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Abstract
We describe a polynomial time algorithm that takes as input a polygon with axis-
parallel sides but irrational vertex coordinates, and outputs a set of as few rectangles
as possible into which it can be dissected by axis-parallel cuts and translations. The
number of rectangles is the rank of theDehn invariant of the polygon. The samemethod
can also be used to dissect an axis-parallel polygon into a simple polygon with the
minimum possible number of edges. When rotations or reflections are allowed, we
can approximate the minimum number of rectangles to within a factor of two.

Keywords Orthogonal polygons · Dissection · Dehn invariant · Tensor rank

Mathematics Subject Classification 52B45 · 52C20

1 Introduction

Problems of rearranging polygonal shapes into simpler shapes, such as orthogonal
polygons into rectangles, havemany applications in such varied topics as VLSI design,
DNAmicroarray layout, image processing, radiation therapy planning, and robot self-
assembly [3, 7–9, 14, 18, 20, 24]. One way to do this, but not the only way, is by
subdivision. Slicing an orthogonal polygon horizontally through each vertex partitions
it into rectangles, but may use more rectangles than necessary. Instead, an algorithm
based on bipartite matching can find a partition into a minimum number of rectangles
in polynomial time, even for polygons with holes. The algorithm finds axis-parallel
segments throughpairs of non-convex vertices, constructs a bipartite intersection graph
of these segments, and uses the fact that in bipartite graphs, maximum independent
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Fig. 1 Left: Dissection of a Greek cross into a rectangle, using only axis-parallel cuts and translation of
pieces. Right: Dissection into a square using non-axis-parallel cuts [10]

sets can be found using maximum matchings. Slicing along a maximum independent
set of segments, with additional slices through each non-convex vertex missed by the
independent set, produces a set of as few rectangles as possible [8, 9, 21, 23].

In this work, we study an analogous problem of rectangle minimization for a dif-
ferent class of rearrangement methods, in which we allow sliced pieces to be rejoined.
Slicing a polygon into pieces and rejoining them into another polygon is called dissec-
tion. Potentially, dissection can produce many fewer rectangles, but it is not obvious
how to choose the dissection operations in such a way to produce as few rectangles as
possible. For example, the Greek cross of Fig. 1 requires three rectangles when par-
titioned, but has a three-piece dissection into one rectangle, as shown. In fact, every
polygon (orthogonal or not) can be dissected into every other polygon of the same
area; this is the Wallace–Bolyai–Gerwien theorem [2, 11, 15, 29]. Therefore, a dissec-
tion into a single rectangle always exists. However, this dissection may rotate pieces
and use non-axis-aligned cuts, both of which are unnatural for orthogonal polygons.
Instead, we ask: if we consider dissections that use only axis-parallel slices, transla-
tions, and rejoining of the sliced pieces, without rotations, how few rectangles can
we dissect a given shape into? For instance, the figure demonstrates that the answer
for the Greek cross is one: it can be dissected into a single rectangle. We call this
restricted class of dissections orthogonal dissections. As defined, these do not allow
90◦-rotations, but we will also consider an extended class of dissections in which
rotation (or equivalently reflection across a diagonal reflection line) is allowed; we
call these orthogonal dissections with rotation.

Polyominoes (edge-to-edge unions of unit squares), such as the Greek cross of the
figure, always have an orthogonal dissection into one rectangle. Simply subdivide a
given polyomino into its constituent squares, let n be the number of squares obtained
in this way, and rearrange and join them into a 1 × n rectangle. To make the problem
less trivial, we consider in this work polygons with irrational coordinates. As we will
see, for these polygons, an orthogonal dissection into a single rectangle may not exist.
To address the computational issues that this entails, we assume that all coordinates
are presented as rational linear combinations of a rational basis, a set of real numbers
for which no nontrivial rational linear combination sums to zero.

A key technical tool that we use for analyzing dissections, following previous work
along the same lines, is the Dehn invariant. The Dehn invariant is a value living in
an infinite-dimensional tensor space, usually used for three-dimensional polyhedral
dissection problems. One polyhedron can be dissected into another if and only if they
have the same volumes and Dehn invariants, and a polyhedron can be dissected to tile
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space if and only if its Dehn invariant is zero [4, 6, 17, 28]. Another version of the
Dehn invariant has also been used for orthogonal dissection of rectangles to rectangles,
in order to prove that such a dissection exists if and only if the two rectangles have
equal areas and rationally related sides [1, 5, 26, 27]. For instance, because the Greek
cross of Fig. 1 (scaled to form a pentomino, with side length one) has an orthogonal
dissection into a rectangle with dimensions 2 × 2 1

2 , it cannot also be orthogonally

dissected into a
√
5×√

5 square. (Instead, it can be dissected into a square using only
two straight but not axis-parallel cuts [10].)

1.1 New Results

Our main result is an algorithm that takes as input an orthogonal polygon with coor-
dinates given in terms of a rational basis, that computes the minimum number of
rectangles into which it can be dissected, and that constructs a family of rectangles of
that minimum size into which it may be dissected (Theorem 8.2). The algorithm runs
in time proportional to its input size (the number of points multiplied by the cardinality
of the basis), in a model of computation in which rational arithmetic operations take
constant time (as detailed in Sect. 2). As we also show, this has strong implications
for the possibility of dissecting a polygon into a prototile that can tile the plane: such
a dissection exists if and only if the minimum number of rectangles is one or two
(Theorem 9.1).

To prove this, we extend the two-dimensional Dehn invariant from rectangles to
orthogonal polygonsmore generally.We show that it is a complete invariant for orthog-
onal dissection: two orthogonal polygons have a dissection into each other if and only
if they have the same Dehn invariant (Theorem 7.1). The Dehn invariant determines
the area of a polygon, and (unlike the polyhedral Dehn invariant) whenever a value in
the space of Dehn invariants has a positive area associated with it, it can be realized
by an orthogonal polygon (Lemma 6.1). The key insight leading to our rectangle-
minimization algorithm is that, as order-two tensors, Dehn invariants have significant
structure beyondmerely being equal or unequal to each other or zero. In particular, like
matrices, they have a rank, and this rank is geometrically meaningful. We prove that,
for the orthogonal Dehn invariant, the rank equals the minimum number of rectangles
that can be obtained from an orthogonal dissection (Theorem 8.1). As we show, the
same method can also be used to dissect a given axis-parallel polygon into a simple
polygon with as few edges as possible (for polygons formed by orthogonal dissec-
tion). For a polygon whose Dehn invariant has rank r , and whose minimum number
of rectangles is r , the minimum number of edges equals 2r + 2 (Observation 8.3).

To extend these results to orthogonal dissections with rotation, we define a new
symmetrized form of the Dehn invariant that is an invariant for this more general class
of dissections. Its rank can differ from the rank of the Dehn invariant for dissections
without rotation by an arbitrarily large factor. In this case, we do not have an efficient
algorithm for the minimum number of rectangles into which we can dissect a given
polygon, but we can describe a formula for it in terms of the minimum rank in a family
of matrices having the same symmetrization. Additionally, as we show, the rank of
the symmetrized Dehn invariant approximates the minimum number of rectangles to
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within a factor of two, providing a polynomial time approximation algorithm with
approximation ratio two.

For the Dehn invariant of polyhedra, we do not have as precise a relation, but
the rank of the Dehn invariant (if nonzero) provides a lower bound on the minimum
number of edges in a polyhedron to which the given polyhedron can be dissected, and
also on the minimum number of tetrahedra into which it can be dissected.

2 Model of Computation

The main objects of study in this work are the following:

Definition 2.1 We define an orthogonal polygon to be a bounded region of the
plane whose boundary consists of finitely many axis-parallel line segments, allow-
ing polygons with holes. We do not generally require this region to be connected or
simply-connected; when we do, we call it a simple polygon. A vertex of a polygon is
an endpoint of one of these line segments.

We may represent these by specifying the coordinates of each vertex. Because the
problems we consider are nontrivial only for polygons with irrational coordinates, it
is necessary to say something about how those coordinates are represented and how
we compute with them.

Definition 2.2 We define a rational basis to be a system of finitely many real numbers
that is linearly independent over Q. This means that, if a linear combination of basis
elements with rational-number coefficients adds to zero, all coefficients must be zero.

This is just the standard notion of a basis in linear algebra, applied to systems of
real numbers that form vector spaces over the rational numbers. At most one member
of a rational basis can be a rational number, because any two rational numbers p and
q have a rational combination 1

p p − 1
q q summing to zero. In general we allow either

different bases for the x-coordinates and the y-coordinates (an x-basis and a y-basis)
or a single combined basis; when we consider dissections with rotation, a combined
basis will bemore convenient.We require each vertex coordinate of a given orthogonal
polygon to be a rational linear combination of basis elements, represented as a vector
of rational-number coefficients, one for each basis element. The size of the input is
the number of rational coefficients needed to describe all of the polygon vertices: the
product of the number of vertices with the sum of the sizes of the x-basis and y-basis.

To compute the minimum number of rectangles in an orthogonal dissection, no
additional information about the basis elements is necessary. Our algorithm for this
version of the problem uses only rational-number arithmetic, and performs a polyno-
mial number of arithmetic operations: essentially, only Gaussian elimination applied
to a matrix whose coefficients are quadratic combinations of input coefficients. How-
ever, we need additional assumptions that allow computation with basis elements in
order to verify that the input describes a polygon without edge crossings, or to con-
struct the rectangles into which it can be dissected. To do these things, we need the
following additional primitive operations:
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• Find the sign of a rational combination of basis elements (that is, determinewhether
this value is positive, negative, or zero), or the sign of a rational combination of
products of x-basis elements and y-basis elements.

• Given any two rational combinations of basis elements, or of products of x-basis
elements and y-basis elements, find a rational number between them.

We are not aware of past use of this specific computational model. However, exact
computation using algebraic numbers is common in computational geometry imple-
mentation libraries [19, 22], and it is standard to represent such numbers as rational
combinations of roots of a Galois polynomial, a special case of a rational basis. We
have chosen the model described above in order to be able to state our results in a more
general model that does not specify the algebraic nature of the numbers. In this way,
the algorithms can apply as well to coordinates involving transcendental numbers such
as π and e, as long as the primitive operations are available for these coordinates.

3 The Orthogonal Dehn Invariant

The key tool for our results on orthogonal polygon dissection is the Dehn invariant,
which we first define in a basis-specific way as follows.

Definition 3.1 In terms of the given rational basis, the Dehn invariant D(P) of an
orthogonal polygon P can be described as a matrix of rational numbers, with rows
indexed by y-basis elements and columns indexed by x-basis elements, constructed
as follows:

• Express the given polygon as a linear combination of rectangles Ri . For instance,
if coordinate comparisons are available, we may slice the polygon horizontally
through each non-convex vertex. If comparisons are unavailable, we may instead
choose the line through one horizontal side as a base and consider the family of
signed rectangles between each other horizontal side and this base line.

• Express the width wi and height hi of each rectangle Ri as a linear combination
of basis elements with rational coefficients. The width is the difference of x-
coordinates of right and left sides of the rectangle, the height is the difference of y-
coordinates of top and bottom sides, and the difference of two linear combinations
of basis elements produces another linear combination.

• Construct a matrix Mi , the outer product of the expressions for wi and hi . The
coefficient of this matrix, for the column corresponding to an x-basis element
x j and the row corresponding to a y-basis element yk , is a rational number, the
product of the coefficient of x j in wi and the coefficient of yk in hi .

• The Dehn invariant of the polygon is the sum of matrices
∑

i Mi .

For example, for the blue polygon in Fig. 2 and the rational basis {1, 21/3, 22/3},
this definition would yield as the Dehn invariant the matrix

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ ,
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Fig. 2 Three rectangles with dimensions 22/3 × 1, 21/3 × 21/3, and 1 × 22/3 (yellow), and a polygon
formed by gluing them together (blue)

as can be seen from its dissection into yellow rectangles in the figure. Each yellow
rectangle has a width and a height that is one of the basis elements, so it contributes
a single 1 coefficient to the total. The sum of the three 1 coefficients, from the three
yellow rectangles, is the matrix above.

Instead of using a specific basis, one can describe the same thing in a basis-free
way by writing that the Dehn invariant is an element of the tensor product ofQ-vector
spaces R⊗Q R, and can be determined as a sum of elements of this tensor product1:

D(P) =
∑

i

hi ⊗ wi .

It is an invariant of P , in the sense that its value (either thought of as a matrix for a
specific basis or as a tensor) does not depend on the decomposition into rectangles
used to compute it, and remains unchanged under orthogonal dissections; see Sect. 4.

In contrast to the polyhedral Dehn invariant, the area of an orthogonal polygon P
can be recovered from its Dehn invariant under any basis, as the sum

∑

j

∑

k

D(P)k j x j yk

of products of matrix coefficients, x-basis elements, and y-basis elements. In this
sense, it is meaningful to speak of the area of a Dehn invariant, rather than the area of
a polygon.

4 Invariance of the Dehn Invariant

Previous works on the orthogonal Dehn invariant only appear to have considered it
with regard to rectangles, rather than for orthogonal polygons more generally [1, 5,

1 The Dehn invariant is often written as an element of a tensor product of abelian groups, rather than of
vector spaces, using the notation R ⊗Z R or, for the polyhedral invariant, R ⊗Z R/Z. The group notation
makes more sense for some contexts; for instance, it works for the polyhedral invariant in hyperbolic or
spherical geometry, where linear scaling of polyhedra is not possible. But for our use of tensor rank, vector
space notation is more convenient. For the equivalence of matrices and tensors see [13].
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Fig. 3 Illustration for Lemma 4.1: subdividing a rectangle into a grid of smaller rectangles does not change
its Dehn invariant

26, 27]. Generalizing this past work, we prove here that it is an invariant of orthogonal
polygons under dissection. Throughout this section, we use the abstract tensor space
formulation of the orthogonal Dehn invariant; everything carries directly over to the
formulation in any particular basis, according to standard principles on the invariance
of linear algebra under different choices of basis.

Lemma 4.1 Let R be a rectangle with height h and width w. Suppose R is subdivided
arbitrarily by vertical and horizontal lines into a rectangular grid of smaller rectangles
of heights h j and widths wk , as depicted in Fig.3. For all such subdivisions, h ⊗ w =∑

h j ⊗ wk .

Proof This follows immediately from the facts that
∑

h j = h and that
∑

wk = w,
and from the bilinearity of tensors. ��

Lemma 4.2 Let P be any orthogonal polygon. Then regardless of how P is subdivided
into rectangles Ri of height hi and width wi , the value

∑
hi ⊗ wi will be unchanged.

That is, D(P) = ∑
hi ⊗ wi is well-defined as an invariant of P.

Proof Consider any two different subdivisions into rectangles Ri and R′
i , and refine

both subdivisions into a common subdivision by extending vertical and horizontal
lines through all vertices of both Ri and R′

i . By Lemma 4.1, this refinement does not
change the sum over the rectangles in either subdivision. Because both of the sums
coming from the initially given subdivisions are equal to the sum coming from their
common refinement, they must be equal to each other. ��

Lemma 4.3 If two orthogonal polygons P and P ′ are related by an orthogonal dis-
section, then D(P) = D(P ′). That is, the Dehn invariant remains invariant under
orthogonal dissections.

Proof We can refine any orthogonal dissection into a dissection for which all pieces
are rectangles, and use those rectangles to calculate D(P) and D(P ′). Translating a
rectangle obviously does not change its height or width, so the result follows from
Lemma 4.2. ��
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5 The Rank of the Dehn Invariant

Any tensor has a rank, the minimum number of terms needed to express it as a sum of
tensor products. The Dehn invariants we are considering are order-two tensors over
the field of rational numbers, and for any order-two tensor over any field, the rank of
the tensor equals the rank of any matrix representing it for any basis over that field.
As the rank of a matrix, it equals the minimum number of terms in an expression
of the matrix as a sum of outer products of vectors [13]. Therefore, the rank of the
Dehn invariant is just the rank of the matrix computed in Sect. 3. It does not depend on
the basis chosen to construct this matrix, and it can be computed using any standard
algorithm for matrix rank, such as Gaussian elimination.

If an orthogonal polygon P has an orthogonal dissection into r rectangles with
height hi and width wi , we have seen that its Dehn invariant can be expressed as

D(P) =
r∑

i=1

hi ⊗ wi .

This is an expression as a sum of r products, so the Dehn invariant has rank at most r .
Conversely, if an orthogonal polygon P has a Dehn invariant with rank r , then it has
an expression of exactly this form. However, not all terms of such an expression may
be interpreted as describing rectangles. To come from a rectangle, a term hi ⊗ wi

must have hi · wi > 0, in which case it can come from any rectangle of height q · |hi |
and width |wi |/q for any positive rational number q. All of these different rectangles
produce the same value hi ⊗ wi . But if the product hi · wi is a negative number, then
hi ⊗ wi cannot be the Dehn invariant of a rectangle or of any polygon, because it
would have negative area. For this reason, the rank of the Dehn invariant is a lower
bound on the number of rectangles that can be obtained in an orthogonal dissection,
but it requires an additional argument to prove that these two numbers are equal.

6 Geometric Realizability

In the case of the polyhedral Dehn invariant, not every tensor in the space describing
these invariants comes from the Dehn invariant of a polyhedron. There exists a surjec-
tive homomorphism of groups from the tensor space R⊗Z R/Z onto the group �1

R/Q

of Kähler differentials, such that the tensors coming from Dehn invariants are exactly
those mapped to the group identity. The preimages of nonzero Kähler differentials
are tensors that do not come from Dehn invariants [6]. In contrast, for the orthogonal
Dehn invariant, the only obstacle to geometric realizability is area:

Lemma 6.1 Let D = ∑r
i=1 hi ⊗ wi be a tensor of rank r in R ⊗Q R, and suppose

that the putative area a(D) = ∑r
i=1 hi · wi is positive. Then D is the Dehn invariant

of a disjoint union of r rectangles.

Proof Partition the range of indices [1, r ] into two subsets I + and I −, where i ∈ I +
if hi ·wi > 0 and in i− otherwise. (Because each term contributes to the rank, it is not
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y = 0
x = 0 x = α

y = 1
y = 1 – ε

y = 1 + ε

Fig. 4 Illustration for Lemma 6.1: realizing each term in a tensor by a rectangle of height near one, forming
the difference of the positive and negative rectangles, and repartitioning the result into rectangles, produces
a set of r rectangles having a given Dehn invariant of rank r

possible for hi ·wi to equal zero.) Let a+ = ∑
i∈I + hi ·wi and a− = −∑

i∈I − hi ·wi ,
so that a(D) = a+ −a−. By assumption this is positive. We may assume without loss
of generality that both sets of indices are non-empty: I + non-empty is needed to make
a(D) positive, and if I − is empty then we can represent D using the disjoint union of
rectangles of height |hi | and width |wi | without any additional construction. We can
find two rational numbers α and ε > 0 such that a− < α < a+, with a− < α(1 − ε)

and a+ > α(1+ ε).2 These numbers are illustrated with the dashed blue axis-parallel
lines in Fig. 4.

Let A be a rectangle with unit height and with width α. For each index i ∈ I +, find
a positive rational number qi such that 1 < qi · |hi | < 1+ ε, and construct a rectangle
of height qi · |hi | and width |wi |/qi , whose Dehn invariant is hi ⊗wi . Arranging these
rectangles side by side on a common baseline produces an orthogonal polygon P+
whose height varies between 1 and 1+ε, whose area is a+, and whose Dehn invariant
is

∑
i∈I + hi ⊗wi . In order to achieve area a+ with height everywhere less than 1+ ε,

P+ must have width greater than a+/(1 + ε) > α, so it completely covers A. These
side-by-side rectangles are shown in yellow in the top part of Fig. 4.

In the same way, for each index i ∈ I −, find a positive rational number qi such
that 1 − ε < qi · |hi | < 1, and construct a rectangle of height qi · |hi | and width
|wi |/qi , whose Dehn invariant is−hi ⊗wi . Arranging these rectangles side by side on
a common baseline produces an orthogonal polygon P− whose area is a− and whose
Dehn invariant is −∑

i∈I − hi ⊗ wi , entirely within A, the red rectangles in the top
part of Fig. 4.

2 Computationally, this uses the assumption from our model of computation that we can find a rational
number between two products of combinations of basis elements.
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Arranging P+ and P− so they share the same bottom left vertex, and computing the
set-theoretic difference P+ \ P−, produces a polygon P whose Dehn invariant is D.
It can be sliced vertically at each vertex whose x-coordinate is intermediate between
its smallest and largest x-coordinate, as shown in the bottom part of Fig. 4. There are
r − 1 slices (one for each side where two rectangles from I + meet, and one for each
left side of a rectangle from I −), so the result is a set of r rectangles with total Dehn
invariant D, as required. ��

7 Dissectability

Long after the work of Dehn, Sydler proved that the polyhedral Dehn invariant is a
complete invariant: any two polyhedra with the same volumes and Dehn invariants can
be dissected to each other [28]. We need an analogous result for the orthogonal Dehn
invariant. We do not bound the number of pieces in a dissection. It is not possible to
bound this number of pieces by any function of the number of input vertices, because
even the trivial dissection of a 1×n rectangle into an n ×1 rectangle requires n pieces,
a number that can be made arbitrarily large while keeping the number of input vertices
constant.

Theorem 7.1 Any two orthogonal polygons with the same Dehn invariant have an
orthogonal dissection.

Proof We may assume without loss of generality that the two polygons P1 and P2
have already been dissected into (different) disjoint sets of rectangles R1 and R2.
We use induction on the size of rational bases for the heights and widths of these
rectangles (which may be a superset of a basis for the Dehn invariant). As a base case,
if these bases have size one, all rectangles have heights and widths that are rational
multiples of each other. In this case we can scale the x and y coordinates separately to
clear denominators in these coordinates and make all rectangle side lengths integers,
allowing a dissection using unit squares.

Otherwise, by the symmetry of heights and widths, we can assume without loss of
generality that the y-basis has at least two elements; let ŷ be one of them. For each
rectangle in R1 and R2, of width wi and height hi let qi be the coefficient of ŷ in the
expansion of hi as a rational combination of basis elements. Whenever qi 	= 0, apply
the base case of the theorem (for the one-element bases {wi } and {hi }) to dissect that
rectangle into another rectangle of width qi · wi and height hi/qi . After this step, for
all rectangles in R1 and R2, the coefficient of ŷ in the rectangle height belongs to
{−1, 0, 1}. Let R+

i be the rectangles in Ri for which this coefficient is 1, R−
i be the

rectangles for which it is−1, and R0
i be the rectangles for which it is 0. By composition

of dissections, a dissection of these modified sets of rectangles into each other will
lead to a dissection of P1 and P2 into each other.

For each of P1 and P2, translate the rectangles of R+
i so they are placed side by

side, with their bottom sides all placed on the x-axis, with the left side of the leftmost
rectangle placed on the y-axis. Similarly translate the rectangles of R−

i so they are
side by side, with their top sides all placed along the x-axis, and again with the left
side of the leftmost rectangle placed on the y-axis. Let ε be the smallest height of any
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Fig. 5 Illustration for Theorem 7.1. The horizontal red lines are (from top to bottom) y = ε+, y = 0, and
y = −ε−; the vertical lines are (left to right) x = 0 and x = min{c+

i , c−
i }. Slicing the rectangles in R+

i
(yellow) and R−

i (blue) by these lines dissects them into a family of rectangles whose heights do not depend
on ŷ (the bottom blue and yellow rectangles) together with a single rectangle whose coefficient of ŷ is ±1
(red)

rectangle in either R1 or R2. Choose two numbers 0 < ε+ < ε and 0 < ε− < ε,
so that both of these numbers are expressible as a rational combination of elements
of the y-basis, with the coefficient of ŷ in ε+ equal to 1 and the coefficient of ŷ in
ε− equal to −1. (The ability to make this choice hinges on the fact that the rational
multiples of any remaining basis element are dense in the real number line.) Let c+

i be
the x-coordinate of the right end of the rightmost rectangle in the placement of R+

i ,
and define c−

i symmetrically.
Now that the rectangles have been placed in this way, slice them by the horizontal

lines y = ε+ and y = −ε−. This leaves a hexagonal region between these two
lines, which we dissect into two rectangles by slicing it with the vertical line x =
min{c+

i , c−
i } (two different lines, one for R1 and the other for R2). The dissection is

shown in Fig. 5.
The rectangles in R0

i , the remaining parts of rectangles in R+
i above the line x = ε+,

and the remaining parts of rectangles in R−
i below the line x = ε−, all have heights

whose rational expansion in terms of the y-basis does not use ŷ. The rectangle to the
left of the vertical slice line, and between the two horizontal slice lines, has height
ε+ +ε−; here, the coefficients of ŷ cancel leaving a rectangle height whose expansion
in terms of the basis does not use ŷ. This leaves all dependence on ŷ concentrated in
one remaining rectangle, to the left of the vertical slice line, with height ε+ or ε− and
width |c+

i − c−
i |. Let ŵi denote this width.

Because all remaining pieces except this rectangle have heights that do not depend
on ŷ, it follows that the coefficients of D(Pi ), in the row of the coefficient matrix
corresponding to basis element ŷ, are exactly the coefficients in the rational expansion
of ŵi for a rectangle of height ε+, or the negation of those coefficients for a rectangle
of height ε−. By the assumption that D(P1) = D(P2), these matrix coefficients must
be equal. The widths ŵ1 and ŵ2 of the rectangles can be recovered, up to their signs,
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as the number represented by these coefficients using the y-basis. It is not possible for
the two signs to be different, because both ŵ1 and ŵ2 are non-negative. Therefore,
the two remaining rectangles must both have the same height, ε+ or ε−, and the same
width, ŵ1 = ŵ2, and need no more dissection to be transformed into each other.

We have shown that P1 and P2 can be dissected into two congruent rectangleswhose
height expansion uses ŷ, and into a larger number of additional rectangleswhose height
expansion does not use ŷ. These remaining rectangles have a smaller basis for their
heights and (because we have removed a congruent rectangle from each polygon) have
equal Dehn invariants. The result follows from the induction hypothesis. ��

8 Putting the Pieces Together

We are now ready to prove our main results:

Theorem 8.1 The minimum number of rectangles into which an orthogonal polygon
can be dissected by axis-parallel cuts and translation equals the rank of its orthogonal
Dehn invariant.

Proof This number of rectangles is lower-bounded by the rank, by the discussion in
Sect. 5. If the rank is r , then there exists a set of r rectangles with the same invariant as
the polygon, by Lemma 6.1. The given polygon can be dissected into these rectangles,
by Theorem 7.1. ��
Theorem 8.2 We can compute the minimum number of rectangles into which an
orthogonal polygon can be dissected, given a representation for its coordinates over
a rational basis, in a polynomial number of rational-arithmetic operations. We can
construct a minimal set of rectangles into which it can be dissected, in a polynomial
number of operations using arithmetic over the given rational basis.

Proof To compute the rank, we compute the Dehn invariant as described in Sect. 3,
and apply any polynomial-time algorithm for computing the rank of a rational-number
matrix, such asGaussian elimination. To construct the rectangles,we follow the steps in
the proof of Lemma 6.1, which uses only a polynomial number of operations involving
comparing linear combinations of basis elements and finding rational approximations
to them. ��

We remark that, as well as counting rectangles, the rank of the orthogonal Dehn
invariant can also count edges:

Observation 8.3 Let r be the minimum number of rectangles into which a given orthog-
onal polygon has an orthogonal dissection and let s be the minimum number of edges
of a polygon into which it has an orthogonal dissection. Then s = 2r + 2, and there
exists a simple polygon with s edges into which it has an orthogonal dissection.

Proof In one direction, suppose that a given orthogonal polygon has an orthogonal
dissection into r disjoint rectangles. Line up these rectangles with a common baseline,
side by side, and glue them together, producing a simple polygon with at most 2r + 2
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Fig. 6 Construction of a non-periodic tiling from an arbitrary dissection into rectangles

edges. Therefore, s ≤ 2r + 2, and a simple polygon with ≤ 2r + 2 edges can be
produced by an orthogonal dissection.

In the other direction, suppose that we can dissect the given orthogonal polygon
into an orthogonal polygon with s edges, by an orthogonal dissection. Because edges
of orthogonal polygons alternate between horizontal and vertical, s must be even, with
s/2 horizontal edges. Each x-coordinate of a horizontal edge is shared by the next hori-
zontal edge along the boundary of the polygon, so theremust also be atmost s/2distinct
x-coordinates. Among these, at most s/2 − 2 are non-extreme (neither the minimum
nor the maximum coordinate value). Cutting the polygon by vertical lines through
these non-extreme coordinates, and gluing together the rectangular pieces obtained
within each resulting vertical slab between two such lines, produces a dissection into
s/2 − 1 rectangles, so r ≤ s/2 − 1. Equivalently, 2r + 2 ≤ s. ��

9 Dissection into Prototiles

Another use of the polyhedral Dehn invariant, besides dissection of one shape into
another, involves tiling. Any polyhedron that tiles space must have Dehn invariant
zero, and any polyhedron with Dehn invariant zero can be dissected into a different
polyhedron that tiles space. For the axis-parallel polygonal Dehn invariant we study,
things don’t work out quite so neatly. The Greek cross can tile, but has nonzero Dehn
invariant. More, any axis-parallel polygon can be cut into multiple rectangles, and
these can tile space (non-periodically) by grouping them into rows of the same type
of rectangle (Fig. 6). So the Dehn invariant cannot be used to prove that such a thing
is impossible, because it is always possible. If we could rotate pieces, we could also
rearrange certain sets of more than two rectangles, such as the three rectangles of
Fig. 2, into a single-piece axis-parallel hexagon that could tile the plane periodically
(Fig. 7).

However, for the orthogonal dissections considered here, without rotation, the rank
of theDehn invariant does produce a limitation on the ability to tile periodicallywithout
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Fig. 7 With orthogonal rotations of pieces, the polygon of Fig. 2 can be dissected to form the prototile of a
periodic tiling of the plane

rotation. Here, we follow Grünbaum and Shephard [12] in defining a periodic tiling
to be a tiling that has a two-dimensional lattice of translational symmetries. For some
other authors, this would be called a 2-periodic tiling, to distinguish it from tilings
that have one-dimensional but not two-dimensional translational symmetry; we do not
make this distinction.

Theorem 9.1 An orthogonal polygon P, or any finite number of copies of P, has an
orthogonal dissection to a prototile that can tile the plane periodically if and only if
the rank of its Dehn invariant is at most two.

Proof If the rank of the Dehn invariant is one, P can be dissected to a rectangle,
which tiles periodically. If the rank is two, P can be dissected into two rectangles, and
reassembled into a hexagon, which (like the prototiles of Fig. 7) tile periodically.

Combining n copies of P multiplies the Dehn invariant by the scalar n, which does
not change the rank. Every periodic tiling of the plane has a fundamental region in
the shape of an axis-parallel hexagon, like the prototiles of Fig. 7. (Because it tiles by
translation, this fundamental region may combine a finite number of prototiles of the
tiling.) If copies of P could be dissected to the prototile of a tiling, they could also be
dissected to this fundamental region, which has Dehn invariant at most two. ��

In particular, as a shapewhoseDehn invariant has rank three, the orthogonal polygon
of Fig. 2 has no orthogonal dissection to a prototile for a periodic tiling of the plane.

10 Orthogonal Dissections with Rotation

In this section we extend the notion of an orthogonal dissection to allow 90◦ rotations,
or equivalently reflections across a linewith slope±1. These twonotions are equivalent
because, for any orthogonal dissection, we can subdivide the pieces of the dissection
into rectangles, for which these rotations and reflections have the same effect.

Definition 10.1 If P is any orthogonal polygon, let PT denote the reflection of P
across a line of slope −1. We call PT the transpose of P by analogy to the transpose
of a matrix or tensor, for which we use the same notation.
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Transposition (of polygons or matrices) commutes with taking the Dehn invariant:

Observation 10.2 For all orthogonal polygons P, and for any representation of the
Dehn invariant D as a matrix over a combined basis, D(PT) = D(P)T.

Proof This follows by subdividing P into rectangles and observing that the effect of
transposition on a rectangle commutes with the direct formula for the Dehn invariant
of the rectangle. ��

Transposition of Dehn invariants can also equivalently be interpreted in a
coordinate-free way, as transposition of tensors, a bilinear operation that maps x ⊗ y
to y ⊗ x for all x and y. We use transposition to define a symmetric form of the Dehn
invariant, its symmetric part:

Definition 10.3 For an orthogonal polygon P , define its symmetrized Dehn invariant
as the average of the Dehn invariant and its transpose:

D̂(P) = 1

2

(D(P) + D(P)T
)
.

Observation 10.4 The symmetrized Dehn invariant is an invariant of orthogonal
dissection with rotation.

Proof Suppose that P and P ′ are any two polygons related by an orthogonal dissec-
tion with rotation. We can assume without loss of generality, by adding additional
subdivisions if necessary, that the dissection consists of subdividing P into rectan-
gles, rotating a subset of these rectangles, and translating them so that they form a
subdivision of P ′. The subdivision and translation steps, and the step in which the
translated pieces are glued together to form P ′, change neither D nor DT. The step of
rotating any rectangle acts on the symmetrized Dehn invariant by swapping D with
DT, leaving their average unchanged. ��
Lemma 10.5 Any orthogonal polygon P can be dissected with rotation into a polygon
P̂ for which D̂(P) = D(P̂).

Proof Subdivide P into rectangles, cut each rectangle by an axis-parallel line (either
horizontal or vertical) into two congruent rectangles, and rotate one of these two
rectangles. Glue the results together arbitrarily to form P̂ . ��
Corollary 10.6 Any two orthogonal polygons with the same symmetrized Dehn
invariants have a dissection with rotation into each other.

Proof Let the symmetrized invariant of both polygons be D̂. Dissect each of the given
polygons into a polygon whose Dehn invariant is D̂, by Lemma 10.5, and apply
Theorem 7.1. ��

We note that the effect of symmetrization on rank is not uniform. For instance, if P
is a rectangle with incommensurable sides, its Dehn invariant and symmetrized Dehn
invariant can be written in matrix form (using the sides as a basis) as

D(P) =
(
0 0
1 0

)

, D̂(P) =
(
0 1

2
1
2 0

)

,
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Fig. 8 Construction of a polygon P (right) for which D(P) = 3D̂(P)

and in this case symmetrization doubles the rank. This is the most possible:

Observation 10.7 For any orthogonal polygon P, rank
(D̂(P)

) ≤ 2 rank
(D(P)

)
.

Proof This follows immediately from the definition of D̂(P) as the sum of two tensors
of equal rank, 1

2D(P) and its transpose. ��
On the other hand it is easy to construct a polygon P (Fig. 8) whose Dehn invariant

and symmetrized Dehn invariant (over an appropriate basis) are

D(P) =
⎛

⎝
1 0 0
0 0 1
0 −1 0

⎞

⎠ , D̂(P) =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠

and in this case symmetrization decreases the rank from three to one. A similar con-
struction can produce examples in which the rank decreases from arbitrarily large
values to one. Therefore, the minimum number of rectangles in an orthogonal dis-
section of a polygon without rotation does not accurately approximate the minimum
number of rectangles in a dissection with rotation.

Returning to finding dissections into a minimum number of rectangles, we have the
following formula:

Theorem 10.8 Let P be any orthogonal polygon, and let r denote the minimum number
of rectangles that can be formed from P by an orthogonal dissection with rotation.
Then

r = min

{

rank(X)

∣
∣
∣ X ∈ R ⊗Q R and

1

2
(X + XT) = D̂(P)

}

.

Proof Let R be a set of r rectangles obtained from P by orthogonal dissection with
rotation, and let X = D(R). Clearly, r = rank(X), and

1

2
(X + XT) = D̂(R) = D̂(P).

There can be no other tensor Y with smaller rank and with

1

2
(Y + Y T) = D̂(P),
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for if there were we could find a realization of Y as a polygon, dissect P into that
realization, and then dissect the realization into fewer rectangles. ��

Unfortunately we do not know how to efficiently find a minimizing tensor X and
compute this minimum number of rectangles. It is a special case of the NP-hard affine
rank minimization problem, in which one wishes to find a minimum-rank matrix in
a linear subspace of matrices [16], but over rational rather than the more usual real
matrices. Instead we have the following approximation algorithm.

Theorem 10.9 We can approximate the minimum number of rectangles into which an
orthogonal polygon can be dissected with rotation, in polynomial time, to within an
approximation ratio of 2.

Proof Compute and return rank
(D̂(P)

)
. Because D̂(P) is one of the choices for X in

Theorem 10.8, the result is at least equal to the minimum number of rectangles. For
the optimal X of Theorem 10.8, the result we return is within a factor of two of the
value obtained from X , by Observation 10.7. ��

11 Conclusions

Wehave shown that the rank of the orthogonalDehn invariant of an orthogonal polygon
controls the number of rectangles into which it can be dissected by axis-parallel slices
and translation, leading to a polynomial time algorithm to compute this number of
rectangles or to construct an optimal set of rectangles into which it can be dissected.
The dissection itself may require a non-polynomial number of pieces. The number of
rectangles, in turn, controls the ability to dissect a polygon into a shape that tiles the
plane. Answering a question posed in the conference version of this paper, we also
find an approximate extension of these results to dissections that allow 90◦ rotations.

The rank of the polyhedral Dehn invariant, similarly, provides a lower bound on
the number of edges of a polyhedron into which a given polyhedron may be dissected,
because every polyhedron’sDehn invariant is defined as a sumof tensors over its edges,
with rank at most the number of edges in the sum. Because a tetrahedron has six edges,
the rank of the polyhedral Dehn invariant, divided by six, also gives a lower bound on
the number of tetrahedra intowhich a given polyhedronmay be dissected. It is tempting
to guess that, rather than merely lower-bounding these numbers, the Dehn invariant
is a constant-factor approximation both to the minimum number of edges in a single
polyhedron resulting from a dissection and to the minimum number of tetrahedra in a
dissection into disjoint tetrahedra. However, we have been unable to prove this. What
would be needed is a construction of a polyhedron with a given Dehn invariant and
with a number of edges proportional to the rank of the invariant, analogous to Lemma
6.1, but this is made more difficult by the fact that not all tensors are realizable as
polyhedral Dehn invariants. We do not even have a proof that the minimum number of
edges and theminimum number of tetrahedra are within constant factors of each other;
there exist polyhedra that cannot be subdivided into a linear number of tetrahedra (or
more generally a linear number of convex pieces) relative to their numbers of edges
[25], but this does not rule out more parsimonious dissections for such examples.
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Another natural direction for future research concerns dissections into squares
rather than rectangles. Squares have Dehn invariants that are symmetric, of rank one,
with positive area. Therefore, for a dissection (without rotation) into squares to exist,
the Dehn invariant must be symmetric. Any symmetric Dehn invariant can be decom-
posed into a sum of rank-one symmetric Dehn invariants, but these might not have
positive area. We do not know how to determine when a decomposition into rank-one
symmetric positive-area Dehn invariants exists, nor how to minimize the number of
terms in such a decomposition.

Order-two tensors have additional invariants beyond their rank, such as those
obtained as the coefficients of the characteristic polynomial or as any function of those
coefficients. (The rank can be obtained in this way from the difference in degrees of
the highest-degree and lowest-degree nonzero coefficients.) Another example is the
minimum rank of the tensors with the same symmetric part as a given tensor, as used
here for minimizing rectangles under dissection with rotation. Our work naturally
raises the questions: which other invariants are meaningful for dissection problems,
what do they mean, and how efficiently can they be computed?
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