(n/2D)

for some n ∈ Z, where n is even if � is. Moreover, the point(s) of intersection is/are
in ̂K = K ∪ {∞} if and only if eiθ ∈ K.
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Note that the point at infinity is considered rational: 1/0. In particular, this proposi-
tion implies that the intersection angle θ between two lines in SD (should they exist)
always satisfies eiθ ∈ K .

Proof If i
√
DvC , i

√
DvC ′ ∈ O2 × (

√
�Z)2 then 〈i√DvC , i

√
DvC ′ 〉Q = n/2 for

some n ∈ Z, where n is even if � is. By Proposition 2.2, C and C ′ intersect if and
only if 〈vC , vC ′ 〉Q ∈ [−1, 1], in which case the angle of intersection is arccos(n/2D).

For the second claim, suppose C and C ′ intersect (but do not coincide). Since
PSL2(O) preserves SD , intersection angles, and ̂K , we may assume without loss of
generality that C and C ′ have nonzero curvature r and r ′—if not replace them by MC
and MC ′ for almost any choice of M ∈ PSL2(O). Let ζ and ζ ′ denote their curvature-
centers. Then, with θ = arccos(〈vC , vC ′ 〉Q) ∈ [0, π ], the point(s) of intersection is/are
(ζ − ζ ′e±iθ )/(r − r ′e±iθ ). Scaling numerator and denominator by i

√
D shows that

intersections belongs to K if and only if eiθ does. ��
In S8 for Q(i

√
31), shown in the first image of Fig. 4, there are four possible

values of 〈vC , vC ′ 〉Q that lie in [−1, 1]. They are ±1, which correspond to tangential
intersections, and ±15/16, which correspond to non-tangential intersections. Since
arccos(±1) = arg(±1) and arccos(±15/16) = arg((15 ± i

√
31)/16), all points of

intersection are in ̂K by Proposition 3.5.

3.2 A Useful Dichotomy

This section splits our arrangements into two categories. The category to which SD

belongs is determined by the Hilbert symbol (D,�). We modify usual notation to
avoid confusion with ideals.

Notation 3.6 For a, b ∈ Q, let H(a, b) = 1 if ax2 + by2 = z2 has a nonzero solution
x, y, z ∈ Q, and let H(a, b) = −1 otherwise.

Lemma 3.7 If a circle in SD contains a point in ̂K = K ∪ {∞} then H(D,�) = 1,
and if H(D,�) = 1 then every circle in SD contains a point in ̂K.

Proof Suppose α ∈ C ∩ ̂K for some C ∈ SD with curvature-center ζ and curvature
r . Since PSL2(O) fixes ̂K and SD , we may assume r �= 0 without loss of generality
(as in the previous proof). Then |α − ζ/r | = 1/|r |, implying i

√
Drα − i

√
Dζ is

an element of K with magnitude
√
D. Denote this element (z + y

√
�)/x to see that

Dx2 + �y2 = z2 is solvable.
Now suppose Dx2 + �y2 = z2 for x, y, z ∈ Q, not all zero. Then � < 0 forces

x �= 0, so α = (z+ y
√

�)/x ∈ K has magnitude
√
D. Thus if C ∈ SD has curvature-

center ζ and curvature r �= 0, then ζ/r + α/i
√
Dr ∈ C ∩ ̂K . ��

The contrast between the two types of arrangements is displayed in Fig. 1, where
H(1,−19) = 1 and H(24,−19) = −1. By the lemma, S24 avoids all points in
Q(i

√
19). This makes it appear like the photographic negative of S1, whose focal

points are those in Q(i
√
19) (a consequence of Theorem 5.3).

We use ̂R = R ∪ {∞} to denote the extended real line with positive orientation,
so its interior is the upper half-space. This way v

̂R
= [i − i 0 0]. The following is

proved in [27].
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Lemma 3.8 (Stange [27])For M ∈ PSL2(C)with entries as in (2), M̂R has curvature-
center i(αδ − βγ ), cocurvature i(αγ − αγ ), and curvature i(βδ − βδ).

Notation 3.9 For M ∈ PGL2(K ) with entries α, β, γ, δ ∈ K , let (M) denote the
fractional ideal (α, β, γ, δ):=αO + βO + γO + δO, and let ‖(M)‖ denote its norm.

The notation (α, β):=αO+βO for α, β ∈ K is also used throughout the remainder
of the paper.

Lemma 3.10 Let M ∈ PGL2(K ) have entries as in (2). For any λ,μ ∈ K we have
(λ, μ)(det M)/(M) ⊆ (αλ + γμ, βλ + δμ) ⊆ (λ, μ)(M). In particular, if N ∈
PSL2(O) then (MN ) = (M) = (NM).

Proof Observe that

(λ det M, μ det M) = (δ(αλ + γμ) − γ (βλ + δμ), α(βλ + δμ) − β(αλ + γμ))

⊆ (M)(αλ + γμ, βλ + δμ) ⊆ (λ, μ)(M)2.

Divide all sides by (M) to get the desired containment.
To see that (MN ) = (M) for N ∈ PSL2(O), we will let N play the role of “M”

from the previous argument. Let λ and μ denote the top-row entries of M . Since
(det N )/(N ) = O = (N ), we see that the ideal generated by the top-row entries
of MN is still (λ, μ). The ideal generated by bottom-row entries of M is similarly
preserved, giving (MN ) = (M). For NM let λ and μ be a column of M instead. ��
Theorem 3.11 If H(D,�) = 1 then C ∈ SD if and only if C = M̂R for some
M ∈ PGL2(K ) with | det M |/‖(M)‖ = √

D.

Proof Let M ∈ PGL2(K ) have entries as in (2), and suppose | det M |/‖(M)‖ = √
D.

We claim C = M̂R ∈ SD . Since M/
√
det M ∈ PSL2(C), the formulas in Lemma 3.8

show that i
√
DvC has entries

i
√
Dζ = i

√
D

(

i(αδ − βγ )

| det M |

)

= i | det M |
‖(M)‖

(

i(αδ − βγ )

| det M |

)

= βγ − αδ

‖(M)‖ ∈ O

(and by similar arithmetic),

i
√
Dr̂ = αγ − αγ

‖(M)‖ ∈ √
�Z, and i

√
Dr = βδ − βδ

‖(M)‖ ∈ √
�Z.

Thus C ∈ SD as claimed.
Now assume H(D,�) = 1. For C ∈ SD we seek M ∈ PGL2(K ) with M̂R = C

and | det M |/‖(M)‖ = √
D. By Lemma 3.7, there exists α ∈ C ∩ K . Pick any split

prime ideal p that belongs to the same ideal class as (α, 1) and does not contain 2D. Let
p = ‖p‖, and pick α′ ∈ O for which (α′, p) = p. Now take any N ∈ PSL2(O) such
that N (α/1) = α′/p, which is possible since the ideal classes of (α, 1) and (α′, p)
are equal. Our strategy is to find M ′ ∈ PGL2(K ) with | det M ′|/‖(M ′)‖ = √

D and
M ′

̂R = NC . Then M = N−1M ′ is the desired matrix by Lemma 3.10.
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Let ζ and r denote the curvature-center and curvature of NC . Fix any β ∈ p with
�(β) = √|�|/2. Set γ ′ = i

√
Dζ + (i

√
Dr/

√
�)(α′β/p) and δ′ = (i

√
Dr/

√
�)β,

both of which are in O. Define

M ′ =
[

α′ γ ′
p δ′

]

.

Substituting in the formulas for γ ′ and δ′ gives

| det M ′| =
∣

∣

∣

∣

∣

i
√
Drα′(β − β)√

�
− i

√
Dζ p

∣

∣

∣

∣

∣

= √
D|r |p

∣

∣

∣

∣

α′

p
− ζ

r

∣

∣

∣

∣

= √
Dp,

where the last equality uses α′/p ∈ NC . From here it is straightforward to verify that
i(α′δ′ − pγ ′)/| det M ′| = ζ and i(pδ′ − pδ′)/| det M ′| = r . So M ′

̂R = NC .
The proof will be complete if we show (M ′) = p, since then | det M ′|/‖(M ′)‖ =

|√Dp|/‖p‖ = √
D. To this end, first observe that α′ /∈ p because p �= p and p � α′.

Next we claim that p � i
√
Dr , which would imply δ′ /∈ p by choice of β. Indeed, if

p | i√Dr then α′/p ∈ NC gives

0 = i
√
Dr |α′|2 + 2�(α′ p(i

√
Dζ )) + i

√
Dr̂ p2 ≡ 2�(α′ p(i

√
Dζ ))mod p2.

But then i
√
Dζ ∈ p is forced, in turn showing p divides |i√Dζ |2+(i

√
Dr̂)(i

√
Dr) =

D, contradicting our choice of p. So δ′ /∈ p as desired. Now, α′δ′ /∈ p gives det M ′ =
α′δ′ − pγ ′ /∈ p. Combined with p2 | | det M ′|2, this implies det M ′ ∈ p2. But then
α′, δ′ ∈ p and (p, p2) = p forces γ ′ ∈ p, completing the proof. ��

The matrices used in Theorem 3.11, M ∈ PGL2(K ) with | det M |/‖(M)‖ = √
D,

form the extended Bianchi group when D = 1 (though typically each matrix M is
scaled by 1/

√
det M so as to obtain a subgroup of PSL2(C)). In particular, The-

orem 3.11 asserts that the extended Bianchi group acts transitively on S1. More
generally, it can be shown as a corollary to the theorem that when H(D,�) = 1,
the extended Bianchi group acts transitively on SD if and only if D is square-free. The
author believes the same is true when H(D,�) = −1, but has not proved it.

4 Relation to Arrangements from the Literature

4.1 Universality

Wewould like to determine what kinds of arrangements can occur as subarrangements
of some SD . Integrality of curvatures (or cocurvatures or curvature-centers) up to a
single scaling factor is evidently necessary, but not sufficient to guarantee containment
in someSD . A certain amount of symmetry is also required to avoid randomcollections
of integral circles that are not found in any SD . The Subarithmeticity Theorem of
Kapovich and Kontorovich suggests what sufficient symmetry might be.
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Theorem 4.1 (Special case of Kapovich–Kontorovich [16]) If the orbit of a circle
under a Zariski dense subgroup � < PSL2(C) is integral, then � is contained in a
group weakly commensurable to some PSL2(O).

So Zariski denseness of � is enough to associate an imaginary quadratic field to an
integral orbit of a circle. Weak commensurability means there exists M ∈ PSL2(C)

such that M�M−1 ∩ PSL2(O) is a finite index subgroup of M�M−1. Letting C
be a circle from our integral orbit, if it happens that MC ∈ SD for some D, then
(M�M−1 ∩ PSL2(O))MC ⊆ SD by Proposition 3.3. But there seems no reason that
this should be true, or that it should be true for any remaining circles in M�C . And
even if all of M�C is contained in some SD , why should an integral arrangement
composed of multiple orbits be contained in a single SD? The next theorem addresses
these concerns.

Theorem 4.2 Any integral arrangement that is fixed by a Zariski dense subgroup of
PSL2(C) is contained in some SD after scaling, rotating, and translating.

Proof Let A denote the arrangement, scaled to have curvatures in Z, and let � be
the maximal Zariski dense subgroup of PSL2(C) that fixes A. Theorem 4.1 gives a
finite index subgroup �0 ≤ � that is, up to conjugation, contained in some PSL2(O).
Since conjugation preserves traces, all traces from �0 belong to O. Moreover, �0 has
finite index in a Zariski dense group and is thus Zariski dense itself. In particular, the
invariant trace field of �0, which is generated over Q by trM2 for M ∈ �0, must be
nonreal [19]. So fix some M0 ∈ �0 with �(trM2

0 ) �= 0. Let τ = trM0 ∈ O and set

t = (τ 2 − τ 2)/
√

� = 2�(trM2
0 )/

√|�| ∈ Z.
Let α, β, γ , and δ be the entries of M0 as in (2). Suppose for a contradiction that

β = 0. Since �A = A must be Zariski dense in PSL2(C)A, there is some C ∈ A
with nonzero curvature r . From the fourth column of N in (2) with β set to 0, we see
that the curvature of Mn

0C for n ∈ Z is |δ|2nr , which is assumed to be integral for
any n. Thus |δ| = 1, which combines with 1 = det M = αδ to give α = δ. Finally,
trM2

0 = α2 + δ2 = δ2 + δ2 contradicts �(trM2
0 ) �= 0. Thus β �= 0.

We claim that after translatingA by−α/β and rotating/scaling by tβ, it is contained
in SD with

D = ∣

∣tβ
√

�
∣

∣

2
. (3)

First observe that the new copy ofA has curvatures in Z/|tβ|, and its symmetry group
contains

[

tβ 0
0 1

] [

1 −α/β

0 1

]

M0

[

1 α/β

0 1

] [

1/tβ 0
0 1

]

=
[

0 −t
1/t τ

]

. (4)

Relabel M0 as the last matrix above.
Let R0 denote the unique matrix satisfying vC R0 = [r−2 r−1 r0 r1] for any

oriented circle C , where rn denotes the curvature of Mn
0C . For the values n = −2,

−1, 0, and 1, we use the bottom two entries of Mn
0 to replace β and δ in the fourth
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column of N from (2); this provides the corresponding column of R0. We get

R0 =

⎡

⎢

⎢

⎣

τ/t 0 0 τ/t
τ/t 0 0 τ/t

|τ/t |2 1/t2 0 1/t2

1 0 1 |τ |2

⎤

⎥

⎥

⎦

.

We have det R0 = (τ 2 − τ 2)/t4 = √
�/t3 �= 0. Letting σ = τ(1− τ 2) ∈ O, the first

and third columns of R−1
0 are

⎡

⎢

⎢

⎣

τ/
√

�

σ/
√

�

−σ/
√

�

−τ/
√

�

⎤

⎥

⎥

⎦

and

⎡

⎢

⎢

⎣

0
t2

0
0

⎤

⎥

⎥

⎦

.

Recall that rn ∈ Z/|tβ| = √
�Z/i

√
D for any C ∈ A. So it follows from vC =

[r−2 r−1 r0 r1]R−1
0 that C has curvature-center (τr−2 + σr−1 − σr0 − τr1)/

√
� ∈

O/i
√
D and cocurvature t2r−1 ∈ √

�Z/i
√
D. Thus i

√
DvC ∈ O2 × (

√
�Z)2. ��

The conjugating matrix product in (4) works as “M” from the discussion immedi-
ately preceding the theorem. That is, our affine transformation M gives M�M−1 ∩
PSL2(O) finite index in M�M−1. We do not need this fact, so we do not prove it.

In [16], Kapovich and Kontorovich introduce bugs as a generalization of circle
packings. A bug is a set of oriented circles inwhich overlapping interiorsmust intersect
at angle π/n for n belonging to some finite subset of N.

Corollary 4.3 IfA is an integral arrangement with Zariski dense symmetry group, the
angle θ between two intersecting circles ofA satisfies cos(θ) ∈ Q. In particular, ifA
is a bug then θ is either 0, ±π/3, or π/2.

Proof The first claim is a combination of Proposition 3.5 and Theorem 4.2. The claim
about bugs is Niven’s theorem [23]: arccos(π/n) ∈ Q only if n ∈ {1, 2, 3}. ��

As the remainder of this section shows, actually identifying an arrangement A
within some SD is more useful than just knowing it is possible. Note that the proof of
Theorem 4.2 gives a formula for D in (3).

4.2 Superintegrality

Our first property of subarrangements of SD applies when D divides �. The reader
may recall from the introduction that this happens to be true of many, perhaps most,
arrangements already appearing in literature.

The Apollonian supergroup is introduced in [11] by Graham et al.. Building on
their idea, Kontorovich and Nakamura consider the supergroup more generally. We
use their definition [17].
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Definition 4.4 The supergroup of an arrangement A is generated by reflections in its
circles as well as the matrices in PSL2(C) that fix A. We call A superintegral if the
orbit under its supergroup is integral.

Remark that if A in the definition above happens to be a circle packing, then its
orbit under the supergroup is called a superpacking. As mentioned in the introduction,
certain SD arise as superpackings in prior literature.

Superintegrality is used in [2, 6, 17] to help classify crystallographic circle packings,
and again in [16] to help classify Kleinian circle packings and bugs.

Lemma 4.5 If A is integral with Zariski dense supergroup, then it is superintegral if
and only if 2〈vC , vC ′ 〉Q ∈ Z for all C,C ′ ∈ A. In this case, each intersection angle
is either 0, ±π/3, or π/2.

Proof Given oriented circles C and C ′, the reflection of C ′ in C corresponds to the
vector vC ′ − 2〈vC , vC ′ 〉QvC by to Proposition 2.3. Thus if 2〈vC , vC ′ 〉Q ∈ Z for all
C,C ′ ∈ A, reflections in circles fromA preserve the lattice generated by their vectors.
This lattice is thus preserved by the supergroup’s image under the spin homomorphism,
implying curvatures in the orbit of the supergroup remain integral.

Conversely, suppose A is superintegral. Let M, M ′ ∈ PSL2(C) be such that C =
M̂R and C ′ = M ′

̂R belong to A. Let Let vC = [ζ ζ r̂ r ] and vC ′ = [ζ ′ ζ ′ r̂ ′ r ′].
By Proposition 2.3, composing the reflection in C followed by the reflection in C ′ is
given as a Möbius transformation by

[

ζ ′ −r̂ ′
r ′ −ζ ′

] [

ζ −r̂
r −ζ

]

=
[

ζ ζ ′ − rr̂ ′ r̂ ′ζ − r̂ζ ′
r ′ζ − rζ ′ ζ ζ ′ − r̂r ′

]

.

Call the last matrix N , and observe that tr N = 2〈vC , vC ′ 〉Q . Theorem 4.1 says that
some power of N , say Nn , is contained in PSL2(O) up to conjugation. Therefore
tr Nn ∈ O because conjugation preserves traces. But tr Nn can be expressed as a
monic, integral polynomial in tr N , so we must have tr N ∈ O ∩ R = Z.

The final assertion about intersection angles follows from Proposition 2.2. ��
Proposition 4.6 If D | �, all subsets of SD are superintegral.

Proof Let C,C ′ ∈ SD and let vC and vC ′ be as in the last proof. Since D | � and
� | (i√Dr̂)(i

√
Dr),

D = |i√Dζ |2 − Dr̂r ≡ |i√Dζ |2 mod D.

Similarly, D | |i√Dζ ′|2. As any prime ideal containing � equals its conjugate, we
see that D also divides (i

√
Dζ )(i

√
Dζ ′) and (i

√
Dζ )(i

√
Dζ ′). Thus 2〈vC , vC ′ 〉Q =

ζ ζ ′ + ζ ζ ′ − r̂r ′ − rr̂ ′ ∈ Z, proving our claim by Lemma 4.5. ��
Baragar and Lautzenheiser discovered a one-parameter family of circle packings

that generalize the classical Apollonian strip packing [1]. They begin with four circles,
say C1, C2, C3, and C4, oriented so as to have disjoint interiors. Two are parallel lines
distanced 1 apart. Two are circles of radius 1/2 with centers distanced

√
D apart for
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some D ∈ N, each circle tangent to both lines. It is then proved in [1] that circles C
such that vC is in the lattice generated by vC1 , vC2 , vC3 , and vC4 (overZ) are dense in̂C

and only intersect tangentially. Among such circles, they keep those that are positively
oriented, lie between the two lines, and are not properly contained in the interior of
another such circle. This produces a circle packing. The same procedure is used to
construct the circle packing in Fig. 4 from its background arrangement, so the reader
can see the resulting effect.

Proposition 4.7 The Baragar-Lautzenheiser packing of parameter D is contained in
SD for Q(i

√
D).

Proof Let C1 be the vertical line through 0 and C2 the vertical line through 1. Orient
them to have disjoint interiors, so

vC1 = [−1 −1 0 0], and vC2 = [1 1 2 0]. (5)

We also have two positively oriented circles of curvature 2, C3 and C4:

vC3 = [1 1 0 2], and vC4 = [1 + 2i
√
D 1 − 2i

√
D 2D 2]. (6)

They are tangent to C1 and C2 with centers distanced
√
D apart. For k = 1, 2, 3, 4 we

have i
√
DvCk ∈ Z[i√D]2 × (i

√
DZ)2 implying Ck ∈ SD for K = Q(i

√
D). ��

Note that if D is divisible by a perfect square, say f 2 �= 1, 4, then D does not divide
the discriminant of Q(i

√
D). In these cases Proposition 4.6 does not apply. Rather,

vC for C in the Baragar-Lautzenheiser packing satisfies i
√
DvC ∈ O2

f × (
√

� f Z)2,

where O f is the order of discrimant � f = f 2�. We avoid discussing non-maximal
orders here, except to mention that the proof of Proposition 4.6 still works for D | � f .
Alternatively, Lemma 4.5 can be applied directly to a Baragar-Lautzenheiser packing
by checking that products of lattice generators in (5) and (6) are integers or half-
integers. Either way, we see that Baragar-Lautzenheiser packings are superintegral.

4.3 The Asymptotic Local–Global Principle

Certain integral circle packings have congruence restrictions on what integers can
appear as curvatures. For example, curvatures in classical Apollonian packings always
lie in a proper subset of the congruence classesmod 24 [8].Graham,Lagarias,Mallows,
Wilkes, and Yan conjectured (for Apollonian packings) that every sufficiently large
integer which might occur as a curvature does [10]. The conjecture in this form was
shown to be false by Haag, Kertzer, Rickards, and Stange, who added the outputs
of certain quadratic and quartic forms to the list of prohibited curvatures (which they
conjecture to nowbecomplete) [15]. Progress toward an affirmativeproofwas achieved
by Bourgain and Kontorovich. They showed that curvatures in an Apollonian packing
have asymptotic density 1 among integers passing local obstructions [3].

In each of the packings considered here, local obstructions to curvatures always
form a set of forbidden congruence classes modulo some positive integer L0, as in the
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Apollonian case where L0 = 24. This is a consequence of strong approximation for
Zariski dense subgroups of PSL2(O) [24]. As such, we define the asymptotic local–
global principle with respect to L0. A more general definition need not assume L0
exists.

Definition 4.8 An arrangementA satisfies the asymptotic local–global principle with
respect to L0 if the number of positive integers less than x that occur as curvatures
in A is asymptotic to kx/L0, where k is the number of congruence classes mod L0
represented by curvatures in A.

The Bourgain–Kontorovich result has been generalized by Fuchs, Stange, and
Zhang.

Theorem 4.9 (Fuchs–Stange–Zhang [9]) Suppose � ≤ PSL2(O) is finitely generated
and Zariski dense, has infinite covolume, and contains a congruence subgroup of
PSL2(Z). If M, N ∈ PGL2(K ) with N̂R tangent to ̂R, then M�N̂R satisfies the
asymptotic local–global principle with respect to some L0 that depends only on �, N ,
and | det M |/‖(M)‖.

Remark that [9] restricts attention to M, N ∈ PSL2(K ), not PGL2(K ) as stated
above. Communication with the second- and third-named authors confirmed that their
proof still applies. When M ∈ PSL2(K ), a common denominator for the entries of
M is used in [9] as a scaling factor to achieve integrality of certain quadratic forms.
When M ∈ PGL2(K ), the role of a common denominator squared can be assumed
more generally by the integral ideal (det M)/(M)2.

The hypotheses of Theorem 4.9 can often be verified without ever computing the
symmetry group of an arrangement. Let us show how the manner in which a subar-
rangement sits in SD can be used to conclude the asymptotic local–global principle.
Recall that H(D,�) is the Hilbert symbol (Notation 3.6).

Lemma 4.10 If H(D,�) = 1, then SD is a finite union of PSL2(O) orbits.

Proof By Theorem 3.11, every element of SD is of the form M̂R for some M ∈
PGL2(K ) with | det M |/‖(M)‖ = √

D. If M, M ′ ∈ PGL2(K ) are such that (M) =
(M ′), det M = det M ′ and M ≡ M ′ mod (det M)/(M)2, then M−1M ′ ∈ PSL2(O).
That is, M̂R and M ′

̂R are in the same PSL2(O) orbit. There are finitely many possible
ideals (M) up to scaling, as well as finitely many integral ideals (det M)/(M)2 of
norm D, each with only finitely many congruence classes of matrices. ��

The proof above overcounts the number of orbits, but it will not matter.

Theorem 4.11 LetA ⊂ SD be such that each circle inA intersects at least one other
tangentially, and A ∩ MA is either empty or A for any M in some fixed congruence
subgroup of PSL2(O). Then A satisfies the asymptotic local–global principle.

Proof Let �0 be the maximal subgroup of PSL2(O) that preserves A. Let �(L) ≤
PSL2(O) be the congruence subgroup (of level L) assumed in our hypothesis.

Proposition 3.5 tells us tangential intersection in SD occurs only at points in ̂K ,
which means H(D,�) = 1 by Lemma 3.7. So each C ∈ A is of the form M̂R for
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some M ∈ PGL2(K ) with | det M |/‖(M)‖ = √
D. We claim for such a matrix M ,

that MAM−1 ∈ �0 whenever A ∈ PSL2(Z) is in the principal congruence subgroup
of level DL . To see this, first scale M so that ‖(M)‖ and DL are coprime. Let adjM =
M−1 det M . We have

MA adjM ≡ M adjM =
[

det M 0
0 det M

]

mod DL. (7)

In particular, the entries ofMA adjM are contained in (det M)/(M)2. But they are also
contained in (M)2, which is coprime to (det M)/(M)2. Thus entries of MA adjM are
divisible by det M . Now divide both sides of (7) by det M , and recall that ‖(M)‖ and
L are coprime to see that MAM−1 ∈ �(L). Since (MAM−1)C = (MAM−1)M̂R =
M̂R = C , we have C ∈ A∩ (MAM−1)A. So our hypothesis gives MAM−1 ∈ �0 as
claimed. Note that C is the limit set of MAM−1 for A ∈ PSL2(Z) from the principal
congruence subgroup of level DL . In particular, A is in the limit set of �0, which is
therefore Zariski dense.

Now, since [PSL2(O) : �(L)] is finite, SD is a finite union of �(L) orbits by
Lemma 4.10. But if it happens for some C ∈ A and M ∈ �(L) that MC ∈ A, then
MC ∈ A ∩ MA implies M ∈ �0 by our hypothesis. Therefore A is a finite union of
orbits of �0. Fix one element from each orbit, call them C1, ...,Cn , as well as some
C ′
k ∈ A tangent to Ck for each k = 1, ..., n. Write C ′

k = Mk̂R for Mk ∈ PGL2(K )

with | det Mk |/‖Mk‖ = √
D. Since congruence subgroups of PSL2(Z) are finitely

generated, for each k = 1, ..., n we can find some �k ≤ M−1
k �0Mk that is finitely

generated and of infinite covolume, while still being Zariski dense and containing the
principal congruence subgroup of level DL in PSL2(Z). We may then write �0Ck as
a union of “orbits” of the form (N jMk)�k(M

−1
k Ck), where N j ∈ PSL2(O) runs over

a complete set of coset representatives for �0/(Mk�kM
−1
k ).

Observe that M−1
k Ck is tangent to the real line by choice of C ′

k , that �k meets
the criteria of Theorem 4.9, and that | det(N jMk)|/‖(N jMk)‖ = | det Mk |/‖(Mk)‖ =√
D for all j byLemma3.10. Thus (N j Mk)�k(M

−1
k Ck) satisfies the asymptotic local–

global principle with respect to some Lk that does not depend on j . By taking any
finite set N j1, ..., N ji for which the curvatures of the corresponding orbits represent
every congruence class mod Lk represented by those in �0Ck , we see that �0Ck also
satisfies the asymptotic local–global principle. Thus A does as well, with respect to
L0 = lcm(L1, ..., Ln). ��

The argument in which we pass to the subgroup �k and observe that multiplying
by coset representatives N j leaves | det Mk |/‖(Mk)‖ unchanged can be used to show
that the “finitely generated” and “infinite covolume” hypotheses are not needed in
Theorem 4.9.

Theorem 4.11 has a nice geometric realization when we restrict attention to circle
packings—an infinite arrangement in which circle interiors are dense and disjoint.
In Fig. 2 we constructed a packing from a single, initial oriented circle by taking its
largest exterior neighbor at each point of tangency. Continuing in this way, just one
circle uniquely determines the rest of the packing. In particular, the packing and its
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Fig. 4 S8 for Q(i
√
31) (left) and an immediate tangency packing (right)

image under amatrix in PSL2(O) are either disjoint or equal as Theorem 4.11 requires.
(The argument is treated formally in the next corollary.)

This construction does not produce circle packings in every SD . The first image
of Fig. 4 shows S8 for Q(i

√
31). Here every circle has two points of tangency where

its largest exterior neighbors have overlapping interiors. To find packings in such
cases, we search among proper subarrangements. The background circles in the second
image are those from S8 with curvature-center and cocurvature satisfying i

√
8ζ ∈

(2, (1−i
√
31)/2) and i

√
8r̂ ∈ (2). Then the strategyoutlined in the previous paragraph

creates the bolded circle packing.

Definition 4.12 Suppose H(D,�) = 1. Let A consist of those C ∈ SD for which
i
√
DvC is in somefixed cosets of a full-rank sublattice ofO2×(

√
�Z)2. An immediate

tangency packing, P ⊂ A, is a circle packing such that each C ∈ A is contained in
the closure of the interior of a single C ′ ∈ P .

WhileO2×(
√

�Z)2 has rank six overR, the first two entries of any vC are complex
conjugates. So only a rank four sublattice of O2 × (

√
�Z)2 is actually relevant to

determining A in Definition 4.12.
Note that if P ⊂ A is an immediate tangency packing and C,C ′ ∈ P are tangent,

then they must be “immediately tangent” as defined by Stange [28] and as described
above regarding Fig. 2. That is, no circle of A can be caught in between C and C ′,
tangent and exterior to both. Such a circle could not possibly be in the closure of

123



198 Discrete & Computational Geometry (2024) 72:181–208

the interior of a single element of P . The immediate tangency property is not stated
explicitly in Definition 4.12 due to ambiguity that arises when A is not connected.
Our definition uniquely defines a packing from an initial oriented circle whether A is
connected or not (as seen in the next proof).

Returning to Fig. 4, the sublattice defined by i
√
8ζ ∈ (2, (1−i

√
31)/2) and i

√
8r̂ ∈

(2) has four cosets because (2, (1 − i
√
31)/2) has index two in O and (2) has index

two in Z. Its trivial coset produces the background circles in the second image, which
is Definition 4.12’s A. Any of the three nontrivial cosets could also be used to create
immediate tangency packings becauseA in each case has only tangential intersections.
It would be interesting to have a general method or criterion for selecting sublattices
like this given some SD . The one used for Fig. 4 was found by experimentation.

Corollary 4.13 All immediate tangency packings satisfy the asymptotic local–global
principle.

Proof Let P ⊂ A ⊆ SD as in Definition 4.12. Since the sublattice defining A is
assumed to have full rank, it has finite index in O2 × (

√
�Z)2. Call the index L , and

let �(L) ≤ PSL2(O) be the congruence subgroup of level L . If M ∈ �(L) then N
from (2) is congruent to the identity mod L , and thus fixes each sublattice coset. In
particular, �(L) fixes A.

Use Cin and Cex to denote the interior and exterior of some C ∈ A, and let Cin =
Cin ∪C and Cex = Cex ∪C be their closures. Let M ∈ �(L). We claim that P ∩ MP
is either empty or P as Theorem 4.11 requires. Let us suppose C0 ∈ MP but C0 /∈ P
and aim to show that P ∩ MP = ∅. By assumption, there is C ∈ P with C0 ⊂ Cin,
as well as C ′ ∈ P with M−1C ⊂ C ′

in. Then MC ′
in contains C and thus contains either

Cin or Cex. It must be the latter: Since MC ′ and C0 are both in the circle packing
MP , MC ′

in ⊇ Cin ⊃ C0 forces MC ′ and C0 to be the same oriented circle. But

M ′C = C = C0 contradicts C ∈ P and C0 /∈ P . So as claimed, MC ′
in contains Cex

and therefore all of P . The only element of MP in MC ′
in is MC ′ itself, which is not

in P by the previous sentence. Thus P ∩ MP = ∅.
To apply Theorem 4.11, it remains to check that every circle in P is tangent to at

least one other. Fix an element of P and write it as M̂R for some M ∈ PGL2(K ) with
| det M |/‖(M)‖ = √

D. Then

M̂R and M

[

1 DL
√

�

0 −1

]

̂R

are tangent with disjoint interiors since the same is true of ̂R oriented positively and
̂R − DL

√
� oriented negatively. Call the second circle above C . Using the same

argument from (7), we have

C =
(

M

[

1 DL
√

�

0 1

]

M−1
)

M̂R ∈ �(L)M̂R ⊆ �(L)A = A.

Thus C ⊂ C ′
in for some C ′ ∈ P by assumption. But then C ′ and M̂R must be tangent

at C ∩ M̂R for their interiors to be disjoint. ��
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Corollary 4.14 All Baragar-Lautzenheiser circle packings satisfy the asymptotic
local–global principle.

Proof The rank four sublattice ofO2 × (
√

�Z)2 from Definition 4.12 is generated by
vC1 , vC2 , vC3 , and vC4 from (5) and (6). Their circle packing is constructed to be an
immediate tangency packing in the resulting arrangement A. ��

With respect to circle packings, the author suspects that Theorem 4.9’s hypothesis is
not significantly weaker than Corollary 4.13’s. It seems at least slightly weaker, since
Fuchs, Stange, andZhang donot requireM�N̂R to have tangential intersections,while
immediate tangency packings always have tangential intersections. This difference
aside, the author suspects that Definition 4.12 is essentially a geometric formulation
of the algebraically-phrased hypothesis of Theorem 4.9 in the special case of circle
packings.

5 Relation to the Class Group

5.1 Geometry at a Point

We first study the relationship among oriented circles in SD , if any, that contain a fixed
point in ̂K = K ∪ {∞}.
Definition 5.1 A family is a maximal subset of SD in which any two circles C and
C ′ satisfy 〈vC , vC ′ 〉Q = 1. An extended family is a maximal subset in which any two
circles intersect at a fixed point with angle θ satisfying eiθ ∈ O.

All circles in a family intersect tangentially at a fixed point in ̂K by Proposition 3.5.
Also remark that if� �= −3,−4 the only units inO are 1 and−1. So an extended fam-
ily contains two families consisting of the same set of circles with opposite orientation.

Lemma 5.2 If C ∈ SD and α ∈ C ∩ K, then C = M̂R for some M ∈ PGL2(K ) with
left column entries α (top) and 1, (M) = (α, 1), and | det M |/‖(M)‖ = √

D.

Proof That C ∩ K is nonempty implies H(D,�) = 1 by Lemma 3.7, giving M ′ ∈
PGL2(K )withM ′

̂R = C and | det M ′|/‖(M ′)‖ = √
D.We haveM ′−1(α) ∈ ̂R∩ ̂K =

̂Q. So there is some N ∈ PSL2(Z) such that N−1M ′−1(α) is the point at infinity, 1/0.
In particular, if α′, β ′, γ ′ and δ′ are the entries of M ′N (arranged as in (2)), then
M ′N (1/0) = α means α′/β ′ = α. Consider the matrix

M = M ′N
[

1/β ′ 0
0 ‖(α, 1)/(M ′)‖β ′

]

=
[

α ‖(α, 1)/(M ′)‖β ′γ ′
1 ‖(α, 1)/(M ′)‖β ′δ′

]

∈ PGL2(K ).

Recall that (M ′N ) = (M ′) by Lemma 3.10. The ideal generated by the top-right entry
of M is therefore

‖(α, 1)‖(β ′γ ′)
‖(M ′)‖ = (α, 1) · (γ ′)

(M ′)
· (αβ ′, β ′)

(M ′)
= (α, 1) · (γ ′)

(M ′N )
· (α′, β ′)

(M ′N )
,
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which is contained in (α, 1). The same is true of the bottom-right entry of M . This
shows that (M) = (α, 1), and | det M |/‖(M)‖ = ‖(α, 1)/(M ′)‖| det M ′|/‖(α, 1)‖ =
| det M ′|/‖(M ′)‖ = √

D. ��
We use [a] to denote the ideal class of an ideal a ⊂ K .

Theorem 5.3 At α ∈ K, there is one extended family per integral ideal of norm D in
[(α, 1)]2. An intersection angle between elements in extended families corresponding
to the ideals D and D′ is the argument of a generator for D/D′. When scaled by√
D/|�|, curvatures from a single family form a congruence class mod 1/‖(α, 1)‖.

Proof If D0 ∈ [(α, 1)]2 is integral with norm D, then we can find γ, δ ∈ (α, 1)D0
with (αδ − 1γ ) = (α, 1)2D0. So let M0 have entries as in (2) but with β = 1. Then
(M0) = (α, 1) and | det M0|/‖(M0)‖ = √‖D0‖ = √

D.
For an integral ideal D ∈ [(α, 1)]2 of norm D, we will show that

{

M0

[

1 λ

0 μ

]

̂R

∣

∣

∣

∣

λ ∈ O, (μ) = D/D0

}

(8)

is an extended family, and that a family is defined by fixing the generator μ.
But first, the angle between two circles from (8), one with matrix entries λ and μ

as above and the other with entries λ′ and μ′, is the angle between ̂R and

(

M0

[

1 λ

0 μ

])−1

M0

[

1 λ′
0 μ′

]

̂R =
[

1 (λ′μ − λμ′)/μ
0 μ′/μ

]

̂R. (9)

This angle is evidently the argument of μ′/μ, which generatesD′/D assuming (μ) =
D/D0 and (μ′) = D′/D0. In particular, if D = D′ then μ′/μ ∈ O, showing that
each set of the form (8) is contained in a single extended family. Moreover, if μ = μ′
then the oriented circle in (9), call it C , has curvature-center i by Lemma 3.8. Since
v
̂R

= [i − i 0 0], we get 〈v
̂R
, vC 〉Q = 1. So for fixed μ, (8) is contained in a single

family.
Next, using the formula from Lemma 3.8, scaling a curvature from (8) by√
D/|�| = |μ det M0|/√|�|‖(α, 1)‖ gives

2�(μδ)√
�|‖(α, 1)‖ + 2�(λ)√

�|‖(α, 1)‖ .

By fixing μ and varying λ we obtain curvatures from the same family that produce a
full congruence class mod 1/‖(α, 1)‖.

It remains only to check that every circle in SD containing α can be expressed as
in (8) for some λ and μ. By Lemma 5.2, every such circle is of the form M̂R for some
M ∈ PGL2(K ) with left column entries α and 1, (M) = (α, 1), and (det M)/(M)2 =
D for some D ⊆ O of norm D. Let γ ′ and δ′ denote the right column entries of M .
We have

M−1
0 M =

[

1 (γ ′δ − γ δ′)/ det M0
0 det M/ det M0

]

.
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First observe that (det M/ det M0) = D(M)2/D0(M0)
2 = D(α, 1)2/D0(α, 1)2 =

D/D0. Next observe that (γ ′δ − γ δ′) ∈ (γ ′, δ′)(γ, δ) ⊆ (M)(γ, δ) = (α, 1)(γ, δ) =
(α, 1)2D0 = (det M0). Therefore the upper-right entry above is some integer λ. ��

As an example, recall fromFig. 3 the claim that certain ideal classes ofQ(i
√
39) can

be distinguished in S4. This field has a cyclic class group of order four, generated by
[p2] for either prime p2 over 2. The only integral ideal of norm 4 in the principal ideal
class is (2). So according to the theorem, if [(α, 1)]2 = [O] (meaning (α, 1) ∈ [O] or
(α, 1) ∈ [p2]2) then S4 has only one extended family at α. These are points in Fig. 3
with only tangential intersection, as Z[(1 + i

√
39)/2] has trivial unit group. On the

other hand, there are two integral ideals of norm 4 in [p2]2: p22 and p22. Therefore when
(α, 1) ∈ [p2] or (α, 1) ∈ [p2]3 there are two extended families at α. The angle between
them is the argument of a generator for p22/p2

2, which is (5± i
√
39)/8 depending on

the choice of p2.

Definition 5.4 An arrangement A covers α if α ∈ C for some C ∈ A. In this case, if
α ∈ K we say A covers the ideal class corresponding to α, which is [(α, 1)].
Corollary 5.5 A point α ∈ K is covered by SD if and only if [(α, 1)]2 contains an
integral ideal of norm D. In particular, whether or not α is covered depends only the
coset of the 2-torsion subgroup of the class group to which [(α, 1)] belongs.
Proof A point α ∈ ̂K is covered if and only if SD has at least one extended family at
α. By Theorem 5.3, this is equivalent to [(α, 1)]2 containing at least one integral ideal
of norm D. ��

So in SD , covering an ideal class implies every point corresponding to that ideal
class is covered, and indeed every point corresponding to an ideal class in the same
2-torsion coset.

We can also say something about the geometry of SD around α ∈ K that are not
covered. These points exhibit the typical repulsion property of rational numbers in
Diophantine approximation. Figure5 shows S39 for Q(i

√
39), which only covers the

two 2-torsion ideal classes in the class group. A red forbidden zone has been drawn
around uncovered points in K like (1 + i

√
39)/4, the focal point of the image. The

radius of a red dot is computed from the next proposition with r = 1200, because
Fig. 5 shows curvatures up to 1200.

Proposition 5.6 If α ∈ K is not on some C ∈ SD of curvature r , the distance between
C and α is at least (

√
2 − 1)min(d,

√
d/|r |), where d = √|�|‖(α, 1)‖/√D.

Proof Suppose α /∈ C ∈ SD . Let vC = [ζ ζ r̂ r ]. Recall that when r = 0, ζ is a
unit vector orthogonal to C . So the distance between α and C is the scalar projection
of α onto ζ , which is |�(ζα)| = |2�(i

√
Dζα)|/2√D. As 2�(i

√
Dζα) is an integer

multiple of
√|�|‖(α, 1)‖, it follows that |�(ζα)| ≥ d/2 > (

√
2 − 1)d.

Now suppose r �= 0. From |ζ |2 = 1 + r̂r we have the second equality below:

D|ζ − rα|2 = D(|ζ |2 − 2r�(ζα) + r2|α|2) =
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Fig. 5 S39 for Q(i
√
39) keeping away from uncovered rational points

D − i
√
Dr

(

i
√
Dr̂ − 2i�(i

√
Dζα) + i

√
Dr |α|2).

In parentheses on the bottom line is a nonzero (since α /∈ C) integer multiple of√
�‖(α, 1)‖. In particular, D|ζ − rα|2 is either at least D + √

D|�|‖(α, 1)‖|r | =
D(1+ d|r |) or at most D−√

D|�|‖(α, 1)‖|r | = D(1− d|r |). Thus if |r | < 1/d, the
distance between C and α is at least

∣

∣

∣

∣

∣

∣

∣

∣

ζ

r
− α

∣

∣

∣

∣

− 1

|r |
∣

∣

∣

∣

≥ 1

|r | min
(
√

1 + d|r | − 1,−√

1 − d|r | + 1
)

>

√
2 − 1

|r | > (
√
2 − 1)d.

On the other hand, if |r | ≥ 1/d then it is not possible for D|ζ − rα|2, which is
positive, to be at most D(1 − d|r |). So there is no need for the min function above.
The distance between C and α is at least

1

|r |
(
√

1 + d|r | − 1
)

=
√

d

|r |

(√

1

d|r | + 1 −
√

1

d|r |

)

≥ (
√
2 − 1)

√

d

|r | ,

where the last inequality uses |r | ≥ 1/d again. ��

5.2 Connectivity and the Class Group

Stange proved that O is Euclidean if and only if the Schmidt arrangement (or S1)
is topologically connected [27]. The relationship with Euclideaneity is extended to
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arbitrary SD in the author’s dissertation, where it is shown how each step in a pseudo-
Euclidean algorithm corresponds to one “step” along a chain of circles [21]. This
observation inspired a continued fraction algorithm in which the resulting approxi-
mations are chain intersection points from the “walk” through SD . The forthcoming
example surrounding Fig. 6 hints at the algorithm, but it is not stated here (see [22]).
The focus of this section is consequences of such pseudo-Euclideaneity for the class
group. This is to say that Theorem 5.12 and Corollary 5.13 should be thought of as
generalizations of the classical statement “Euclidean implies principal ideal domain.”

Lemma 5.7 Let M ∈ PGL2(K ). If α ∈ M̂R ∩ K then [(α, 1)] = [(M)d] for some
integral ideal d dividing (det M)/(M)2.

Proof Let M have entries as in (2). Any point in C ∩ K is of the form M(p/q) =
(α p + γ q)/(β p + δq) for some p/q ∈ ̂Q. Assuming p, q ∈ Z are coprime, we have
(det M)/(M) ⊆ (α p + γ q, β p + δq) ⊆ (M) by Lemma 3.10. Then setting d =
(α p+ γ q, β p+ δq)/(M) gives (det M)/(M)2 ⊆ d ⊆ O as well as [(M(p/q), 1)] =
[(α p + γ q, β p + δq)] = [(M)d]. ��

Note that the quotient of ideal classes corresponding to two points on the same
circle in SD is [d/d′] for some d, d′ ⊆ O with norms dividing D. This prompts the
next definition.

Definition 5.8 An arrangement A is rationally connected if for any C,C ′ ∈ A there
is a chain C = C0,C1, ...,Cn = C ′ ∈ A such that Ck−1 ∩ Ck ∩ ̂K �= ∅ for all k.

Proposition 5.9 The ideal classes covered by a rationally connected subset of SD

are contained in a single coset of the subgroup generated by ideal classes of primes
containing D.

Proof If H(D,�) = −1 then SD covers no points of ̂K by Lemma 3.7. The claim
holds vacuously in this case.

If H(D,�) = 1, then Theorem 3.11 says every circle in SD is of the form M̂R,
whereM ∈ PGL2(K ) and (det M)/(M)2 has norm D. ByLemma5.7, the ideal classes
covered by such a circle are contained in a single coset of the subgroup generated by
ideal classes of primes containing D. So our claim follows by induction on n from
Definition 5.8. ��
Proposition 5.10 The ideal classes covered by SD are contained in a single coset of
the subgroup generated by ideal classes of primes containing D�.

Proof As in the previous proof, we are done unless H(D,�) = 1. So fixC0 ∈ SD and
use Theorem 3.11 to writeC0 = M0̂R as usual. Let�� and�D� denote the subgroups
generated by ideal classes of primes containing� and D�. We claim every ideal class
covered by SD is in [(M0)]�D�.

Let C ∈ SD be arbitrary and write C = M̂R. All ideal classes covered by C are
in [(M)]�D by Lemma 5.7, so we will be done if we can show [(M)] ∈ [(M0)]�D�.
Let D0 = (det M0)/(M0)

2 and D = (det M)/(M)2. There are at most two ideals in
O above each prime in Z—a prime ideal and its conjugate—so ‖D0‖ = ‖D‖ implies
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D0 and D have the same set of prime ideal divisors up to conjugation. In particular,
there is some integral ideal a |D0 satisfying aD0 = aD. Now divide both sides of
[(det M)] = [(det M0)] by [D] to get [(M)]2 = [(M0)

2D0/D] = [(M0)
2a/a] =

[(M0)a]2. Thus [(M)] and [(M0)a] are in the same coset of the 2-torsion subgroup,
which is exactly ��. Finally, ‖a‖ | D gives [(M)] ∈ [(M0a)]�� ⊆ [(M0)]�D�. ��

Wewant to say something substantive about the size of the cosets in the two propo-
sitions above, but rational connectivity is not enough by itself. Let us show why with
an example.

Recall from Fig. 5 that S39 for Q(i
√
39) only covers one coset (out of two in this

case) of the 2-torsion subgroup of the class group—the bare minimum for any SD

when H(D,�) = 1 by Corollary 5.5. Nevertheless, it appears that every circle is
tangent to a larger one, and such intersections are in ̂K by Proposition 3.5.

Toprove thatS39 is indeed rationally connected,wewill show that eachC0 is tangent
to some C1 such that max ‖(α, 1)‖ among α ∈ C1 ∩ K is strictly larger than among
α ∈ C0 ∩ K (provided the latter is less than 1). This creates a chain C0,C1, ...,Cn ,
where Cn contains some α with ‖(α, 1)‖ = 1 (meaning α ∈ O). By Theorem 5.3, a
family at such an α contains a circle of curvature 0. All circles of curvature 0 meet at
the point at infinity, thereby proving rational connectivity.

Given some C0 ∈ S39 with nonzero curvature, let α ∈ C0 ∩ K be such that
‖(α, 1)‖ is maximal among such points. Using Lemma 5.2 we may write C0 = M̂R

for some M ∈ PGL2(Q(i
√
39)) with left-column entries α and 1, (M) = (α, 1), and

| det M |/‖(M)‖ = √
39. By right multiplying M by the appropriate upper-triangular

matrix in PSL2(Z), which does not affect (M) = (α, 1) by Lemma 3.10, we may
further assume that its right-column entries, say γ and δ, are in (M)(i

√
39).

For each λ ∈ O there is a circle tangent to C0:

Cλ = M

[

1 λ

0 1

]

̂R.

Note that M(λ/1) = (αλ + γ 1)/(1λ + δ1) ∈ Cλ. Also, by Lemma 3.10, (λ, 1) = O
implies (αλ + γ, λ + δ) ⊇ (det M)/(M) = (α, 1)(i

√
39). But γ, δ ∈ (α, 1)(i

√
39),

which justifies the second equality below:

∥

∥

∥

∥

(

αλ + γ

λ + δ
, 1

)∥

∥

∥

∥

= ‖(αλ + γ, λ + δ)‖
|λ + δ|2 = ‖(α, 1)(λ, i

√
39)‖

|λ + δ|2 . (10)

The norm above exceeds ‖(α, 1)‖ if and only if |λ + δ|2 < ‖(λ, i
√
39)‖. That is, we

win with C1 = Cλ if −δ is contained in the open disc centered on λ ∈ O with radius
squared ‖(λ, i

√
39)‖. Such discs cover the plane!..almost.

Our open discs leave holes (akin to “singular points” on the Ford domain for
PSL2(O) [29]), three of which can be seen along the vertical centerline of Fig. 6.
This image shows a fundamental region for (i

√
39). The holes occur at the two

cosets of (i
√
39) represented by (39 ± i

√
39)/4. We claim −δ cannot be such a

point, which would complete the argument that S39 is rationally connected. Note that
((39 ± i

√
39)/2, 2) is a prime over 2, which is not in a 2-torsion ideal class. On the
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Fig. 6 Discs centered on λ ∈ O of radius squared ‖(λ, i
√
39)‖

other hand, δ lies on the image of ̂R under the transpose of M . This is a circle in SD ,
implying (δ, 1) = (−δ, 1) is in a 2-torsion ideal class.

Although −δ cannot actually land on a hole, it can come arbitrarily close. Thus the
ratio of ‖(α, 1)‖ to the norm in (10) can be arbitrarily close to 1,making for a small gain
with our step fromC0 toC1 = Cλ. The problem is compounded by the fact thatC1 will
experience the same issue. The value of “−δ” will slowly inch away from the nearby
hole as we create the chainC0,C1, .... So while S39 may be rationally connected, there
is no bound on the chain length required to make significant progress toward reaching
a circle of curvature 0. Such is the insufficiency of rational connectivity, remedied
below.

Definition 5.11 An arrangement A is finitely connected if there is n ∈ N such that
any C ∈ A with nonzero curvature r has a chain C = C0,C1, ...,Cn ∈ A for which
Ck−1 ∩ Ck �= ∅ for all k and Cn has curvature magnitude at most |r |/2.

The Ck’s need not be distinct, meaning the chain can have length less than n. Also
remark that we do not require Ck−1 ∩ Ck ⊂ ̂K .

The proof that S4 for Q(i
√
39) in Fig. 3 is finitely (and rationally) connected pro-

ceeds by finding disc covers of C as in Fig. 6. In this case, however, three disc covers
must be computed since there are three integral ideals of norm 4. (For the previous
example, there is only one integral ideal of norm 39.) A nearly identical scenario is
worked out in detail (S4 for Q(i

√
31)) in the author’s dissertation [21].

Theorem 5.12 If SD is finitely connected, then it covers all of ̂K = K ∪ {∞}. In
particular, the class group is generated by ideal classes of primes with norm dividing
D�, and every ideal class in the principal genus contains an integral ideal of norm D.

Proof Suppose SD is finitely connected with chain lengths n as in Definition 5.11. We
will show that an arbitrary α ∈ K is covered by SD . Fix any C ∈ SD and τ ∈ C (in
K or not) which is not the point at infinity. Let vC = [ζ ζ r r̂ ].

Since 1 ∈ (α, 1), there are infinitelymany choices of coprime α0, β0 ∈ O satisfying
β0α − α01 = 1. Given such a pair, let M0 ∈ PSL2(O) be a matrix with left column
entries α0 and β0. Call its right column entries γ0 and δ0, and assume δ0 has minimal
magnitude in its coset modβ0 (achieved via right multiplication by the appropriate
upper triangular matrix). By Proposition 2.1, the curvature of M0C is 2�(ζβ0δ0) +
|β0|2r̂ + |δ0|2r . Our choice to make |δ0| minimal bounds this curvature in magnitude
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fromabove by c|β0|2 for some constant c independent ofβ0.Also, the distance between
M0C and α is at most |M0(τ ) − α| =

∣

∣

∣

∣

α0τ + γ0

β0τ + δ0
− α

∣

∣

∣

∣

≤
∣

∣

∣

∣

α0τ + γ0

β0τ + δ0
− α0

β0

∣

∣

∣

∣

+
∣

∣

∣

∣

α0

β0
− α

∣

∣

∣

∣

= 1

|β0(β0τ + δ0)| + 1

|β0| ,

which is bounded above by c′/|β0| for some constant c′ independent of β0.
Set d = √|�|‖(α, 1)‖/√D, just as in Proposition 5.6. First fixm ∈ N large enough

so that

c′ <
(
√
2 − 1)

√
2md

2
√
c

. (11)

Then fix M0 as above with β0 large enough so that

2m+1mn

c|β0| <
(
√
2 − 1)

√
2md

2
√
c

and
2m

c|β0|2 < d. (12)

Set C0 = M0C and let r0 be its curvature. Take a minimal-length chain of distinct
circles C0,C1, ...,C j ∈ SD such that |r j |, the curvature magnitude of C j , is at most
c|β0|2/2m . Since c is such that |r0| ≤ c|β0|2, we have j ≤ mn by finite connectivity.
The diameter of Ck if 0 ≤ k < j (if there is such an index) is less than 2(2m/c|β0|2)
by minimality of j . So the distance between C j and α is at most

| M0(τ ) − α| + 2m+1 j

c|β0|2 ≤ c′

|β0| + 2m+1mn

c|β0|2 <

(
√
2 − 1)

√

2md

c|β0|2 ≤ (
√
2 − 1)min

(

d,

√

d

|r j |

)

.

The middle inequality above uses (11) to bound its first summand and the first half of
(12) to bound its second summand. The last inequality above uses |r j | ≤ c|β0|2/2m
and the second half of (12). Thus α ∈ C j by Proposition 5.6.

The final two claims of the theorem are Proposition 5.10 and Corollary 5.5. ��
Besides Theorem 5.12, our number theory results had to assume that SD has

intersections in ̂K . It would be interesting to find a criterion that guarantees finite
connectivity and takes advantage of Definition 5.11 not requiring Ci−1 ∩ Ci ⊂ ̂K .
The author’s only known method for proving finite connectivity is the covering prop-
erty that S39 for Q(i

√
39) narrowly failed in Fig. 6. But this property may be stronger

than necessary as it also guarantees rational connectivity, which strengthens the con-
clusion of Theorem 5.12 as follows.

Corollary 5.13 If SD is finitely and rationally connected, then the class group is gen-
erated by ideal classes of primes with norm dividing D.

Proof We are combining Proposition 5.9 with Theorem 5.12. ��
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