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Abstract
Let H be a Coxeter hyperplane arrangement in n-dimensional Euclidean space.
Assume that the negative of the identity map belongs to the associated Coxeter
group W . Furthermore assume that the arrangement is not of type An

1. Let K be a
measurable subset of the Euclidean space with finite volume which is stable by the
Coxeter group W and let a be a point such that K contains the convex hull of the
orbit of the point a under the group W . In a previous article the authors proved the
generalized pizza theorem: that the alternating sum over the chambers T of H of the
volumes of the intersections T ∩ (K + a) is zero. In this paper we give a dissection
proof of this result. In fact, we lift the identity to an abstract dissection group to obtain a
similar identity that replaces the volume by any valuation that is invariant under affine
isometries. This includes the cases of all intrinsic volumes. Apart from basic geometry,
the main ingredient is a theorem of the authors where we relate the alternating sum of
the values of certain valuations over the chambers of a Coxeter arrangement to similar
alternating sums for simpler subarrangements called 2-structures introduced by Herb
to study discrete series characters of real reduced groups.
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1 Introduction

The 2-dimensional pizza theorem is the following result: Given a disc in the plane,
choose a point on this disc and cut the disc by 2k equally spaced lines passing through
the point, where k ≥ 2. The alternating sum of the areas of the resulting slices is then
equal to zero. This was first proved by Goldberg [10]. Frederickson gave a dissection
proof [9] based on dissection proofs of Carter-Wagon in the case k = 2 (see [5])
and of Allen Schwenk (unpublished) in the cases k = 3, 4. Frederickson deduced
dissection proofs of a similar sharing result for the pizza crust and of the so-called
calzone theorem, which is the analogue of the pizza theorem for a ball in R

3 that is
cut by one horizontal plane and by 2k equally-spaced vertical planes all meeting at
one point in the ball.

To generalize the pizza problem, consider a finite central hyperplane arrangementH
in R

n and fix a base chamber of this arrangement. Each chamber T has a sign (−1)T

determined by the parity of the number of hyperplanes separating it from the base
chamber. If K is a measurable subset of R

n of finite volume, what can we say about
the pizza quantity

∑
T (−1)T Vol(T ∩ K ), where the sum runs over all the chambers

T of H? The original pizza theorem is the case where n = 2, H has the type of the
dihedral arrangement I2(2k) and K is a disc containing the origin. The calzone theorem
is the case where n = 3, H has the type of the product arrangement I2(2k) × A1 and
K is a ball containing the origin.

The following generalization of the pizza and calzone theorems was proved in [7,
Thm. 1.2] by analytic means. We recently learned that Brailov had proved indepen-
dently this result in the case of a ball for the type Bn arrangement using similarmethods
[4].

Theorem 1.1 (Ehrenborg–Morel–Readdy) LetH be a Coxeter arrangement with Cox-
eter group W that contains the negative of the identity map, denoted by − id. Assume
thatH is not of type An

1 . Let K be a set of finite measure that is stable by the group W.
Then for every point a ∈ R

n such that K contains the convex hull of {w(a) : w ∈ W },
we have

∑

T

(−1)T Vol(T ∩ (K + a)) = 0.

The proof of this result uses an expression for
∑

T (−1)T Vol(T ∩ (K + a))

as an alternating sum of pizza quantities over subarrangements of H of the form
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{e⊥
1 , . . . , e⊥

n } with (e1, . . . , en) an orthonormal basis of R
n , in other words, subar-

rangements of type An
1.

In the paper [6], we study a different sum
∑

T (−1)T ν(T ), where ν is a valuation
defined on closed convex polyhedral cones of R

n that takes integer values. Under
the same condition that H is a Coxeter arrangement, we rewrite this quantity as an
alternating sumof similar quantities for certain subarrangements ofH that are products
of rank 1 and rank 2 arrangements [6, Thm. 3.2.1], and then deduce an expression
for it. These subarrangements, called 2-structures, were introduced by Herb [13] to
study characters of discrete series of real reductive groups. In fact, the identity of
[6, Thm. 3.2.1] is valid for any valuation and its proof uses only basic properties of
Coxeter systems and closed convex polyhedral cones.

In this paper we use the setting of 2-structures and [6, Cor. 3.2.4] (recalled in
Theorem 2.5) to obtain a dissection proof of the higher-dimensional pizza theorem of
[7, Thm. 1.2] that is independent of the results and methods of [7]:

Theorem 1.2 (Abstract pizza theorem; see Theorem 3.5.) With the notation and
hypotheses of Theorem 1.1, we have

∑

T

(−1)T [T ∩ (K + a)] =
∑

T

(−1)T [T ∩ (K + a)] = 0,

where the brackets denote classes in the abstract dissection group of Definition 3.1.

As we take into account lower-dimensional sets when defining our abstract dissec-
tion group, this result implies generalizations of the higher-dimensional pizza theorem
to all the intrinsic volumes when K is convex.

The idea of the proof of Theorem 1.2 is the following: by expanding the expression
using 2-structures, we can reduce to a sum where each term is a similar expression
for an arrangement that is a product of arrangements of types A1 and I2(2k). We then
adapt the dissection proof of Frederickson to an arrangement of type I2(2m)×H′. We
also explain how to keep track of lower-dimensional regions of the dissection. If our
product arrangement contains at least one dihedral factor, then its contribution is zero,
and we immediately get a dissection proof of the result. However, if all the product
arrangements that appear are of type An

1, then their individual contributions are not
zero. We need one extra step in the proof to show that the contributions cancel. This
uses a slight refinement of the Bolyai–Gerwien Theorem explained in Sect. 4.

An interesting point to note is that the shape of the pizza plays absolutely no role
in this proof, as long as it has the same symmetries as the arrangement and contains
the convex hull of {w(a) : w ∈ W }. In particular, we no longer need to assume that it
is measurable and of finite volume.

The plan of the paper is as follows. Section 2 contains a review of 2-structures and
of the results from [6] that we will need. Section 3 contains the statement and proof
of the abstract pizza theorem (Theorem 3.5), and Sect. 4, as we already mentioned,
contains a Bolyai–Gerwien type result that is needed in the proof of the abstract pizza
theorem.

Let us mention some interesting questions that remain open:
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(1) The paper [7] proves the pizza theorem for more general arrangements (the con-
dition is that the arrangement H is a Coxeter arrangement and that the number
of hyperplanes is greater than the dimension n and has the same parity as that
dimension), but only in the case of the ball; see [7, Thm. 1.1]. Is it possible to
give a dissection proof of this result?

(2) Mabry andDeiermann [19] show that the two-dimensional pizza theoremdoes not
hold for a dihedral arrangement having an odd number of lines. More precisely,
they determine the sign of the quantity

∑
T (−1)T Vol(T ∩ K ), where K is a disc

containing the origin, and show that it vanishes if and only if the center of K lies
on one of the lines. Their methods are analytic. As far as we know, there exists
no dissection proof of this result either. The higher-dimensional case whereH is
a Coxeter arrangement and the number of its hyperplanes does not have the same
parity as n also remains wide open.

2 Review of 2-Structures and of the Basic Identity

Let V be a finite-dimensional real vector space with an inner product (·, ·). For every
α ∈ V , we denote by Hα the hyperplane α⊥ and by sα the orthogonal reflection in the
hyperplane Hα .

We say that a subset � of V is a normalized pseudo-root system if:

(a) � is a finite set of unit vectors;
(b) for all α, β ∈ �, we have sβ(α) ∈ � (in particular, taking α = β, we get that

−α ∈ �).

Elements of � are called pseudo-roots. The rank of � is the dimension of its span.
We call such objects pseudo-root systems to distinguish them from the (crystal-

lographic) root systems that appear in representation theory. If �′ is a root system
then the set � = {α/‖α‖ : α ∈ �′} is a normalized pseudo-root system. Not every
normalized pseudo-root system arises in this manner; see for instance the pseudo-root
systems of type H3 and H4.

We say that a normalized pseudo-root system � is irreducible if, whenever
� = �1 � �2 with �1 and �2 orthogonal, we have either �1 = ∅ or �2 = ∅.
Every normalized pseudo-root system can be written uniquely as a disjoint union of
pairwise orthogonal irreducible normalized pseudo-root systems. Irreducible normal-
ized pseudo-root systems are classified: they are in one of the infinite families An

(n ≥ 1), Bn/Cn (n ≥ 2),1 Dn (n ≥ 4), I2(m) (m ≥ 3) or one of the exceptional types
E6, E7, E8, F4, H3 or H4, with types I2(3) and A2 isomorphic, as well as types I2(4)
and B2. (See [12, Chap. 5] or Table 1 in [1, Appendix A].)

We say that a subset �+ ⊂ � is a positive system if there exists a total ordering <

on the R-vector space V such that �+ = {α ∈ � : α > 0} (see [16, Sect. 1.3]). The
Coxeter group of � is the group of isometries W of V generated by the reflections sα
for α ∈ �. This group preserves � by definition of a normalized pseudo-root system,
and it acts simply transitively on the set of positive systems by [16, Sect. 1.4]. In
particular, the Coxeter group W is finite.

1 The pseudo-root systems of types Bn and Cn are identical after normalizing the lengths of the roots.
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Let E be a finite set of unit vectors of V such that E∩(−E) = ∅. The corresponding
hyperplane arrangement is the set of hyperplanesH = {He : e ∈ E}. A chamber ofH
is a connected component of V − ⋃

e∈E He; we denote by T (H) the set of chambers
ofH. Fix a chamber T0 to be the base chamber. For a chamber T ∈ T (H) we denote
by S(T , T0) the set of e ∈ E such that the two chambers T and T0 are on different
sides of the hyperplane He, and define the sign of T to be (−1)T = (−1)|S(T ,T0)|.

We say thatH is a Coxeter arrangement if it is stable by the orthogonal reflections
in each of its hyperplanes. In that case, the set� = E ∪ (−E) is a normalized pseudo-
root system.We call its Coxeter group the Coxeter group of the arrangement. The map
sending a positive system �+ ⊂ � to the set {v ∈ V : ∀α ∈ �+ (v, α) > 0} is a
bijection from the positive systems in � to the chambers of H. See for example [3,
Chap. V § 4 No. 8 Proposition 9 p. 99] and the discussion following it. Conversely, if
� ⊂ V is a normalized pseudo-root system with Coxeter group W and �+ ⊂ � is a
positive system, then H = {Hα : α ∈ �+} is a Coxeter hyperplane arrangement, and
in that case we always take the base chamber T0 to be the chamber corresponding to
�+.

We now define product arrangements. Let V1 and V2 be two finite-dimensional real
vector spaces equipped with inner products, and suppose that we are given hyperplane
arrangements H1 and H2 on V1 and V2 respectively. We consider the product space
V1 × V2, where the factors are orthogonal. The product arrangementH1 ×H2 is then
the arrangement on V1 × V2 with hyperplanes H × V2 for H ∈ H1 and V1 × H ′
for H ′ ∈ H2. If H1 is the empty arrangement, then we write V1 × H2 instead of the
confusing ∅ × H2. Similarly, if H2 is the empty arrangement, we write H1 × V2. If
the arrangements H1 and H2 arise from normalized pseudo-root systems �1 ⊂ V1
and �2 ⊂ V2, then their product H1 × H2 arises from the normalized pseudo-root
system �1 × {0} ∪ {0} × �2 ⊂ V1 × V2. We also denote this pseudo-root system by
�1 × �2.

The notion of 2-structures was introduced by Herb for root systems to study the
characters of discrete series representations; see, for example, the review article [13].
The definition we give here is Definition B.2.1 of [6]. It has been slightly adapted to
work for pseudo-root systems.

Definition 2.1 Let � be a normalized pseudo-root system with Coxeter group W . A
2-structure for � is a subset ϕ of � satisfying the following properties:

(a) The subset ϕ is a disjoint union ϕ = ϕ1 �ϕ2 � · · · �ϕr , where the ϕi are pairwise
orthogonal subsets of ϕ and each of them is an irreducible pseudo-root system of
type A1, B2 or I2(2k) for k ≥ 3.

(b) Let ϕ+ = ϕ ∩ �+. If w ∈ W is such that w(ϕ+) = ϕ+ then det(w) = 1.

We denote by T (�) the set of 2-structures for �.

Proposition 2.2 Let � be a normalized pseudo-root system with Coxeter group W.

(i) The group W acts transitively on the set of 2-structures T (�).
(ii) The pseudo-root system � and its 2-structures have the same rank if and only if

there exists w ∈ W whose restriction to Span(�) is equal to − idSpan(�).
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Proof (i) See the start of Section 4 of [13] and Proposition B.2.4 of [6].
(ii) For � arising from a root system �′, these two conditions are equivalent to the

fact that �′ is spanned by strongly orthogonal roots; see, for example, the top
of page 2559 of [14]. For general pseudo-root systems, see the classification of
2-structures in Section B.4 of [6].

��

To each 2-structure ϕ ⊂ �, we can associate a sign ε(ϕ) = ε(ϕ,�+) (see the start
of Section 5 and Lemma 5.1 of [14] and Definition B.2.8 of [6]).

Wenext introduce the abstract pizza quantity. LetH be a central hyperplane arrange-
ment on V . Let CH(V ) be the set of closed convex polyhedral cones in V that are
intersections of closed half-spaces bounded by hyperplanes H where H ∈ H, and
let KH(V ) be the quotient of the free abelian group

⊕
K∈CH(V ) Z[K ] on CH(V ) by

the relations [K ] + [K ′] = [K ∪ K ′] + [K ∩ K ′] for all K , K ′ ∈ CH(V ) such that
K ∪ K ′ ∈ CH(V ). For K ∈ CH(V ), we still denote the image of K in KH(V ) by [K ].

Definition 2.3 Suppose that we have fixed a base chamber of H. The abstract pizza
quantity of H is

P(H) =
∑

T∈T (H)

(−1)T [T ] ∈ KH(V ).

Remark 2.4 By Lemma 3.2.3 of [6], we have

P(H) =
∑

T∈T (H)

(−1)T [T ].

We use this alternative definition of P(H) in our proofs.

The following result is Corollary 3.2.4 of [6]. It shows how to evaluate the pizza
quantity for a Coxeter arrangement in terms of the associated 2-structures.

Theorem 2.5 Let � ⊂ V be a normalized pseudo-root system. Choose a positive
system �+ ⊂ � and let H be the hyperplane arrangement (Hα)α∈�+ on V with
base chamber corresponding to �+. For every 2-structure ϕ ∈ T (�), we write ϕ+ =
ϕ ∩ �+ and we denote by Hϕ the hyperplane arrangement (Hα)α∈ϕ+ with base
chamber corresponding to ϕ+. Then we have

P(H) =
∑

ϕ∈T (�)

ε(ϕ)P(Hϕ).

If ϕ ∈ T (�) then the closures of the chambers of Hϕ are elements of CH(V ), so
P(Hϕ) makes sense as an element of KH(V ).
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3 A Dissection Proof of the Higher-Dimensional Pizza Theorem

Definition 3.1 Let C(V ) be a nonempty family of subsets of V that is stable by finite
intersections and affine isometries and such that, if C ∈ C(V ) and D is a closed
affine half-space of V , then C ∩ D ∈ C(V ). Furthermore, we assume that C(V ) is
closed with respect to Cartesian products, that is, if Ci ∈ C(Vi ) for i = 0, 1 then
C0 × C1 ∈ C(V0 × V1). For example, we could take C(V ) to be the family of all
convex subsets of V , or of all closed (or compact) convex subsets, or of all convex
polyhedra.

We denote by K (V ) the quotient of the free abelian group
⊕

C∈C(V ) Z[C] on C(V )

by the relations:

– [∅] = 0;
– [C ∪C ′] + [C ∩C ′] = [C] + [C ′] for all C,C ′ ∈ C(V ) such that C ∪C ′ ∈ C(V );
– [g(C)] = [C], for every C ∈ C(V ) and every affine isometry g of V .

For C ∈ C(V ), we still denote the image of C in K (V ) by [C].
Definition 3.2 A valuation on C(V ) with values in an abelian group A is a function
C(V ) −→ A that can be extended to a morphism of groups K (V ) −→ A.

Remark 3.3 Define B(V ) to be the relative Boolean algebra generated by C(V ), that
is, the smallest collection of subsets of V that contains C(V ) and is closed under finite
unions, finite intersections and set differences. Groemer’s Integral Theorem states that
a valuation on C(V ) can be extended to a valuation on the Boolean algebra B(V ); see
[11] and also [18, Chap. 2]. Applying this to the valuation C �−→ [C] with values in
K (V ), we see that we can make sense of [C] for anyC ∈ B(V ). For instance, we have
[C1 ∪C2] = [C1]+[C2]−[C1 ∩C2] and [C1 −C2] = [C1]−[C1 ∩C2]. Moreover, if
C(V ) is the set of all convex polyhedra in V , thenB(V ) contains all polyhedra (convex
or not), and also half-open polyhedra.

Next we have the following straightforward lemma, whose proof we omit, which
states that the class symbol is well-behaved with respect to Cartesian products.

Lemma 3.4 The two class identities [C0] = [D0] and [C1] = [D1] in K (V0)
and K (V1), respectively, imply that [C0 × C1] = [D0 × D1] in K (V0) × K (V1).

Let H be a central hyperplane arrangement on V with fixed base chamber. If K ∈
C(V ), we have a morphism of groups eK : KH(V ) −→ K (V ) induced by the map
CH(V ) −→ C(V ), C �−→ C ∩ K .

We denote by P(H, K ) the image of P(H) by this morphism eK ; in other words,
we have

P(H, K ) =
∑

T∈T (H)

(−1)T [T ∩ K ].

By Remark 2.4, we also have

P(H, K ) =
∑

T∈T (H)

(−1)T [T ∩ K ].
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We state the main theorem of this paper. First for u, v ∈ V define the half-open line
segment (u, v] by {(1 − λ)u + λv : 0 < λ ≤ 1}. Our main result is the following:

Theorem 3.5 (The Abstract Pizza Theorem) LetH be a Coxeter hyperplane arrange-
ment with Coxeter group W in an n-dimensional space V such that − idV ∈ W. Let
K ∈ C(V ) and a ∈ V . Suppose that K is stable by the group W and contains the
convex hull of the set {w(a) : w ∈ W }.
(i) IfH is not of type An

1 , we have P(H, K + a) = 0 in K (V ).
(ii) If H has type An

1 , � is the normalized pseudo-root system corresponding to H
and �+ = {e1, . . . , en} where �+ ⊂ � is the positive system corresponding to
the base chamber of H, then the following identity holds:

P(H, K + a) =
[

n∏

i=1

(0, 2(a, ei )ei ]
]

. (3.1)

Here we are using Remark 3.3 to make sense of the right-hand side of Eq. (3.1).
The conditions on K are satisfied if for example K is convex, contained in C(V ),

stable by W and 0 ∈ K + a. Indeed, the last condition implies that −a ∈ K ; as
− idV ∈ W by assumption, this in turns implies that a ∈ K , hence that K contains
the convex hull of the set {w(a) : w ∈ W }.

We will give the proof of Theorem 3.5 at the end of the section. This proof does
not use Theorem 1.2 of [7], so we obtain a new proof of that result.

Let V0, . . . , Vn denote the intrinsic volumes on V (see [21, Sect. 4.2]).

Lemma 3.6 Let (v1, . . . , vk) be an orthogonal family of vectors in V . Then

Vi ((0, v1] × . . . × (0, vk]) = 0,

for 0 ≤ i ≤ k − 1.

Proof By Lemma 14.2.1 of [22] or Proposition 4.2.3 of [18], it suffices to prove that, if
a < b are real numbers, the 0th intrinsic volume of the half-open segment (a, b] ⊂ R

is 0. As the 0th intrinsic volume is the Euler-Poincaré characteristic with compact
support, this is clear. ��
Corollary 3.7 We keep the notation and hypotheses of Theorem 3.5. IfH is not of type
An
1 , we have

∑

T∈T (H)

(−1)T Vi (T ∩ (K + a)) = 0, (3.2)

for every 0 ≤ i ≤ n, where K is assumed to be convex if i �= n. IfH has type An
1 and

K is convex then Eq. (3.2) holds for 0 ≤ i ≤ n − 1.

Proof If H is not of type An
1, then Eq. (3.2) actually holds for any valuation on C(V )

that is invariant under the group of affine isometries; this includes the intrinsic volumes.
Suppose that H is of type An

1. Then we know that Eq. (3.1) holds. The result then
follows from Lemma 3.6. ��
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Remark 3.8 Theorem 3.5 immediately implies generalizations to our
higher-dimensional case of the “thin crust” and “thick crust” results of Confection 3
and Leftovers 1 of [19] for an even number of cuts.

We obtain the “thin crust” result by evaluating the (n − 1)st intrinsic volume on
P(H, K + a). Note that this result holds for a pizza of any (convex) shape and even
in the case where we only make n cuts, where n is the dimension.

To generalize the “thick crust” result, consider two sets K ⊂ L stable by W and in
C(V ). If a ∈ V is such that K contains the convex hull of the set {w(a) : w ∈ W },
then

P(H, (L − K ) + a) = P(H, L + a) − P(H, K + a) = 0,

so in particular

∑

T∈T (H)

(−1)T Vol(T ∩ ((L − K ) + a)) = 0.

The case where K and L are balls with the same center is the “thick crust” result.

We now state and prove some lemmas that will be used in the proof of Theorem 3.5.

Lemma 3.9 LetHi be a hyperplane arrangement on Vi for i = 0, 1. Assume further-
more that H1 = {He}e∈E1 has type Ar

1 and dim(V1) = r . Let E1 = {e1, . . . , er } be
the index set of H1. Let H and V be the Cartesian products H0 × H1 and V0 × V1,
respectively. Then for every K ∈ C(V ) that is stable under the orthogonal reflections
in the hyperplanes V0 × He1, . . . , V0 × Her and for every a ∈ V1, if L = K + a, we
have the identity

P(H, L) = P (H0 × V1, L ∩ (V0 × (0, 2(a, e1)e1] × · · · × (0, 2(a, er )er ])) ,

where H0 × V1 is the product ofH0 and the empty hyperplane arrangement on V1.

Proof By a straightforward induction, we may assume that r = dim V1 = 1. Also,
after changing the sign of e1, we may assume that (a, e1) ≥ 0. See Fig. 1 for a sketch
of the situation. Let T be a chamber of the arrangement H0. The classes of the two
regions (T × R>0e1) ∩ L and (T × R<0e1) ∩ L ofH occur with opposite signs in the
pizza quantity P(H, L). Note that the region (T × R>2(a,e1)e1) ∩ L is the orthogonal
reflection of the region (T × R<0e1) ∩ L in the affine hyperplane He1 + (a, e1)e1 =
He1 + a. Hence these regions have the same class in K (V ) which cancels in the
pizza quantity P(H, L), and the class of the region (T × (0, 2(a, e1)e1]) ∩ L =
(T × V1) ∩ L ∩ (V0 × (0, 2(a, e1)e1]) remains. As the map T �−→ T × V1 is a
sign-preserving bijection from T (H0) to T (H0 × V1), this completes the proof. ��

We now consider the case of a hyperplane arrangement that is the product of a
2-dimensional dihedral arrangement and another arrangement. Suppose that V =
V0 × V1, where the factors are orthogonal, and that H = H0 × H1, where Hi is
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V0 = He1

V1

He1 + 2( a, e1)e1

He1 + (a, e1)e1

T

Fig. 1 A schematic sketch of V0 × V1 for the proof of Lemma 3.9

a hyperplane arrangement in Vi . Suppose also that dim V0 = 2 and that H0 is an
arrangement of type I2(2m) with Coxeter group W0 where m ≥ 2. We view W0 as a
group of isometries of V by making w ∈ W0 act on V = V0 × V1 by w × idV1 . We
also choose a family C(V ) as in Definition 3.1.

Let a ∈ V0. We will describe a dissection of V0. The case wherem = 4 is shown in
Fig. 2.We call L0, . . . , L2m−1 the lines ofH0 (numbered so that the angle between L0
and Li is an increasing function of i) and we assume that the point a is in a chamber
between Lm−1 and Lm . Choose a closed half-space D bounded by L0 and containing
a (this choice is unique if a /∈ L0). Then, for 0 ≤ i ≤ 2m − 1, we denote by Ti
the unique chamber ofH contained in D and with boundary contained in Li ∪ Li+1.
We assume that (−1)T0 = 1 for concreteness. The point a is in the closure of the
chamber Tm−1.

We write T+ = {T ∈ T (H0) : (−1)T = 1} and T− = {T ∈ T (H0) : (−1)T =
−1}. Let Wa be the group of affine isometries generated by the orthogonal reflections
in the lines L + a, for L ∈ H0. We take R0(a) to be the convex hull of the points
w(0) for w ∈ Wa . This is the shaded polygon on Fig 2, where the darker slices
are the intersections with the closures of chambers in T+. We have the inclusion
R0(a) ⊂ ⋃2m−2

i=0 T i . Finally we set

R0,±(a) = R0(a) ∩
⋃

T∈T±

T .

Lemma 3.10 The following three identities hold in K (V0 × V1):

(i) Let K ∈ C(V ) such that K is stable by W0 and let L = K + a. Then

∑

T∈T
(−1)T [L ∩ ((T − R0(a)) × V1)] = 0.
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Fig. 2 A picture of the regions in the proof of Lemma 3.10(i) for the case of I2(8)

(ii) Let K ∈ C(V ) such that K is stable by W0 and let L = K + a then

P(H, L) = P(V0 × H1, L ∩ (R0,+(a) × V1))

−P(V0 × H1, L ∩ (R0,−(a) × V1)).

(iii) If K1 ⊂ V1 is such that R0(a) × K1 ∈ C(V ), then

[R0,+(a) × K1] = [R0,−(a) × K1].

Proof We begin by proving (i). For 0 ≤ i ≤ 2m − 1, we denote by Ri,± the unique
chamber of H not contained in D and with boundary contained in Li ∪ Li+1, that
is, the image of Ti by the symmetry with center 0; we write Ri,+ if this chamber
has sign +1, or equivalently if i is even, and Ri,− if this chamber has sign −1, or
equivalently if i is odd. For every 0 ≤ j ≤ m − 1, we denote by R2 j,− and R2 j+1,+
the orthogonal reflection in the line L⊥

2 j+1 + a of R2 j,+ and R2 j+1,−, respectively.
Note that R2 j,− ⊂ T2 j+1 and R2 j+1,+ ⊂ T2 j . For 0 ≤ j ≤ m − 1 again, we
denote by S j,+ the interior of T2 j − (R0(a) ∪ R2 j+1,+) and by S j,− the interior of
T2 j+1− (R0(a)∪ R2 j,−). Then T2 j − R0(a) is the disjoint union of R2 j+1,+, S j,+ and
an open ray D2 j starting at an extremal point of R0(a) (the image of 0 by the orthogonal
reflection in the line L⊥

2 j+1 + a) and parallel to L2 j . Similarly T2 j+1 − R0(a) is the
disjoint union of R2 j,−, S j,− and an open ray D2 j+1 starting at the same extremal
point of R0(a) and parallel to L2 j+2. See Fig. 2 for the case m = 4, where the rays
D2 j and D2 j+1 are dashed.

The union
⋃

T∈T+ T is equal to the disjoint union of the set R0,+(a), the
regions Ri,+ for 0 ≤ i ≤ 2m − 1, the regions S j,+ for 0 ≤ j ≤ m − 1 and the
rays D2 j for 0 ≤ j ≤ m − 1. On the other hand, the union

⋃
T∈T− T is equal to the
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disjoint union of the set R0,−(a), the regions Ri,− for 0 ≤ i ≤ 2m−1, the regions S j,−
for 0 ≤ j ≤ m − 1 and the rays D2 j+1 for 0 ≤ j ≤ m − 1. Consider the following
four observations:

– For 0 ≤ i ≤ 2m − 1 the region Ri,− is the image of Ri,+ by the orthogonal
reflection in the affine line L⊥

2�i/2�+1 + a.
– For 0 ≤ j ≤ m−1 the region S j,− is the image of S j,+ by the rotation with center
a and angle π/m.

– For 0 ≤ j ≤ m − 2 the ray D2 j+3 is the image of the ray D2 j by the rotation with
center a and angle 2π/m.

– The ray D2m−2 is the image of D1 by the orthogonal reflection in the affine line
Lm + a.

Each of them is of the form: the set X is the image of the set Y under an affine
isometry g belonging to the group Wa . Since the set L = K + a is invariant under
g, we obtain that the set L ∩ (X × V1) is the image of L ∩ (Y × V1), and hence that
[L ∩ (X × V1)] = [L ∩ (Y × V1)]. Statement (i) follows by summing over all pairs of
sets X and Y .

Next we prove (ii). There is a bijection T (H0) × T (H1)
∼−→ T (H) where

(T , T ′) �−→ T × T ′ and (−1)T×T ′ = (−1)T (−1)T
′
for all T ∈ T (H0) and T ′ ∈

T (H1). Hence

P(H, L) =
∑

T ′∈T (H1)

∑

T∈T (H0)

(−1)T (−1)T
′ [L ∩ (T × T ′)]. (3.3)

Fix T ′ ∈ T (H1) for a moment. The fact that K is stable byW0 implies that K ∩ (V0×
T ′) is also stable byW0. Hence applying statement (i) to the set (K ∩(V0×T ′))+a =
L ∩ (V0 × T ′) yields

∑

T∈T (H0)

(−1)T [L ∩ ((T − R0(a)) × T ′)] = 0. (3.4)

Multiplying Eq. (3.4) with the sign (−1)T
′
, summing over all T ′ ∈ T (H1), and

subtracting the result from Eq. (3.3) yields

P(H, L) =
∑

T ′∈T (H1)

∑

T∈T (H0)

(−1)T (−1)T
′ [L ∩ ((T ∩ R0(a)) × T ′)]

=
∑

T ′∈T (H1)

(−1)T
′ [L ∩ (R0,+(a) × T ′)] −

∑

T ′∈T (H1)

(−1)T
′ [L ∩ (R0,−(a) × T ′)]

= P(V0 × H1, L ∩ (R0,+(a) × V1)) − P(V0 × H1, L ∩ (R0,−(a) × V1)).

Finally we consider (iii). By Lemma 3.4, it suffices to show that, if we take C(V0)
to be the set of convex polygons in V0, then [R0,+(a)] = [R0,−(a)] in K (V0). This
follows from Corollary 4.2 and from the fact that the intrinsic volumes of R0,+(a) and
R0,−(a) are equal (which is an easy calculation), but we also give a direct proof. We
consider the following dissection of the polygon R0(a); see Fig. 3 for the casem = 4.
For 0 ≤ i ≤ 2m − 1 let Pi be the image of 0 by the orthogonal reflection in the line
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B1,+
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Fig. 3 The dissection of the polygon R0(a) in the case of I2(8). The darker shaded regions are the inter-
sections with the chambers which have a positive sign

L⊥
i + a; note that Pi is a boundary point of R0(a), and that it is on Li . We describe

the pieces of the dissection of R0(a):

– For 1 ≤ i ≤ m − 2 consider the pair of isosceles triangles Bi,+ and Bi,− that have
one side equal to the segment [0, P2i ], angles equal to π/2m at the vertices 0 and
Pi , and such that Bi,± is in a chamber with sign ±1; in other words, the triangle
Bi,− is in the chamber T2i−1, and Bi,+ is in the chamber T2i .

– Let B0,+ be the isosceles triangle contained in T0 with one side equal to the segment
[0, P0] and angles equal to π/2m at the vertices 0 and P0.

– Consider the isosceles triangle contained in T2m−3 with one side equal to the
segment [0, P2m−2] and angles equal to π/2m at the vertices 0 and P2m−2; this
splits into an isosceles triangle B0,− congruent to B0,+ and an isosceles trapezoid
Bm−1,− having one edge equal to [0, P2m−2].

– Let Bm−1,+ be the image of Bm−1,− by the orthogonal reflection in the line L2m−2;
then Bm−1,+ is contained in the chamber T2m−2.

To finish the dissection of R0(a), we note that, for 0 ≤ i ≤ 2m − 3, we still have a
quadrilateral piece Qi left over in Ti∩R0(a). Then for 1 ≤ i ≤ 2m−3 the quadrilateral
Qi is the image of Qi−1 by the rotationwith center a and angleπ/m. Indeed, this is true
for the intersections of these quadrilaterals with the boundary of R0(a) (which consist
of two edges with endpoints Pi−1 and Pi+1), and it is easy to calculate the angles at
the vertices of this intersection and to see that they correspond: If 1 ≤ i ≤ 2m − 2
and i is even, respectively odd, the angle of Qi−1 at Pi is (i − 1)π/2m, respectively
iπ/2m. If 0 ≤ i ≤ 2m − 3 and i is even, respectively odd, the angle of Qi at Pi is
(2m − 2 − i)π/2m, respectively (2m − 1 − i)π/2m.
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This is Frederickson’s dissection; see pages 28–31 of [9]. That paper is only inter-
ested in giving a dissection proof that the alternating sum of the areas is equal to zero.
Hence it can safely ignore line segments of area zero, whereas we are proving an
identity in K (V0) and have to be careful with all regions, including lower dimensional
ones.

The set R0,+(a) is the disjoint union of the following subsets:

– For 0 ≤ i ≤ m−2 let B ′
i,+ be the intersection of the triangle Bi,+ with the interior

of the chamber containing Bi,+. In other words, B ′
i,+ is the union of the interior

of Bi,+ and the relative interior of one of its two equal sides.
– Let B ′

m−1,+ be the intersection of the trapezoid Bm−1,+ and T2m−2. That is, B ′
m−1,+

is the union of the interior of Bm−1,+ and the intersection of its boundary with the
boundary of R0(a), minus the two extremal points of this intersection.

– For 0 ≤ j ≤ m − 2 let Q′
2 j be the intersection of the quadrilateral Q2 j and

T2 j . That is, Q′
2 j is the union of the interior of Q2 j+1 and the intersection of

its boundary with the boundary of R0(a), minus the two extremal points of this
intersection.

As for the set R0,−(a), it is the disjoint union of the following subsets:

– Let B ′
0,− be the union of the interior of the triangle B0,− and the relative interior

of the side that it shares with Q2m−3.
– For 1 ≤ i ≤ m−2 let B ′

i,− be the intersection of the triangle Bi,− with the interior
of the chamber containing B ′

i,−. That is, B ′
i,− is the union of the interior of Bi,−

and the relative interior of one of its two equal sides.
– Let B ′

m−1,− be the intersection of the trapezoid Bm−1,− and T2m−3.
– For 0 ≤ j ≤ m − 2 let Q′

2 j+1 be the intersection of the quadrilateral Q2 j+1 and
T2 j+1. That is, Q′

2 j+1 is the union of the interior of Q2 j+1 and the intersection of
its boundary with the boundary of R0(a), minus the two extremal points of this
intersection.

We obtain that [R0,+(a)] = [R0,−(a)] since the regions B ′
i,+ and B ′

i,− are isometric
for every 0 ≤ i ≤ m − 1, as are the regions Q2 j and Q2 j+1 for 0 ≤ j ≤ m − 2. ��

Lemma 3.11 Suppose that we have V = V (1)
1 × · · · × V (r)

1 × V (1)
2 × · · · × V (s)

2 ,
where the factors of the product are pairwise orthogonal, and that H is a product
H(1)

1 ×· · ·×H(r)
1 ×H(1)

2 ×· · ·×H(s)
2 , where eachH( j)

i is a hyperplane arrangement

on V ( j)
i . Suppose further that:

(a) If 1 ≤ j ≤ r then V ( j)
1 is 1-dimensional, and we have a unit vector e( j) in V ( j)

1

yielding the hyperplane arrangement H( j)
1 = {0}.

(b) If 1 ≤ j ≤ s then V ( j)
2 is 2-dimensional, and the arrangement H( j)

2 is of type
I2(2m( j)) for some m( j) ≥ 2.

Let a ∈ V and K ∈ C(V ). Suppose that K is stable by the Coxeter group W and
contains the convex hull of the set {w(a) : w ∈ W }. Then the following two statements
hold:
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(i) If s ≥ 1 we have P(H, K + a) = 0 in K (V ).
(ii) If s = 0 we have in K (V ) the identity

P(H, K + a) =
[
(0, 2(a, e(1))e(1)] × · · · × (0, 2(a, e(r))e(r)]

]
.

Proof Let L = K +a. Since − idV ∈ W we have −a ∈ K and so 0 ∈ L +a; also, the
sets {w(a) : w ∈ W } and {w(−a) : w ∈ W } are equal. Let Wa be the group of affine
isometries of V generated by the orthogonal reflections in the hyperplanes a + H , for
H ∈ H. The conditions on K imply that L is stable by Wa and contains the convex
hull of the set {u(0) : u ∈ Wa} = {w(−a) + a : w ∈ W }.

Write a = (a(1)
1 , . . . , a(r)

1 , a(1)
2 , . . . , a(s)

2 ), with a( j)
i ∈ V ( j)

i . For 1 ≤ i ≤ r let
S(i) denote the half-open line-segment (0, 2(a, e(i))e(i)]. For 1 ≤ j ≤ s we consider
subsets R( j)

+1 = R0,+
(
a( j)
2

)
and R( j)

−1 = R0,−
(
a( j)
2

)
of V ( j)

2 as in Lemma 3.10. By
Lemmas 3.9 and 3.10(ii), we have that

P(H, L) =
∑

(ε1,...,εs )∈{±1}s
ε1 · · · εs

[
L ∩

(
S(1) × · · · × S(r) × R(1)

ε1
× · · · × R(s)

εs

)]
.

Consider the polyhedron

P = [0, 2(a, e(1))e(1)] × · · · × [0, 2(a, e(r))e(r)] × R0
(
a(1)
2

) × · · · × R0
(
a(s)
2

)
.

Then P is the convex hull of the set {u(0) : u ∈ Wa} by definition of the polygons
R0

(
a( j)
2

)
, hence it is contained in L and so is its subset S(1)×· · ·×S(r)×R(1)

ε1 ×· · ·×R(s)
εs

for every (ε1, . . . , εs) ∈ {±1}s . So we obtain

P(H, L) =
∑

(ε1,...,εs )∈{±1}s
ε1 · · · εs

[
S(1) × · · · × S(r) × R(1)

ε1
× · · · × R(s)

εs

]
.

If s = 0 this implies statement (ii). Suppose that s ≥ 1. By point (iii) of Lemma 3.10,
we know that

[
S(1) × · · · × S(r) × R(1)

ε1
× · · · × R(s)

εs

]
=

[
S(1) × · · · × S(r) × R(1)

+1 × · · · × R(s)
+1

]

for every (ε1, . . . , εs) ∈ {±1}s . As ∑
(ε1,...,εs )∈{±1}s ε1 · · · εs = 0, this finishes the

proof of (i). ��
Proof of Theorem 3.5 Statement (ii) is exactly Lemma 3.11(ii). We now prove state-
ment (i), so we assume thatH is not of type An

1. By Theorem 2.5, we have

P(H, K + a) =
∑

ϕ∈T (�)

ε(ϕ)P(Hϕ, K + a).
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By definition, any 2-structure for � is of type Ar
1 × ∏

k≥2 I2(2
k)sk with

∑
k≥2 sk

finite and, as W acts transitively on the set of 2-structures (Proposition 2.2(i)), the
integers r and sk , for k ≥ 2, do not depend on the 2-structure but only on �. Also,
by Proposition 2.2(ii), we have dim V = r + ∑

k≥2 2sk , so we are in the situation of
Lemma 3.11. Suppose that

∑
k≥2 sk ≥ 1. Then by Lemma 3.11(i) we have P(Hϕ, K+

a) = 0 for everyϕ ∈ T (�) and hence P(H, K+a) = 0. Assume now that
∑

k≥2 sk =
0, that is, sk = 0 for every k. Statement (ii) of the same lemma implies that

P(H, K + a) =
∑

ϕ∈T (�)

ε(ϕ)

[ ∏

e∈ϕ∩�+
(0, 2(a, e)e]

]

. (3.5)

This is an alternating sum of classes of half-open rectangular parallelotopes in V .
So we can apply Theorem 4.1 to prove that P(H, K + a) = 0 in K (V ). We know
that Vi (P(H, K + a)) = 0 if 0 ≤ i ≤ n − 1 by Lemma 3.6, so it remains to prove
that Vn(P(H, K + a)) = 0, that is, that the alternating sum of the volumes of the
parallelotopes

∏
e∈ϕ∩�+(0, 2(a, e)e] is equal to zero. This follows from Theorem 1.2

of the paper [7]. However, we now give a direct proof (that does not use analysis)
using the method of that corollary. Let f : V −→ R be the function defined by

f (a) =
∑

ϕ∈T (�)

ε(ϕ)
∏

e∈ϕ∩�+
2(a, e).

Note that f is a polynomial homogeneous of degree n on V . Furthermore Eq. (3.5)
implies that

Vol(P(H, K + a)) = f (a),

for every convex subset K of V of finite volume that is stable by W and every a ∈ V
such that 0 ∈ K + a. The polynomial f satisfies f (w(a)) = det(w) f (a) for every
w ∈ W and every a ∈ V (this is easy to see; see for example Corollary 2.3 of [7]), so
it vanishes on every hyperplane of H. But if f �= 0, then the vanishing set of f must
be of degree at most n, which contradicts the fact that, asH is not of type An

1, we have|H| > n. Hence we must have f = 0, and this gives the desired result. ��

Remark 3.12 In the paper [15], Hirschhorn et al. proved that if a circular pizza is cut
into 4m slices by 2m cuts at equal angles to each other and ifm people share the pizza
by each taking every mth slice then they receive equal shares. If m = 4, Frederickson
gives a dissection-based proof of this fact on page 32 of [9], and Proposition 9.1 of
[7] generalizes the result to pizzas of more general shapes. We cannot lift this result to
the group K (V ), because it does not hold in that group. For example, if we consider
the pizza of Fig. 3, then it is not true in general that the sums of the perimeters of the
pizza pieces in all the shares will be equal.

However, we can lift the generalization of the Hirschhorns’s result to the quotient
K0(V ) of the group K (V ) by the subgroup generated by all the elements [C] with
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C ∈ C(V ) contained in a line of V . More precisely, consider a Coxeter arrangement
of type I2(2m) in R

2 withm even and letW be the Coxeter group of this arrangement.
Let T0, . . . , T4m−1 be the chambers ofH, indexed so that that Ti and Ti+1 share a wall.
Let K ∈ C(V ) and a ∈ V . Suppose that K is stable by W and contains the convex
hull of the set {w(a) : w ∈ W }. Then the quantity

3∑

i=0

[Tr+mi ∩ (K + a)] ∈ K0(V ),

is independent of 0 ≤ r ≤ m − 1. (This implies the Hirschhorns’s result even in
the case where k is odd: Just apply the previous statement with m = 2k, and share
the pizza between k people by giving the pth person the eight slices contained in the
chambers T2p+mi and T2p+1+mi , for 0 ≤ i ≤ 3.)

Let us prove this result. Let 0 ≤ r ≤ m − 2. We want to show that

3∑

i=0

[Tr+im ∩ (K + a)] =
3∑

i=0

[Tr+1+im ∩ (K + a)],

in K0(V ). Suppose that we know that

3∑

i=0

[Tr+im ∩ R+(a) ∩ (K + a)] =
3∑

i=0

[Tr+1+im ∩ R−(a) ∩ (K + a)] (3.6)

in K0(V ), where R+(a) and R−(a) are given by

R±(a) = (V − R0(a)) ∩
⋃

T∈T (H)

(−1)T =±1

T .

Then it remains to see that

3∑

i=0

[Tr+im ∩ R0(a) ∩ (K + a)] =
3∑

i=0

[Tr+1+im ∩ R0(a) ∩ (K + a)],

in that same quotient. But now all the regions appearing in the sums are polygons,
so the equality of the sums of their classes in K0(V ) is equivalent to the equality of
the sums of their areas, by the Bolyai–Gerwien Theorem; see [2, Sect. 5]. This last
equality follows either from Proposition 9.1 of [7], or from the Hirschhorns’s result.
(The Hirschhorns only consider the case of a circular pizza, but, by Eq. (3.6), their
result for a circular pizza implies the result for the polygonal pizza R0(a).)

We first suppose that r is even. To prove Eq. (3.6), we suppose that T0, . . . , T2m−1
denote the samechambers as in the proof ofLemma3.10, andweuse the notationof that
proof. In particular, for 0 ≤ i ≤ 2m−1, the chamber T2m+i is equal to the region Ri,ε ,
where ε is the sign (−1)i . We have Tr ∩ R+(a) = Sr/2,+ ∪ Rr+1,+, Tr+m ∩ R+(a) =
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Fig. 4 The dissection that we use for odd r in the case of I2(8)

S(r+m)/2,+ ∪ Rr+m+1,+, Tr+2m ∩ R+(a) = Tr+2m = Rr ,+ and Tr+3m ∩ R+(a) =
Tr+3m = Rr+m,+. On the other hand, we have Tr+1 ∩ R−(a) = Sr/2,− ∪ Rr ,−,
Tr+1+m ∩ R−(a) = S(r+m)/2,− ∪ Rr+m,−, Tr+1+2m ∩ R−(a) = Tr+1+2m = Rr+1,−
and Tr+1+3m ∩ R−(a) = Tr+1+3m = Rr+m+1,−. This implies Eq. (3.6).

We now consider the case where r is odd. We again suppose that T0, . . . , T2m−1
denote the same chambers as in the proof of Lemma 3.10 and the notation of that
lemma, but we use a different dissection, that is illustrated in Fig, 4 in the casem = 4.
For 0 ≤ i ≤ 2m−2, we consider the same region Ri,± as in the proof of Lemma 3.10,
but we denote by R′

2m−1,− the chamber T2m−1. For every 1 ≤ j ≤ m − 1, we denote
by R′

2 j−1,+ (respectively, R′
2 j,−) the orthogonal reflection of R2 j,+ (respectively,

R2 j+1,−) in the line L⊥
2 j + a; note that R′

2 j−1,+ ⊂ T2 j and R′
2 j,− ⊂ T2 j−1. We also

denote by R′
0,− (respectively, R′

2m−1,+) the orthogonal reflection of R0,+ (respectively,

R′
2m−1,−) in the line L⊥

m +a. For 1 ≤ j ≤ m−1 again, we denote by S′
j,− the interior

of T2 j−1 − (R0(a) ∪ R′
2 j,−) and by S′

j,+ the interior of T2 j − (R0(a) ∪ R′
2 j−1,+).

Finally, we denote by S′
0,− the interior of T4m−1−(R0(a)∪R′

0,−) and S′
0,+ the interior

of T0 − (R0(a) ∪ R′
2m−1,+).

For 0 ≤ i ≤ 2m − 2, the chamber T2m+i is then equal to the region Ri,ε , where ε is
the sign (−1)i ; also, the chamber T2m−1 is equal to R′

2m−1,−. We have Tr ∩ R−(a) =
S(r+1)/2,− ∪ Rr+1,−, Tr+m ∩ R−(a) = S(r+m+1)/2,− ∪ Rr+m+1,−, Tr+2m ∩ R−(a) =
Tr+2m = Rr ,− and Tr+3m ∩ R−(a) = Tr+3m = Rr+m,−. On the other hand, we have
Tr+1 ∩ R+(a) = S(r+1)/2,+ ∪ Rr ,+, Tr+1+m ∩ R+(a) = S(r+1+m)/2,+ ∪ Rr+m,+,
Tr+1+2m ∩ R+(a) = Tr+1+2m = Rr+1,+ and Tr+1+3m ∩ R+(a) = Tr+1+3m =
Rr+m+1,+. This implies Eq. (3.6).

As in Frederickson’s article, there should also be a dissection-based proof of the
equality of areas that we use to finish the proof, but we were not courageous enough
to look for it.
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4 The Bolyai–Gerwien Theorem

The classical Bolyai–Gerwien Theorem states that two polygons are scissors congru-
ent if and only if they have the same area. There is also a well-known generalization
in higher dimensions that applies to parallelotopes; it follows from the characteri-
zation of translational scissors congruences in arbitrary dimensions, and was proved
independently by Jessen-Thorup and Sah; see the beginning of Section 7 of [17] or
Theorem 1.1 in Chapter 4 of [20]. In this section, we state a slight refinement of this
generalization, Theorem 4.1, that keeps track of lower-dimensional faces; in other
words, we do not want to ignore the boundaries.

As in the previous sections, let V be an n-dimensional real vector space with an
inner product (·, ·). If (v1, . . . , vr ) is a linearly independent list of elements of V , we
define the parallelotope

P(v1, . . . , vr ) =
{

r∑

i=1

aivi : 0 ≤ ai ≤ 1

}

.

We denote byP(V ) the set of all convex polytopes in V (including lower-dimensional
ones) andbyZ(V ) the subfamily of polytopes that are translates of parallelotopes of the
form P(v1, . . . , vr ). The setP(V ) satisfies the conditions of Definition 3.1, so we can
define an abelian group KP (V ) as in that definition.Wedenote by KZ (V ) the subgroup
of KP (V ) generated by the classes [P] for P ∈ Z(V ). Remark 3.3 implies that, if
Pext(V ) is the relativeBoolean algebra generated byP(V ), thenwe can define the class
[P] in KP (V ) of any element P inPext(V ). We denote byZext(V ) the set of elements
P of Pext(V ) such that [P] ∈ KP (V ) is in the subgroup KZ (V ). For example, the set
Zext(V ) contains Z(V ), and it also contains all half-open parallelotopes.

Recall V0, . . . , Vn denotes the intrinsic volumes on V ; see [21, Sect. 4.2]. These
are valuations on the set of all compact convex subsets of V , and in particular on
P(V ), so they induce morphisms of groups from KP (V ) to R, which we still denote
by V0, . . . , Vn . Note that V0 is the Euler-Poincaré characteristic with compact support,
so the image of KP (V ) is Z.

The main result of this section is the following isomorphism.

Theorem 4.1 The morphism (V0, V1, . . . , Vn) : KZ (V ) −→ Z × R
n is an isomor-

phism. In particular, if P, P ′ ∈ Zext(V ) are such that Vi (P) = Vi (P ′) for every
0 ≤ i ≤ n, then [P] = [P ′] in KZ (V ).

We will give the proof of the theorem at the end of this section.

Corollary 4.2 Suppose that dim(V ) = 2. Then the triple (V0, V1, V2) induces an iso-
morphism from KP (V ) to Z×R

2. In particular, if P, P ′ are two elements ofPext(V ),
then their classes in KP (V ) are equal if and only if Vi (P) = Vi (P ′) for all 0 ≤ i ≤ 2.

Proof By Theorem 4.1 it suffices to prove that KP (V ) = KZ (V ). As points and seg-
ments are parallelotopes, it suffices to prove that every polygon P is scissors congruent
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to a parallelogram, which follows from the Bolyai–Gerwien Theorem (see [2, Sect.
5]). ��
Remark 4.3 (1) If we take the quotient KP,0(V ) of KP (V ) by the subgroup generated

by the classes of lower-dimensional polytopes, then two polytopes have the same
class in KP,0(V ) if and only if they are scissors congruent, and the Bolyai–
Gerwien Theorem (see [2, Sect. 5]), says that, if dim(V ) = 2, the area V2 induces
an isomorphism from KP,0(V ) to R.

(2) If dim(V ) ≥ 3, then KZ (V ) �= KP (V ). Otherwise, every element of P(V ) of
positive volume would be scissors congruent to an element of Z(V ), hence to a
cube, and this is not true by the negative solution to Hilbert’s third problem (see
for example [2]).

Let Z ′(V ) be the set of translates of parallelotopes of the form P(v1, . . . , vr ), for
(v1, . . . , vr ) a linearly independent family of elements of V such that r ≤ n − 1, and
let K ′

Z (V ) be the subgroup of KZ (V ) generated by the classes of elements of Z ′(V ).
We also write Z ′

ext(V ) for the set of P ∈ Zext(V ) such that [P] ∈ K ′
Z (V ).

If P, P ′ ∈ Z(V ), we write P ∼ P ′ if there exist P1, . . . , Pr , Q1, . . . , Qs ∈
Pext(V ), a1, . . . , ar , b1, . . . , bs ∈ V and R, R′ ∈ Z ′

ext(V ) such that

P � Q1 � · · · � Qs = R � P1 � · · · � Pr and

P ′ � (Q1 + b1) � · · · � (Qs + bs) = R′ � (P1 + a1) � · · · � (Pr + ar ).

It is not hard to see that this is an equivalence relation, and that equivalent parallelotopes
have the same volume.

Lemma 4.4 Let W ,W ′ be subspaces of V such that V = W × W ′. We do not assume
that W and W ′ are orthogonal. Let P, P ′ ∈ Z(W ) and S, S′ ∈ Z(W ′) such that
P ∼ P ′ and S ∼ S′. Then the relation P × S ∼ P ′ × S′ holds.

Proof As ∼ is transitive and as W and W ′ play symmetric roles, it suffices to
treat the case where S = S′. We choose P1, . . . , Pr , Q1, . . . , Qs ∈ Pext(W ),
a1, . . . , ar , b1, . . . , bs ∈ W and R, R′ ∈ Z ′

ext(W ) such that

P � Q1 � · · · � Qs = R � P1 � · · · � Pr and P ′ � (Q1 + b1) � · · · � (Qs + bs)

= R′ � (P1 + a1) � · · · � (Pr + ar ).

Then

(P × S) � (Q1 × S) � · · · � (Qs × S) = (R × S) � (P1 × S) � · · · � (Pr × S),

and

(P ′ × S) � ((Q1 × S) + b1) � · · · � ((Qs × S) + bs)

= (R′ × S) � ((P1 × S) + a1) � · · · � ((Pr × S) + ar ).

As R × S and R′ × S are in Z ′
ext(V ), this implies that P × S ∼ P ′ × S. ��
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Fig. 5 Proof of Lemma 4.5

Fig. 6 Proof of Lemma 4.5

For two real numbers a, b ∈ R recall that the half open interval is given by (a, b] =
{t ∈ R : a < t ≤ b} and the closed interval by [a, b] = {t ∈ R : a ≤ t ≤ b}.
Lemma 4.5 Let (v1, . . . , vn) and (w1, . . . , wn) be bases of V , and let P =
P(v1, . . . , vn) and P ′ = P(w1, . . . , wn). Then Vn(P) = Vn(P ′) if and only if there
exists an isometry g of V such that P ∼ g(P ′).

In particular, if V = R
n, then, for every P ∈ Z(V ), the classes of P and of

(0, 1]n−1 × (0, Vn(P)] in KZ (V ) are equal modulo K ′
Z (V ).

Proof We already know that Vn(P) = Vn(P ′) if P ∼ g(P ′) with g an isometry
of V . We prove the converse by induction on n. It suffices to show that, for every
basis (v1, . . . , vn) of V , there exists an orthonormal basis (e1, . . . , en) of V and a ∈
R≥0 such that P(v1, . . . , vn) ∼ P(e1, . . . , en−1, a · en); we then must have a =
Vn(P(v1, . . . , vn)). There is nothing to prove if n = 0, and the claim is clear if n = 1.
Suppose that n = 2. The classical proofs that two parallelograms that have the same
basis and the same height are scissors congruent and that rectangles that have parallel
sides and the same area are scissors congruent use only translations to move the pieces
of the decompositions (see for example [8, Prop. 35] and Figure 30 on page 52 of
[2]; we reproduce the relevant decompositions in Figures 5 and 6). As the boundaries
of the polygons that we ignore when we are talking about scissors congruence are in
Z ′
ext(V ) when dim(V ) = 2, this gives the claim.
Suppose that n ≥ 3. Let (v1, . . . , vn) be a basis of V , and let P = P(v1, . . . , vn).

By the claim for n = 2 and Lemma 4.4, there exists an orthonormal basis (e1, e2)
of Span(v1, v2) and a ∈ R≥0 such that P ∼ P(e1, a · e2, v3, . . . , vn). Applying the
n = 2 case in Span(e1, v3) and Lemma 4.4, we can find v′

3 ∈ Span(e1, v3) orthogonal
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to e1 such that P ∼ P(e1, a · e2, v′
3, v4, . . . , vn). Now applying the n = 2 case in

Span(e2, v′
3), noting that this space is orthogonal to e1, and using Lemma 4.4, we can

find a unit vector e3 ∈ Span(e2, v′
3) that is orthogonal to e1 and e2 and b ∈ R≥0 such

that P ∼ P(e1, e2, b · e3, v4, . . . , vn). Continuing in this way, we finally obtain the
claim.

Weprove the last sentence of the lemma. If P is a translate of P(v1, . . . , vk)with k ≤
n−1, then the classes of P and of (0, 1]n−1×(0, Vn(P)] are both in K ′

Z (V ). Suppose
that P is a translate of P(v1, . . . , vn), with (v1, . . . , vn) a basis of V . By the first
assertion, there exists an isometry g ofV such that g·P ∼ [0, 1]n−1×[0, Vn(P)], so the
classes of P and of [0, 1]n−1×[0, Vn(P)] in KZ (V ) are equal modulo K ′

Z (V ). As the
difference between the classes of [0, 1]n−1×[0, Vn(P)] and of (0, 1]n−1×(0, Vn(P)]
is in K ′

Z (V ), the result follows. ��
Lemma 4.6 (i) Let H be a hyperplane of V . The inclusion Z(H) ⊂ Z(V ) induces

a morphism KZ (H) −→ KZ (V ) whose image is K ′
Z (V ).2

(ii) The subgroup K ′
Z (V ) is the kernel of the morphism Vn : KZ (V ) −→ R.

Proof (i) The existence of the morphism KZ (H) −→ KZ (V ) is clear, as well
as the fact that its image is contained in K ′

Z (V ). Conversely, any translate of
P(v1, . . . , vk) with k ≤ n − 1 can be moved by an affine isometry to lie in H , so
its class is in the image of KZ (H).

(ii) Wemay assume that V = R
n . Any polytope inZ ′(V ) has volume zero, so K ′

Z (V )

is included in the kernel of Vn .We prove the reverse inclusion. Let x be an element
of Ker Vn , and write x = ∑r

i=1 αi [Pi ], with αi ∈ {±1} and Pi ∈ Z(V ). We want
to show that x ∈ K ′

Z (V ). By Lemma 4.5, for every 1 ≤ i ≤ r , the class of Pi
is equal to the class of (0, 1]n−1 × (0, Vn(Pi )] modulo K ′

Z (V ). So x is equal
modulo K ′

Z (V ) to the sum

r∑

i=1

αi [(0, 1]n−1 × (0, Vn(Pi )]] = [(0, 1)n−1 × (0, V+]] − [(0, 1]n−1 × (0, V−]],

where V± = ∑
1≤i≤r , αi=±1 Vol(Pi ). As V+ − V− = Vn(x) = 0 by assumption,

we conclude that x ∈ K ′
Z (V ).

��
Proof of Theorem 4.1 Let V∗ = (V0, V1, . . . , Vn) : KZ (V ) −→ Z × R

n . Then the
morphism V∗ sends the class of a point to (1, 0, . . . , 0), so its image contains the
factor Z. Denote by (e1, . . . , en) the canonical basis of R

n . If i ∈ {1, . . . , n} and a ∈
R≥0, then by Lemma 3.6 V∗ sends the class of the half-open rectangular parallelotope
(0, 1]i−1 × (0, a] × {0}n−i to (0, a · ei ) ∈ Z × R

n , so the image of V∗ contains R · ei .
This shows that V∗ is surjective.

We now prove the injectivity of V∗ by induction on dim(V ). If dim(V ) = 0, the
result is clear. Suppose that dim(V ) > 0 and that we know the result for spaces of

2 In fact, it follows from Theorem 4.1 that KZ (H) −→ KZ (V ) is injective, so we get an isomorphism
from KZ (H) to K ′

Z (V ).
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smaller dimension. Let x ∈ KZ (V ) such that Vi (x) = 0 for 0 ≤ i ≤ n. In particular,
we have Vn(x) = 0, so x ∈ K ′

Z (V ) by Lemma 4.6(ii). Let H be a hyperplane of
V . Then x is in the image of the morphism KZ (H) −→ KZ (V ) by Lemma 4.6(ii);
choose a preimage y ∈ KZ (H) of x . If 0 ≤ i ≤ n − 1, then we have Vi (y) = Vi (x)
because intrinsic volumes do not depend on the dimension of the ambient space (see
the top of page 214 of [21]), so Vi (y) = 0. It follows from the induction hypothesis
that y = 0, and we conclude that x = 0. ��
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