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Abstract
We prove upper bounds on the graph diameters of polytopes in two settings. The first
is a worst-case bound for polytopes defined by integer constraints in terms of the
height of the integers and certain subdeterminants of the constraint matrix, which in
some cases improves previously known results. The second is a smoothed analysis
bound: given an appropriately normalized polytope, we add small Gaussian noise
to each constraint. We consider a natural geometric measure on the vertices of the
perturbed polytope (corresponding to the mean curvature measure of its polar) and
show that with high probability there exists a “giant component” of vertices, with
measure 1 − o(1) and polynomial diameter. Both bounds rely on spectral gaps—of a
certain Schrödinger operator in the first case, and a certain continuous time Markov
chain in the second—which arise from the log-concavity of the volume of a simple
polytope in terms of its slack variables.
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1 Introduction

The polynomial Hirsch conjecture asks whether the diameter of an arbitrary bounded
polytope P = {x ∈ R

d : Ax ≤ b} is at most a fixed polynomial in m and d (which,
since m > d is atmost a fixed polynomial in m). This conjecture is widely open, with
the best known upper bounds being (m − d)log2 d−log2 log d+O(1) ([31], see also [18,
33]) and O(m) for fixed d ([4, 19]); the best known lower bound is (1+ ε)m for some
ε > 0 when d is sufficiently large [25]. Given this situation, there has been interest in
the following potentially easier questions:

Q1. Assuming A, b have integer entries, bound the diameter of P in terms of their
size.

Q2. Assuming A, b are sampled randomly fromsomedistribution, bound the diameter
of P with high probability.

Progress on these questions [5, 6, 8, 9, 11, 12, 15, 29, 35] has relied mostly on tech-
niques from polyhedral combinatorics, integral geometry, probability, and operations
research (e.g., analysis of the simplex algorithm and its cousins).

On the other hand, the theory of mixed volumes of convex sets has developed
largely separately over the past century,with several celebrated achievements including
the Alexandrov–Fenchel inequality [1, 2] and more generally the Hodge-Riemann
relations for certain algebras associated with simple polytopes [20, 21, 32]. When
restricted to strongly isomorphic convex polytopes, the Alexandrov Fenchel inequality
is equivalent to a statement about the signature of a certain quadratic form.McMullen,
in his two articles [20, 21] greatly generalized this statement, leading to a geometric
interpretation of Stanley’s proof [30] of the g-conjecture, which concerns the face
numbers of simple polytopes.

One consequence of this theory is that a certain Schrödinger operator (weighted
adjacency matrix plus diagonal) associated with the graph of every bounded polytope
has a spectral gap [17] (see Definition 2.1 and Theorem 2.2). We use this fact to make
progress on Q1 and Q2. In the first setting, we show the following theorem, where
‖ · ‖∞ denotes the maximum magnitude entry of a matrix.

Theorem 1.1 Suppose P = {x ∈ R
d : Ax ≤ b} is a bounded polytope with integer

coefficients A ∈ Z
m×d , b ∈ Z

m such that every d × d minor of [A|b] has determinant
bounded by �. Then P has diameter

O(d2�‖A‖∞ · log(m‖A‖∞‖b‖∞�)) (1)

Theorem 1.1 follows from amore geometric result (Theorem 3.2) stated in terms of the
angles between the d − 2-faces of the polar of P , which is proven in Sect. 3. It may be
contrasted with the best previously known result of this kind due to [11], who achieved
a bound of O(d3�2

d−1), where �d−1 is the largest (d − 1) × (d − 1) subdeterminant
of A, in particular independent of b. The two bounds are incomparable in general,
but as � ≤ d‖b‖∞�d−1 it is seen that (1) is nearly linear in �d−1 whereas the
result of [11] is quadratic, which yields an improvement for large �d−1 (compared to
‖A‖∞, ‖b‖∞, logm). However, our diameter bound is nonconstructive whereas [11]
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show how to efficiently find a path between any two vertices of P; we refer the reader
to the introduction of that paper for a more thorough discussion of previous work in
this vein (originally initiated by [5, 14]). At a high level, the reason we are able to save
a factor of d in comparison with previous works is that they rely on combinatorial
expansion arguments, whereas we use spectral expansion, which is amenable to a
“square root” improvement using Chebyshev polynomials, first introduced in [28,
Thm. 3.1].

RegardingQ2, the study of diameters of randompolytopes beganwith the influential
work of Borgwardt [7, 8], who considered A with i.i.d. standard Gaussian entries
and b = 1. Borgwardt showed the following “for each” guarantee: for any fixed
objective functions c, c′ ∈ R

d , the combinatorial distance between the vertices x, x ′
of P maximizing 〈c, x, 〉, 〈c′, x ′〉 is at most O(d3/2

√
logm) in expectation, provided

m → ∞ sufficiently rapidly. This type of result was extended to the “smoothed unit
LP” model by Spielman and Teng in the seminal work [29]; in this model one takes

P = {x ∈ R
d : 〈x, v j 〉 ≤ 1} (2)

where v j ∼ N (a j , σ
2) for some fixed vectors a1, . . . , am normalized to have ‖a j‖ ≤

1. The original poly(m, d, σ−1) path length bound of [29]was improved and simplified
in [12, 13, 35]; a key ingredient in each of these results was a “shadow vertex bound”
analyzing the expected number of vertices of a two-dimensional projection of P . Note
that all of these results provide “for each” guarantees: at best they bound the distance
between a single pair of vertices, not between all pairs.

Our second contribution is to prove that for the smoothed unit LP model, most
pairs of vertices in P are polynomially (in m, d, σ−1) close with high probability,
where most is defined with respect to a certain locally defined measure on the vertices
known as the mean curvature measure χ2 in convex geometry (see [26, 27]; we recall
the definition in Sect. 4). In the language of random graph theory, this means that
the graph of P likely contains a “giant component” with respect to χ2 which is of
small diameter. Let χ2 denote the mean curvature measure on the facets of P◦, which
corresponds naturally to a measure on the set of vertices of P , denoted �, when P is
bounded and contains the origin.

Theorem 1.2 Assume P is a random polytope sampled from the smoothed LP model.
Then with probability at least 1 − 1/poly(m), for every ψ > 0 there is a subset
G := G(ψ) ⊂ � with χ2(G) ≥ (1 − ψ)χ2(�) such that the vertex diameter of G is
at most

O

(
poly(m, d)

σ 4ψ

)
. (3)

We prove Theorem 1.2 in Sect. 4.5, where we deduce it from a more refined theorem
(Theorem 4.1, which includes explicit powers of m, d) for a certain class of well-
rounded polytopes. The idea of the proof is to consider a certain continuous time
Markov chain whose states are the vertices of P . This chain automatically has a large
spectral gap by Theorem 2.2 and the main challenge is to bound its average transition
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rate. This is carried out in Sects. 4.2–4.4 and involves further use of the Alexandrov–
Fenchel inequalities, tools from integral geometry, Gaussian anticoncentration, and
an application of the shadow vertex bound of [12].

Remark 1.3 It was pointed out to us by an anonymous referee and by D. Dadush that
there is a ”folklore” result that the average distance between a random pair of vertices
(chosen by optimizing two uniformly random objective functions) of P as above is
polynomial inm, d, σ−1; this is seen by a Fubini type argument and the shadow vertex
bounds of [12, 13, 29, 35]. Our paper considers a different measure on the vertices,
and we are not aware of any relation between the two.

Remark 1.4 (Expansion of Polytopes) There has been a sustained interest in studying
the expansion of graphs of combinatorial polytopes beginning with [22] which con-
jectured that all 0/1 polytopes have expanding graphs. The recent breakthrough [3]
resolved this conjecture for the special case of matroid polytopes using techniques
related to high dimensional expanders and the geometry of polynomials, which may
be described as capturing “discrete log-concavity”. The present work, in contrast, uses
“continuous log-concavity” (stemming from the Brunn-Minkowski inequality) to con-
trol the spectral gaps of certain matrices associated with the graphs of polytopes with
favorable geometric properties.

We note that the Hirsch conjecture is already known to hold for 0/1 polytopes [23].

1.1 Preliminaries and Notation

We recall some basic terminology and facts regarding polytopes; the reader may con-
sult [27, Chap. 4] for a more thorough introduction.

We denote the convex hull of a set of points by conv(·) and its affine hull by aff(·).
Let P = {x ∈ R

d : Ax ≤ b} with A ∈ R
m×d , b ∈ R

m
>0 be a bounded polytope

containing the origin in its interior. Its polar is the polytope

P◦ = conv{b−1
j a j }mj=1 =: K ,

where aT1 , . . . , aTm are the rows of A.
A polytope in R

d is called simple if each of its vertices is contained in exactly d
(codimension-1) facets, and simplicial if each codimension-1 facet contains exactly
d vertices. Unless otherwise noted, “facet” refers to a codimension-1 facet. The polar
of a simple polytope is simplicial and vice versa.

The 1-dimensional faces of a polytope are called edges, and are all line segments
when it is bounded. The vertex diameter of a bounded polytope P is the diameter
of the graph of its vertices and edges. Two facets of a polytope are adjacent if their
intersection is a (d − 2)-face of the polytope. The facet diameter of a polytope K
is the diameter of the graph with vertices given by its facets and edges given by the
adjacency relation on facets. By duality, the vertex diameter of a simple polytope P
is equal to the facet diameter of P◦.
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We use dist(·, ·) to denote the Euclidean distance between two subsets of Rd , and

hdist(L, K ) := max

{
sup
x∈L

dist(x, K ), sup
y∈K

dist(y, L)

}

to denote the Hausdorff distance between two sets.
We use V (K [ j], L[d − j]) to denote the mixed volume of j copies of K and d − j

copies of L for convex bodies K , L ⊂ R
d . TheAlexandrov–Fenchel inequalities imply

that these are log-concave, in the sense that for j1, j2, j = β j1 + (1 − β) j2 integers
in {0, . . . , d} with β ∈ [0, 1] then

V (K [ j], L[d − j]) ≥ V (K [ j1], L[d − j1])β · V (K [ j2], L[d − j2])1−β. (4)

The above inequality follows from the usual form of the Alexandrov–Fenchel inequal-
ities in which j1, j and j2 are consecutive positive integers and β = 1

2 . We use C to
denote absolute constants whose value may change from line to line, unless specified
otherwise.

2 Eigenvalues of the Hessian and Spectral Gaps

In this section, we recall that a certain matrix associated with every bounded polytope
has exactly one positive eigenvalue.

Definition 2.1 (Formal Hessian) For K a bounded polytope containing the origin in
its interior with N facets labeled {1, . . . , N }, let H(K ) denote the N × N matrix with
entries

(H(K ))i j =
{
Fi j csc(θi j ) i �= j

−∑
k Fik cot(θik) i = j

(5)

where Fi j is the intersection of facets i and j , (and by abuse of notation is also used
to denote their d − 2-dimensional volume) and θi j is the angle between the vectors
normal to those faces, facing away from the origin.

When K is simple, H(K ) is the Hessian of the volume of K (c) = {x | Mx ≤ c}
with respect to the slack vector c > 0. (see [27, Chap. 4]). Log-concavity of the
volume implies that this Hessian has exactly one positive eigenvalue. Izmestiev [17]
has shown via an approximation argument that this remains true for the formal Hessian
of any polytope.

Theorem 2.2 (Theorem 2.4 of [17]) H(K ) has exactly one positive eigenvalue for
any bounded polytope K .

We include a self-contained proof of Theorem 2.2 in the Appendix of the arXiv version
of this paper [24] for completeness.1

1 Our proof yields a slightly stronger conclusion regarding continuity of the formal Hessian than [17].
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We will apply Theorem 2.2 to certain matrices derived from the formal Hessian
and the following diagonal scaling, which plays an important role in the remainder of
the paper.

Definition 2.3 Let K , Fi j , θi j be as in Definition 2.1. Then let D(K ) denote the N×N
positive diagonal matrix with entries (D(K ))i i = ∑

k Fik tan(θik/2). Note that θik �=
π whenever Fik = 0 since parallel facets of a convex polytope cannot intersect.

Lemma 2.4 (Spectral Gaps from Log-Concavity) Let K be a polytope and take H :=
H(K ), D := D(K ). Let L be the graph Laplacian with entries:

Li j =
{

−Fi j csc(θi j ) i �= j∑
k Fik csc(θi j ) i = j

. (6)

Then

1. D−1/2HD−1/2 has exactly one eigenvalue at 1 with the rest of the eigenvalues in
(−∞, 0]. The eigenvector corresponding to this eigenvalue is D1/21.

2. −D−1L has exactly one eigenvalue at zero, with the rest of the eigenvalues in
(−∞,−1]. The left corresponding to this eigenvalue is D1.

Proof Observe that H is “nearly” a graph Laplacian in the sense that:

H = −L + D (7)

where we have used the identity 1−cos θ
sin θ

= tan(θ/2). By Sylvester’s inertia law, the
signature of H matches that of

D−1/2HD−1/2 = −D−1/2LD−1/2 + I , (8)

which must therefore have exactly one positive eigenvalue by Theorem 2.2. However,
L � 0 and L1 = 0, so by Sylvester’s law −D−1/2LD−1/2 � 0 with at least one
eigenvalue equal to zero. Thus, D−1/2HD−1/2 has exactly one eigenvalue equal to
one, with eigenvector D1/21 and the rest of the eigenvalues nonpositive, establishing
the first claim. The second claim follows from (8) and the similarity of D−1L and
D−1/2LD−1/2. ��

3 Diameter in Terms of Angles and Bit Length

In this section we use the spectral gap bound of Lemma 2.4(1) to give a bound on
the diameter of a polytope specified by integer constraints. We begin by slightly gen-
eralizing the argument of [10, 28, 34], who used Chebyshev polynomials to control
the diameter of regular (nonnegative weighted) graphs in terms of their spectra, to
handle the matrix D−1/2HD−1/2 by appropriately controlling its negative entries and
top eigenvector.

123



Discrete & Computational Geometry

Lemma 3.1 (Diameter in terms of Spectrum) Let A be a weighted real symmetric
adjacency matrix (possibly with self-loops and negative weights) for a graph G on
N vertices. Suppose for some g > 0 there is exactly one eigenvalue of A at 1 + g
with corresponding unit eigenvector v, the smallest absolute entry of which is vmin.
Further suppose that the rest of the eigenvalues of A are in the interval [−1, 1]. Then
the diameter of G is at most

2 log(2N/v2min)√
g

.

Proof Note that if M ∈ span(I , A, . . . , Ak) then eTi Me j �= 0 implies that there is a
path in G from i to j of length at most k. To this end, consider Tk(A) where Tk is the
degree k Chebyshev Polynomial of the first kind. If we find that Tk(A) �= 0 entry-wise,
then we can conclude the diameter of G is at most k. Let

A = vvT (1 + g) +
N∑
i=2

uiu
T
i λi

be the spectral decomposition of A. Let | · | denote the entry-wise absolute value. Then

|Tk(A) − vvT Tk(1 + g)| =
∣∣∣∣

N∑
i=2

uiu
T
i Tk(λi )

∣∣∣∣ ≤
N∑
i=2

|ui uTi | |Tk(λi )| ≤
N∑
i=2

|uiuTi | ≤ N ,

since |Tk(x)| ≤ 1 on [−1, 1]. We would therefore have Tk(A) �= 0 entry-wise if N is
smaller then the smallest absolute entry of vvT Tk(1+ g), which is lower bounded by

v2minTk(1 + g) ≥ v2min

2

(
1 + g +

√
(1 + g)2 − 1)k ≥ v2min

2
(1 + √

2g

)k

.

It suffices to pick

k ≥ log(2N/v2min)

log(1 + √
2g)

,

which is implied by taking

k = 2 log(2N/v2min)√
g

and using log(1 + √
2 g) ≥ √

2 g − g + 2
√
2g3/3 ≥ √

g/2 for g(0, 1/2]; if g ≥ 1/2
we may replace A by A/2g (which does not violate the hypotheses of the Lemma)
and reach the desired conclusion.

��
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Theorem 3.2 Let P = {x ∈ R
d : Ax ≤ b} be a bounded polytope containing the

origin with m ≥ d, A ∈ Z
m×d , b ∈ Z

m. Assume all angles between pairs of adjacent
facets of Po are contained in [θ0, π − θ0] and let the magnitude of the largest d × d
subdeterminant of [A|b] be �. Then the vertex diameter of P is at most

3d logm + O (d log(d‖A‖∞‖b‖∞�))

sin(θ0/2)
.

Proof Put D := D(Po) and H := H(Po). By Lemma 2.4, D−1/2HD−1/2 is real
symmetric with one eigenvalue at 1 and the rest at most 0. We can bound its smallest
eigenvalue by using Lemma 3.3 and considering the similar matrix D−1H . We upper
bound the absolute row sum of the i th row of D−1H by

∑
j

|(D−1H)i j | ≤
∑

i∼ j Fi j csc(θi j )∑
i∼k Fik tan(θik/2)

+
∑

i∼ j Fi j | cot(θi j )|∑
i∼k Fik tan(θik/2)

≤ 2
∑

i∼ j Fi j csc(θi j )∑
i∼k Fik tan(θik/2)

.

Taking the supremum of the above expression gives

sup
i

2
∑

k Fik csc(θik)∑
k Fik tan(θik/2)

≤ sup
i∼ j

2 csc(θi j )

tan(θi j/2)
= sup

i∼ j
csc2(θi j/2).

Therefore by Lemma 3.3, the smallest eigenvalue of D−1H , and consequently of
D−1/2HD−1/2 is at least − csc2(θ0/2). Then

M = D−1/2HD−1/2 + csc2(θ0/2)I

csc2(θ0/2)

has exactly one eigenvalue at 1+csc2(θ0/2)
csc2(θ0/2)

= 1 + csc−2(θ0/2) with the rest contained

in the interval [0, 1]. We can apply Lemma 3.1 with g = csc−2(θ0/2) to obtain a
diameter of at most:

d log(m) + 2 log(v−1
min)

sin(θ0/2)
.

The eigenvector v corresponding to eigenvalue 1 + csc2(θ0/2) is simply 1T D1/2

normalized, so

vmin = mini (1T
√
D)i

||1T√
D||2

≥ 1√
N

√
mini Dii

maxi Dii
≥ 1√

N

mini
∑

k Fik tan(θik/2)

maxi
∑

k Fik tan(θik/2)

≥ sin2(θ0)

4N 3/2

mini, j Fi j
maxi, j Fi j

,
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where we used that θik ∈ [θ0, π − θ0] implies sin(θ0/2) ≤ tan(θik/2) ≤ 1
sin(θ0/2)

and

sin(x/2) ≥ sin(x)/2. Finally use N ≤ (m
d

) ≤ md/2 as well as the estimates from
Lemma 3.4 to see that

log(v−1
min) ≤ log(4N 3/2) + 2 log(2d‖A‖∞�)

+ d log(
√
d‖A‖∞) + d log d + 2d log(‖b‖∞)

≤ 2d log(m) + O(d log(d‖A‖∞‖b‖∞) + log(�)),

yielding the advertised bound. ��

Lemma 3.3 (Gershgorin’s circle theorem) The smallest (real) eigenvalue of M is at
least − supi

∑
j |Mi j |.

Lemma 3.4 (Worst Case Volumes and Angles) Let Po = conv(a1/b1, . . . , am/bm)

be a polytope where each ai/bi ∈ R
d is a vertex and ai ∈ Z

d , bi ∈ Z. Then:

1. The smallest co-dimension 2 face of Po has volume at least 1/(d!‖b‖2d∞), and the
largest co-dimension 2 face has volume at most (

√
d‖A‖∞)d .

2. If the largest d × d minor of [A|b] is bounded in magnitude by �, then the angle
between any two adjacent facets of Po satisfies csc(θ) ≤ 2d�‖A‖∞.

Proof Every co-dimension 2 face can be written as the convex hull of some subset of
size at least d − 1 of the vertices a1/b1, . . . , am/bm . Without loss of generality, say
that F = conv(a1/b1, . . . , ad−1/bd−1) is the smallest co-dimension 2 face. Then its
volume is:

Vol(conv(a1/b1, . . . , ad−1/bd−1)) = 1

(d − 2)!
√

| det(MT M)|

≥ 1

d!(b1 . . . bd−2)b
d−2
d−1

≥ 1

d!‖b‖2d∞
,

where M is the d × (d − 2) matrix whose i th column is ai/bi − ad−1/bd−1, and
we have used that the determinant of a nonsingular integer matrix is at least one. On
the other hand, Po is contained inside the �2 ball of radius d1/2‖A‖∞, and so each
co-dimension 2 face of Po is contained in a cross section of that ball, and consequently
has volume at most (

√
d‖A‖∞)d , establishing (1).

Regarding the angles, consider without loss of generality two adjacent facets
of Po, with vertices numbered so that F = conv(a1/b1, . . . , ad/bd) and F ′ =
conv(a2/b2, . . . , ad/bd , a j/b j ), j > d, and |b j | ≤ |b1|. Observe that the angle θ

between the normals to these adjacent facets satisfies:

csc(θ) = dist(a j/b j , F)

dist(a j/b j , aff(F))
.
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The numerator is at most the distance between a j/b j and any vertex of F , which is at
most

‖a1/b1 − a j/b j‖2 ≤ √
d

‖a1‖∞ + ‖a j‖∞
|b j | ≤ 2

√
d‖A‖∞
|b j | ,

by our choice of j . The denominator is given by

dist(a j/b j , aff(F)) ≥ dist((a j/b j , 1)
T , span(â1, . . . âd)) where âi := (ai , bi )

T ∈ R
d+1

= 1

|b j |‖eTj M−1‖

where M is the (d + 1) × (d + 1) matrix with columns (â1, . . . , âd , â j ), which must
be invertible since conv(a1/b1, . . . , ad/bd , a j/b j ) is a full dimensional simplex. By
the adjugate formula, the entries of M−1 are of magnitude at most �, so we have

dist(a j , aff(F)) ≥ 1√
d|b j |�

.

Combining these bounds and cancelling the |b j | yields

csc(θ) ≤ 2d‖A‖∞�,

establishing (3). ��
Finally, we can prove the bound advertised in the introduction.

Proof of Theorem 1.1 ApplyingTheorem3.2,Lemma3.4(2), and sin(x/2) ≥ sin(x)/2,
we find that the diameter of P is at most

O(d log(m‖A‖∞‖b‖∞�)) × d‖A‖∞�,

as advertised. ��

4 Smoothed Analysis

In this section we consider the “smoothed unit LP” model defined in (2). Suppose P0
is a fixed polytope specified as

P0 = {x ∈ R
d : 〈a j , x〉 ≤ 1, j ∈ [m]},

for some vectors ‖a j‖ ≤ 1, and consider the random polytope

P = {x ∈ R
d : 〈v j , x〉 ≤ 1},
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where v j = a j + g j for g j ∼ N (0, σ 2 Id) i.i.d spherical Gaussians. Denote the polars
of P0 and P by

K0 := P◦
0 = conv(a1, . . . , am) ⊂ Bd

2 ,

K := P◦ = conv(v1, . . . , vm).

Note that K is simplicial with probability one, so each of its k-dimensional faces
has exactly k + 1 vertices. We will use the notation FS := conv{v j : j ∈ S} to denote
faces of K andFk(K ) :=

{
S ∈ ( [m]

k+1

) : FS is a k − dimensional face of K
}
to denote

the set of all faces of K . The k-dimensional volume of a face FS, S ∈ Fk(K ) will
be denoted by |FS| or Volk(FS). We will often abbreviate FS∩T as FST for adjacent
S, T . For two S, T ∈ ([m]

d

)
, let θST ∈ (0, π) denote the angle between the unit

normals uS, uT to FS, FT , respectively; note that almost surely θST �= 0, π for every
S, T ∈ ([m]

d

)
.

We will pay special attention to the set of (d − 1)-faces of K , which we denote as

� := Fd−1(K ) ⊂
([m]

d

)
.

Define the measures χ2, π, δ : � → R≥0 by

χ2(S) :=
∑
T∈�

|FST |θST , (9)

π(S) :=
∑
T∈�

|FST | tan(θST /2), (10)

δ(S) :=
∑
T∈�

|FST | csc(θST ). (11)

It will be convenient to make two further technical assumptions on K0 and σ for
the proofs of our results; in Sect. 4.5 we will show that any instance of the smoothed
unit LP model may be reduced to one satisfying both assumptions with parameter

r = �(σm3), (12)

incurring only a poly(m) loss in the diameter. Let K ( j)
0 = conv(ai : i �= j) be the

polytope obtained from K0 by deleting vertex a j .

(R) Roundedness of Subpolytopes: There is an r ∈ (0, 1) such that for every j ≤ m
there is a vector v j ∈ R

d such that:

r Bd
2 + v j ⊂ K ( j)

0 .

(S) Smallness of σ :

α := 6σ
√
d logm < r/d2. (13)
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The main result of this section is the following “almost-diameter” bound with
respect to the measure π .

Theorem 4.1 Assume (S), (R). Then with probability at least 1 − C/m2, for every
φ > 0 there is a subset G := G(φ) ⊂ � with π(G) ≥ (1 − φ)π(�) such that the
facet diameter of G is at most Õ(m3d8/σ 2rφ).

Remark 4.2 The probability in Theorem 4.1 may be upgraded to 1 − m−c for any c
at the cost of an additional mc factor in the diameter bound, by applying Markov’s
inequality in the proof of Lemma 4.5 with a different threshold.

The proof of Theorem 4.1 relies on three properties of the (random) continuous
time Markov chain with state space � and infinitesimal generator2

Q := −D−1L, (14)

where L is as in (6). The corresponding Markov semigroup

P(t) := exp(−t D−1L), t ≥ 0,

has stationary distribution proportional to D1 = π(·) by Lemma 2.4(2); call the
normalized stationary distribution π(·) := π(·)/π(�)

The first property is that the stationary distribution π is (in a quite mild sense)
non-degenerate, with high probability. Apart from being essential in our proofs, this
relates the measure π to well-studied measures in convex geometry such as the surface
measure and mean curvature measure χ2(·), clarifying the meaning of Theorem 4.1.
The proof of Lemma 4.3 appears in Sect. 4.1.

Lemma 4.3 (Non-degeneracy of π ) Assume (S), (R). With probability at least 1 −
1/m2:

1. minS∈� π(S) ≥ πmin := C m−2d2r2

d3
.

2. cVold−1(∂K ) ≤ π(�) ≤ O(d3r−2)Vold−1(∂K ).

3. For every S ∈ �, χ2(S)/2 ≤ π(S) ≤ O(r−1)χ2(S).

The second property is that Q (almost surely) has a spectral gap of at least one,
by Lemma 2.4(2). This implies that the chain (14) mixes rapidly to π (in the sense of
continuous time) from any well-behaved starting distribution. In particular let us say
that a probability measure p on � is an M-warm start if

sup
S∈�

p(S)

π(S)
≤ M .

Let �2(π) denote the inner product space on defined on R
�, where the inner product

is given by 〈 f , g〉�2(π) := ∑
S∈� π(S) f (S)g(S), and let �1(π) be the corresponding

�1 space. Let � be the � × � diagonal matrix whose Sth diagonal entry is π(S). We
define the density of p with respect to π to be the the vector with entries p(S)

π(S)
. We

omit the proof of the following standard fact.

2 The reader may consult e.g. [16, Chap. 6] for an introduction to continuous time Markov processes.
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Lemma 4.4 (Warm Start Mixing) If p is M-warm, then for τ > 0, t = �(log(M/τ))

time, one has

||π − pP(t)||T V ≤ τ.

The third and final property is a bound on the rate at which the continuous chain
makes discrete transitions between states. Let Javg denote the average number of state
transitions made by the continuous time chain in unit time, from stationarity, and note
that

Javg =
∑

S∈� π(S)|Q(S, S)|∑
S∈� π(S)

=
∑

S∈� δ(S)∑
S∈� π(S)

as the diagonal entries of the generator Q are equal to−δ(S)/π(S). Themost technical
part of the proof is the following probabilistic bound.

Lemma 4.5 (Polynomial Jump Rate) Assume (S), (R). With probability at least 1 −
1/m2, the continuous time Markov chain defined by (14) satisfies:

Javg ≤ Õ(m3d6/σ 2r).

The proof of this lemma involves showing that the facets of K are well-shaped and
have non-degenerate angles between them in a certain average sense, and is carried
out in Sects. 4.2, 4.3, and 4.4.

Combining these ingredients, we can prove Theorem 4.1

Proof of Theorem 4.1 Let T be a fixed positive time to be chosen later. Consider the
continuous time chain (14), and for F ∈ � let the random variable J TF denote the
number of transitions in [0, T ]when the chain is started at F .With probability 1−1/m2

we have

∑
F∈�

π(F)EJ TF = T Javg ≤ Õ(m3d6/σ 2r) · T

by Lemma 4.5 so there is a facet F0 ∈ � satisfying

EJ TF0 ≤ Õ(m3d6/σ 2r) · T . (15)

By Lemma 4.3(1), the distribution δF0 concentrated on F0 is π−1
min-warm with proba-

bility 1 − 1/m2. Invoking Lemma 4.4 with starting distribution δF0 and parameters

T = O(log(1/πmin)) = Õ(d2 log(1/r)), M = π−1
min, τ = πmin/2

we have

‖π − δF0 P(T )‖T V ≤ πmin/2.
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Combining this with (15), we obtain a distribution on discrete paths γ in � (with
respect to the adjacency relation ∼) such that each path has source F0,

Elength(γ ) ≤ Õ(m3d6/σ 2r) · T ,

and the distribution of target(γ ) is within total variation distance πmin/2 of π . Letting

G = {target(γ ) : length(γ ) ≤ 2Elength(γ )/φ}

we immediately have that the diameter of G is at most

Õ(m3d6/σ 2r) · 2T /φ = Õ(m3d8/σ 2rφ)

and by Markov’s inequality π(G) ≥ 1 − φ, as desired. ��
Before proceeding with the proofs of Lemmas 4.3 and 4.5, we collect the proba-

bilistic notation used throughout the sequel. We will often truncate on the following
two high probability events. Fix

ε := m−5d (16)

and define:

B :=
{

min
S∈([m]

d ), j∈[m]\S
dist(v j , aff(FS)) ≥ ε

}
,

C :=
{
max
j∈[m] ‖g j‖ ≤ α

}
.

Note that whenever σ > m−d (which we may assume without loss of generality, as
otherwise the diameter is trivially at most 1/σ ):

P[B] ≥ 1 − O(m−4d/σ) ≥ 1 − 1/m3, (17)

since the density of the component of v j orthogonal to aff(FS) is bounded by 1/σ and
there are at most md facets. We also have

P[C] ≥ 1 − 1/m3, (18)

by standard Gaussian concentration and a union bound.
We will repeatedly use that on C, we have the Hausdorff distance bounds

hdist(K , K0) ≤ α, hdist(K ( j), K ( j)
0 ) ≤ α ∀ j ≤ m, (19)

for α as in (13), since if x = ∑
j≤m c j (a j + g j ) ∈ K for some convex coefficients c j

then x0 = ∑
j≤m c ja j ∈ K0 and ‖x − x0‖ ≤ α.
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For an index j ∈ [m] let ĝ j := (g1, . . . , g j−1, g j+1, . . . gm) and let K ( j) =
conv(vi : i �= j). Note that K ( j) is a deterministic function of ĝ j . Define the indicator
random variables

KS := {FS ∈ Fd−1(K )}, K ( j)
S := {FS ∈ Fd−1(K

( j))}

for subsets S ∈ ([m]
d

)
. It will be convenient to fix in advance a total order < on

([m]
d

)
.

We will occasionally refer to

∑
F∈Fk(K )

Volk(F)

as the k-perimeter of K .

4.1 Nondegeneracy of�

Wewill repeatedly use the following fact relating Hausdorff distance and containment
of convex bodies.

Lemma 4.6 (Containment of Small Perturbations) If hdist(K , K0) ≤ α < r
2 for any

two convex bodies and r Bd
2 ⊂ K0, then

(1 + 2α/r)−1K0 ⊂ K ⊂ (1 + α/r)K0.

Proof The second containment is immediate from

K ⊂ K0 + αBd
2 ⊂ K0 + (α/r)K0.

The condition hdist(K , K0) ≤ α also implies K0 ⊂ K + αBd
2 . To turn this into

a multiplicative containment, we claim that (r/2)Bd
2 ⊂ K . If not, there is a point

z ∈ ∂(r/2)Bd
2 \K . Choose a halfspace H supported at z containing K . Let y be a

point in ∂(r Bd
2 ) at distance at least r/2 from H and note that y ∈ K0. But now

dist(y, K ) ≥ dist(y, H) ≥ r/2 > α, violating that K0 ⊂ K + αBd
2 . Thus, we

conclude that K0 ⊂ (1 + 2α/r)K , establishing the first containment. ��
Proof of Lemma 4.3 Condition on C. By (S), (R), (19), and Lemma 4.6, we have

K ⊃ (1 + 2/d2)−1K0 ⊃ (r/2)Bd
2 , (20)

and also K ⊂ (1 + α)Bd
2 . Consequently, the angle between any two adjacent facets

FS, FT of K must satisfy

|θST − π | = �(1/r),

which implies

θST /2 ≤ tan(θST /2) ≤ O(1/r)θST (21)
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for all θST . Thus, for each facet S ∈ �:

χ2(S)/2 ≤ π(S) ≤ O(r−1)χ2(S), (22)

establishing Lemma 4.3(3).
Equation (20) further implies:

|∂K |
|K | ≤ 2d

r
.

By e.g. [27, Sect. 4.2], we have the quermassintegral formulas:

d · V (K [d − 1], Bd
2 [1]) =

∑
S∈�

|FS| = |∂K |, (23)

(
d

2

)
V (K [d − 2], Bd

2 [2]) =
∑

S<T∈�

|FST |θST . (24)

By the Alexandrov–Fenchel inequality with β = 1/2:

χ2(�) =
(
d

2

)
V (K [d − 2], Bd

2 [2]) ≤
(
d

2

)
V (K [d − 1], Bd

2 [1])2
V (K [d])

≤
(
d

2

) |∂K |2
|K |

≤ O(d3)
|∂K |
r

≤ O(d3/r)|∂K |.

By Alexandrov–Fenchel with β = 1/(d − 1), we also have

χ2(�) =
(
d

2

)
V (K [d − 2], Bd

2 [2]) ≥
(
d

2

)
V (K [d − 1], Bd

2 [1]) d−2
d−1 V (Bd

2 [d]) 1
d−1

=
(
d

2

) (
d−1|∂K |

) d−2
d−1 |Bd

2 | 1
d−1

≥
(
d

2

)√
2πe

d3
|∂K | d−2

d−1

≥ C |∂K |.

The last step follows from the fact that K ⊂ (1+α)Bd
2 so |∂K | 1

d−1 = O(1). Combining
these inequalities with (21),(22), we conclude that:

C |∂K | ≤ π(�) ≤ O(d3r−2)|∂K |, (25)

establishing Lemma 4.3(2).
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The event B implies that for every S ∈ �:

π(S) =
∑
T∼S

|FST | tan(θST /2)

≥ Cε
∑
T∼S

|FST | since tan(θST /2) ≥ Cε

≥ Cε(d − 1)|FS| d−2
d−1 |Bd

2 | 1
d−1 by the isoperimetric inequality

≥ Cεd|FS|,

where in the last step we used |FS| = O(1). Conditional on B Lemma 4.7 implies

that |FS| ≥ εd−1

d for every S ∈ �, so we conclude that

π(S) ≥ Cεd ∀S ∈ �,

and consequently by (25)

π(S) ≥ Cεdr2

d3
,

yielding Lemma 4.3(1), as desired. ��

Lemma 4.7 (Inradius of a Simplex) If L = conv(v1, . . . , vt+1) is a t-dimensional
simplex such that each vertex of L is at distance s from the affine span of the remaining
vertices, then L contains a ball of radius s/(t + 1).

Proof We see that the distance of the centroid
∑t+1

i=1 vi
t+1 of the simplex from any face is

at least s
t+1 , proving the lemma. ��

4.2 Average Jump Rate Bound

In this section we establish the following Lemma, which immediately implies Lemma
4.5 by P[BC] ≥ 1 − 2/m3 and Markov’s inequality applied to the expectation below
(absorbing the log(m) factor into the Õ).

Lemma 4.8 (Main Estimate) Assume (S), (R) in the above setting. Then

E

∑
S∈� δ(S)∑
S∈� π(S)

· BC ≤ Õ(m3d6/σ 2r). (26)
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Fig. 1 Proof of Lemma 4.9

Proof

E

∑
S∈� δ(S)∑
S∈� π(S)

· BC ≤ O(1) · E
∑

S∈� δ(S)

Vold−1(∂K0)
· BC

by (25) and (20)

= O(1)

Vold−1(∂K0)

× E

⎡
⎢⎣C ·

∑
S<T∈([m]

d )

B|FST | csc θST KSKT KST

⎤
⎥⎦

≤ O(1) · O(d logm/σ)

Vold−1(∂K0)
E

⎡
⎢⎣C ·

∑
S<T∈([m]

d )

|FST |K (S\T )
ST

⎤
⎥⎦

by Lemma 4.9

≤ O(1) · O(d logm/σ)

Vold−1(∂K0)
E

⎡
⎢⎣C ·

∑
j≤m

∑
S<T∈([m]

d )

|FST |K ( j)
ST

⎤
⎥⎦

≤ O(1) · O(d logm/σ)

Vold−1(∂K0)

× O(m2d9/2 log5/2(m)/σr)
∑
j≤m

Vold−1(∂K
( j)
0 )

by Lemma 4.10

≤ O(1) · O(d logm/σ)

Vold−1(∂K0)

× O(m2d9/2 log5/2(m)/σr) · mVold−1(∂K0) since K ( j)
0 ⊂ K0

≤ m · O(1) · O(d logm/σ) · O(m2d9/2 log5/2(m)/σr),

implying the desired conclusion. ��

Lemma 4.9 (Angles Large On Average) For every S, T ∈ ([m]
d

)
with S\T = { j}:

E

[
B|FST | csc θST KST

∣∣∣∣ĝ j ,C

]
≤ O(d logm/σ) · E

[
|FST |K ( j)

ST

∣∣∣∣ĝ j ,C

]
. (27)
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Proof By trigonometry,

csc θST = dist(v j , aff(FST ))

dist(v j , aff(FT ))
≤ 3

dist(v j , aff(FT ))
,

conditional on C, since K has diameter at most 2 + 2α ≤ 3. The distance in the
denominator can be rewritten as

dist(v j , aff(FT )) = dist(g j + a j , aff(FT )) = dist(g j , aff(FT ) − a j ) = |h j − xT |

where h j = 〈g j ,mT 〉 and xT = dist(0, aff(FT ) − a j ) ≤ 4 for mT the unit normal to
aff(FT ). Moreover,

|FST |KST ≤ |FST |K ( j)
ST

with probability one conditional on ĝ j since S ∩ T ∈ Fd−2(K ) implies S ∩ T ∈
Fd−2(K ( j)) as j /∈ S ∩ T . Combining these facts, the left hand side of (27) is at most

E

[
B|FST |K ( j)

ST
3

dist(v j , aff(FT ))

∣∣∣∣ĝ j ,C

]
= 3|FST |K ( j)

ST E

[
B

1

|h j − xT |
∣∣∣∣ĝ j ,C

]
,

Notice that h j has density on R bounded by

t �→ 1√
2πσ

e−t2/2σ 2 1

P[‖g j‖ ≤ α] ≤ 1

σ
,

and ε ≤ |h j − xT | ≤ |h j | + xT ≤ 4 + α < 5 conditioned on B,C, so the last
conditional expectation is at most

3
∫ 5

ε

1

σ t
dt = 2(log(1/ε) + log 5)/σ ≤ O(d logm/σ),

completing the proof. ��
The most technical part of the proof is the following (d − 2)-perimeter estimate,
whose proof is deferred to Sect. 4.3. The conceptual meaning of this estimate is that
on average, the (d − 2)-dimensional surface area of a random facet of K ( j) is well-
bounded by its (d − 1)-dimensional volume.

Lemma 4.10 (Codimension 2 Perimeter versus Surface Area) Assume (R), (S). For
every j ∈ [m]:

EC
∑

S<T∈([m]
d )

|FST |K ( j)
ST ≤ O(m2d9/2 log5/2(m)/σr) · Vold−1(∂K

( j)
0 ).
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4.3 Proof of Lemma 4.10

The key step in the proof is to show that for any well-rounded polytope L0, there a
distribution on two-dimensional planes W such that the (d − 2)-perimeter of every
nearby polytope L is accurately reflected in the average number of vertices ofW ∩ L .
Since this number of vertices is small in expectation by [12], we can then conclude
that the codimension 2 perimeter is small.

In this section and the next only, the variable ε will refer to a quantity tending to
zero (as opposed to the definition (16)).

Lemma 4.11 (Quadrature by Planes) Let r1Bd
2 ⊂ L0 ⊂ r2Bd

2 . There there is a proba-
bility distribution on two dimensional planes W in Rd such that for sufficiently small
ε > 0 the following holds uniformly over every polytope L with at most md facets
satisfying

hdist(L, L0) ≤ η <
r1
2d

: (28)

every (d − 2)-dimensional disk Sε of radius ε contained in the interior of a (d − 2)-
dimensional face of L satisfies

Vold−1(∂L0) · P[W ∩ Sε �= ∅] ≥ �

(
r1

d3/2(r2 + η)

)
· Vold−2(Sε).

Moreover, for every (d−2)-dimensional affine subspace H ⊂ R
d ,P[W∩H > 1] = 0.

The proof of Lemma 4.11 is deferred to Sect. 4.4.
We rely on the following result of Dadush and Huiberts [12, Thm. 1.13] (they prove

something a little stronger, but we use a simplified bound).

Theorem 4.12 (Shadow Vertex Bound) Suppose W is a fixed two dimensional plane
and Q = conv{v1, . . . , vm} where vi ∼ N (ai , σ 2 I ) with ‖ai‖ ≤ 1.Then

E[|F0(W ∩ Q)|] = O(d2.5 log2(m)/σ 2). (29)

Combining these two ingredients, we can prove Lemma 4.10.

Proof of Lemma 4.10 Fix j ≤ m and recall that r Bd
2 ⊂ K ( j)

0 ⊂ Bd
2 by (R). Condi-

tioning on C, we also have hdist(K ( j), K ( j)
0 ) ≤ α. Thus we may invoke Lemma 4.11

with L0 = K ( j)
0 , L = K ( j), r1 = r , r2 = 1, and η = α = �(σ

√
d logm) to obtain a

probability measure ν on two dimensional planes W ⊂ R
d with the advertised prop-

erties; note that crucially W depends only on K0 and is independent of K . Let Iε be
a maximal collection of disjoint (d − 2)-dimensional disks Sε of radius ε, with each
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Sε contained in some (d − 2)-face of L . Notice that

∫
dν(W )E

∑
S<T∈([m]

d )

[C{|W ∩ FST | �= 0}K ( j)
ST ]

= E

∑
S<T∈([m]

d )

∫
dν(W )C{|W ∩ FST | �= 0}K ( j)

ST

≥ E

∑
S<T∈([m]

d )

∫
dν(W )C

∑
Sε∈Iε

{|W ∩ Sε | �= 0}K ( j)
ST

by the “Moreover” part of Lemma 4.11

≥ EVold−1(∂L0)
−1�

(
r1

d3/2(r2 + η)

)
·
⎡
⎢⎣C

∑
S<T∈([m]

d )

|FST |K ( j)
ST

⎤
⎥⎦

by Lemma 4.11, choosingε � 1

The integrand in the first expression above above is at most

m2 · E[F0(W ∩ K )C]

since each set in
( [m]
d−2

)
appears as the intersection of at most m2 adjacent pairs

S, T . Therefore by Theorem 4.12 the first expression above is bounded above by
O(m2d5/2 log2(m)/σ 2). Rearranging yields

E

⎡
⎢⎣C

∑
S<T∈([m]

d )

|FST |K ( j)
ST

⎤
⎥⎦ ≤ O(m2d2.5 log2(m)/σ 2)

×O(d3/2σ
√
d logm/r)Vold−1(∂K

( j)
0 ),

implying the desired conclusion.

4.4 Proof of Lemma 4.11

We provide an explicit construction for the distribution ofW . Let L̃ = L0+2ηBd
2 and

note that its boundary ∂ L̃ is smooth; let ψ be the d − 1-dimensional surface measure
on ∂ L̃ . This equals both the d −1 dimensional Hausdorff measure and the Minkowski
content of ∂ L̃ . Then let W = V + a where a is a point sampled according to ψ , and
V is sampled by taking the span of two Gaussian vectors (or any radially symmetric
random vectors). In order to compute P(V + a ∩ Sε �= ∅), it will help to first reduce
it to the related probability P(W ′ ∩ Sε �= ∅) for W = V + a′ where a′ is sampled
uniformly from the unit ball which shares a center with Sε . In particular, let x be the
center of Sε and denote Bx = Bd

2 + x . Let ψ ′ be the d − 1-dimensional Hausdorff
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measure on ∂Bx . Then we will reduce to the case of P(V +a′ ∩Sε �= ∅) for a′ sampled
according to ψ ′. For any z, define the radial projection �z by

�z(y) = y − z

‖y − z‖ + z.

Note that �x is a bijection between ∂ L̃ and ∂Bx since every ray originating from x
intersects ∂ L̃ in exactly one point because x is in the interior of L̃ , which is convex.

Claim 4.13 The push-forward of ψ by �x is absolutely continuous with respect to ψ ′
with Radon-Nikodym derivative

d(ψ ◦ �−1
x )(a′)

dψ ′(a′)
= sin φ

‖x − a‖d−1 , a′ = �x (a) ∈ ∂Bx

where φ is the angle in [0, π ] between the tangent plane to ∂ L̃ at a and the line segment
xa.

Proof An explicit Jacobian calculation given the definition of �x and smoothness of
∂ L̃ gives the result. ��
Lemma 4.14 Let z /∈ aff(Sε) be a point such that �z is injective on Sε . Let V be a
random two-dimensional subspace. Then

P(V + z ∩ S �= 0) = μ(�z(S))/Ad−2

where μ is the Hausdorff measure of �z(aff(S)) and Ad−2 = μ(�z(aff(S))) (half the
surface area of Sd−2).

Proof Since aff(Sε) misses z, we have that aff({z} ∪ Sε) is d − 1 dimensional. On the
other hand,�z is smooth and injective on aff(Sε) so�z(Sε) itself is d−2 dimensional.
Condition on (V + z) �⊂ aff({z}∪ S), which occurs with probability 1. Then (V + z)∩
aff({z} ∪ S) is a line through z. By symmetry, the intersection of that line with Bd

2 + z
will be a uniformly random antipodal pair. Exactly one point from each pair will fall
in �z(aff(S)). Thus, the event we care about is the event that y ∈ �z(S) where y is
sampled uniformly from μ. ��
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The following Lemma takes a and a′ to be fixed, and depends only on the randomness
of V .

Lemma 4.15 Let a be a point not in aff(Sε) and a′ = �x (a). Let θ be the angle
between Sε and the ray emanating from a through x. Then, for a uniformly random
2-plane V ,

P(V + a ∩ Sε �= ∅) = Vold−2(Sε)

Ad−2

cos θ

‖x − a‖d−2 (1 + O(dε))

and

P(V + a′ ∩ Sε �= ∅) = Vold−2(Sε)

Ad−2
(cos θ)(1 + O(dε)).

where the convergence is uniform in a, a′. In particular, the ratio of the above two
quantities is ‖x − a‖d−2.

Proof We apply Lemma 4.14 twice, both times with Sε playing the role of S. The first
time we take a to play the role of z, and the second time a′. This gives

P(V + a ∩ Sε �= ∅) = μa(�a(Sε))/Ad−2 and

P(V + a′ ∩ Sε �= ∅) = μa′(�a′(Sε))/Ad−2

where μa, μa′ are the Hausdorff measures on �a(aff(Sε)),�a′(aff(Sε)) respectively.
Let μ′ be the surface measure on aff(Sε). Then the Radon-Nikodym derivatives of μ′
and the pull-backs of μa and μa′ are

d(μa ◦ �a)(y)

dμ′(y)
= cos θay

‖y − a‖d−2 and
d(μa′ ◦ �a′)(y)

dμ′(y)

= cos θa
′

y

‖y − a′‖d−2

where θay , θa
′

y are the angles between Sε and the rays from a, a′ to y respectively. This
allows us to compute

μa(�a(Sε)) = (μa ◦ �a)(Sε) =
∫
Sε

cos θay

‖y − a‖d−2 dμ(y)

= Vold−2(Sε)
cos θax

‖x − a‖d−2 (1 + O(dε)).

The same is true for a′ in place of a. Note that θa
′

x = θax = θ , and that ‖x − a′‖ = 1.
That gives the desired result. ��
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Lemma 4.16 (Reduction to ∂Bx ) Let W be as above and let W ′ be a uniformly random
two dimensional plane through a uniformly random point a′ chosen from ∂Bx . Then
for sufficiently small ε > 0 (depending only on L0):

Vold−1(∂ L̃)P[W ∩ Sε �= ∅] ≥ r1
8(r2 + η)

Vold−1(∂Bx )P[W ′ ∩ Sε �= ∅]

Proof Note that a, a′ miss aff(Sε) with probability 1, so we implicitly condition on
that event in the following.

Vold−1(∂ L̃)P[W ∩ Sε �= ∅]
=

∫
P[W ∩ Sε �= ∅∣∣a]dψ(a)

=
∫

P[W ∩ Sε �= ∅∣∣a′ = T (a)]d(ψ ◦ �−1
x )(a′) by invertibility of �x (4.13)

=
∫

P[W ∩ Sε �= ∅∣∣a′] sin φ

‖x − a‖d−1 dψ ′(a′) by Claim 4.13

≥
∫ (

P[W ′ ∩ Sε �= ∅∣∣a′](1/2)) sin φ

‖x − a‖dψ ′(a′) by Claim 4.15,

for sufficiently small ε

≥ r1
8(r2 + η)

∫
P[W ′ ∩ Sε �= ∅∣∣a′]dψ ′(a′) = r1

8(r2 + η)
Vold−1(∂Bx )P[W ′ ∩ Sε �= ∅],

where in the final inequality we have used ‖x − a‖ ≤ 2(r2 + η) and sin φ ≥ r1
4r2

because L̃ ⊃ L ⊃ (r1 − η)Bd
2 ⊃ (r1/2)Bd

2 and L̃ ⊂ (r2 + η)Bd
2 ⊂ 2r2Bd

2 . ��
Lemma 4.17 (Intersection Probability for ∂Bx )

P
(
W ′ ∩ Sε �= ∅) = Vold−2(Sε)

Ad−2

Cd√
d

(1 + O(dε))

for some constant Cd = �(1) depending on d.

Proof Using iterated expectation, we can write

P
(
W ′ ∩ Sε �= ∅) = E

(
P

(
W ′ ∩ Sε �= ∅ : a′))

where the outer expectation is over the randomness of a′ and inner probability over
V . The inner probability is given by 4.15 as

Vold−2(Sε)

Ad−2
cos(θa

′
x )(1 + O(dε)).

The only dependence on a′ is in cos(θa
′

x ). However, by symmetry of the distribution
of a′, θa′

x might as well measure the angle between a uniform random vector selected
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from ∂Bx and any fixed line. Thus

E[cos θa
′

x ] = Cd/
√
d,

for some constant Cd = �(1) depending on d. ��
We can now complete the proof of Lemma 4.11. Combining Lemmas 4.16 and

4.17, we have for sufficiently small ε > 0:

Vold−1(∂ L̃)P[W ∩ Sε] ≥ r2
2r1η

Vold−1(∂Bx ) · �(1)√
d Ad−2

Vold−2(Sε)

= �

(
r1

d3/2(r2 + η)

)
Vold−2(Sε)

since Vold−2(∂Bx )/Ad−2 = 2π/d, as desired.

4.5 Removing Assumptions (S),(R)

In this section we explain how any instance of the smoothed unit LP model may
be reduced to one for which (S), (R) hold with parameter (12), incurring only a
polynomial loss in m.

Proof of Theorem 1.2 The idea is to add the noise vector g j as the sum of two inde-
pendent Gaussians g j,1 ∼ N (0, σ 2

1 ) and g j,2 ∼ N (0, σ 2
2 ) with σ1 guaranteeing

roundedness and σ2 supplying the necessary anticoncentration and concentration for
the main part of the proof. Given σ < 1/d, set

σ1 = m8σ2

and σ 2
1 + σ 2

2 = σ 2 and let K1 be equal to K0 perturbed by g1 only. Applying Lemma

4.18 to each K ( j)
0 and taking a union bound, we have

K ( j)
1 ⊃ r Bd

2 ∀ j ≤ m, r = �(σm−5) = �(σ2m
3),

with probability 1 − O(m−2). Since σ < 1/d, another union bound reveals that

K1 ⊂ 2Bd
2

with probability 1−O(m−2); let K2 = K1/2. Now K2 is an instance of the smoothed
unit LP model, (K2, σ2) satisfy (R) with r = �(σ2m3) = �(σ/m5), and

6
√
d logmσ2 = o(r/m2),

so (K2, σ2) also satisfy (S), establishing (12) with the role of (K0, σ ) now played by
(K2, σ2).

123



Discrete & Computational Geometry

Invoking Theorem 4.1, we conclude that with probability 1 − 1/m2, for every
φ ∈ (0, 1) there is a subset G ⊂ � with π(G) ≥ (1 − φ)π(�) and facet diameter

Õ(m3d8/(σ/m8)2(σ/m5)φ) = poly(m, d)/σ 3φ.

Moreover, by Lemma 4.3(3), we have

χ2(G) ≤ 2π(G) ≤ 2φ · π(�) ≤ φ · O(m5/σ)χ2(�),

so we conclude that χ2(G) ≥ (1 − ψ)χ2(�) for ψ = O(m5φ/σ). Rewriting the
diameter bound in terms of ψ yields the desired conclusion. The probability may be
upgraded to 1 − 1/poly(m) by Remark 4.2.

Lemma 4.18 (Roundedness of Smoothed Polytopes) Suppose we have m ≥ d + 1
points a1, . . . , am ∈ R

d , and these are perturbed to v1, . . . , vm by adding independent
g j ∼ N (0, σ 2

1 Id) to each respective a j . Then, with probability at least 1 − O(m−3),
the convex hull K of v1, . . . , vm contains a ball of radius rin ≥ �(σ1m−5).

Proof Without loss of generality, taking the first d + 1 points ai , we may assume that
m = d + 1. Then K is the convex hull of d + 1 points v1, . . . , vd+1. The probability
that the affine span of these points equals Rd is 1. Let rin be the inradius of K ; by
Lemma 4.7, we have

rin ≥ mini dist(vi , aff(Fi ))

d + 1
.

Let us now fix an i and obtain and obtain a probabilistic lower bound on dist(vi ,aff(Fi ))
d+1 .

Reorder the points (if necessary) so that i = d + 1. It now follows that given the the
affine span A of the points v1, . . . , vd and given ad+1, the distribution of dist(vd+1, A)

is the same as the distribution of |g̃ + dist(ad+1, A)|, where g̃ ∼ N (0, σ 2
1 ) has the

distribution of a one dimensional Gaussian with variance σ 2
1 . However, the probability

that |g̃+dist(ad+1, A)| is less than σ1m−4 is at most O
(
m−4

)
. Therefore, by the union

bound,

P

[
min
i

dist(vi , aff(Fi )) > σd−4
]

> 1 − O(m−3).

It follows that

P

[
rin >

σm−4

d + 1

]
> 1 − O(m−3),

as desired. ��
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