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Abstract
In this article, we investigate short topological decompositions of non-orientable sur-
faces and provide algorithms to compute them. Our main result is a polynomial-time
algorithm that for any graph embedded on a non-orientable surface computes a canoni-
cal non-orientable systemof loops so that any loop from the canonical system intersects
any edge of the graph in at most 30 points. The existence of such short canonical
systems of loopswaswell known in the orientable case and an open problem in the non-
orientable case. Our proof techniques combine recent work of Schaefer-Štefankovič
with ideas coming from computational biology, specifically from the signed reversal
distance algorithm of Hannenhalli-Pevzner. The existence of short canonical non-
orientable systems of loops confirms a special case of a conjecture of Negami on the
joint crossing number of two embeddable graphs. We also provide a correction for
an argument of Negami bounding the joint crossing number of two non-orientable
graph embeddings. Finally, we provide a generalization of O(g)-universal shortest
path metrics to non-orientable surfaces.
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1 Introduction

1.1 Topological Decompositions and Joint Crossing Numbers

Decomposing a surface along a graph or a curve is a standard way to simplify its
topology. The classification of surfaces and classical tools to compute both homology
groups and fundamental groups typically rely on such topological decompositions,
which are also important in meshing and 3D-modeling (see [29]). Surfaces often come
with extra structure which can be modeled by an embedded graph. Decomposing such
a surface efficiently corresponds to finding another cellularly embedded graph that has
few (transverse) intersections1 with the original graph (see for example [20] or [10]).
Such decompositions also appear in algorithm design: often, to generalize results on
planar graph to graphs embedded on surfaces, its enough to find a decomposition that
cuts open the surface into a disk, then solve the resulting planar instance and stitch
back the solution, see, e.g., [4, 9, 20].

In many applications, it is important that the graph along which we cut is canonical
in some sense. For example, in order to compute a homeomorphism between two sur-
faces, a common approach is to cut them into disks, put these disks in correspondence,
and glue back the surfaces so as to obtain a homeomorphism. However, this onlyworks
if the cut graphs have the same combinatorial structure. A seminal result on topolog-
ical decompositions was pionereed by Lazarus, Pocchiola, Vegter and Verroust [20]
(see also [19]) who designed an algorithm that finds, for any graph G embedded on
a closed orientable surface S a canonical system of loops H such that no edge of H
intersects any edge of G more than a constant number of times. Here by a canonical
system of loops we mean a one-vertex and one-face embedded graph in which the
cyclic ordering of the edges around the vertex is a1b1a

−1
1 b−1

1 . . . agbga−1
g b−1

g . The
polygon obtained after cutting along such a system of loops, with the data of the
boundary identifications, is called a canonical polygonal scheme.

Such a decomposition is an instance of the problem of finding simultaneous embed-
dings for two graphs on a surface such that the number of crossings between the two
graphs is minimized. More precisely, consider a pair of graphs G1 and G2 embedded
on a closed surface S of genus g and define the joint crossing number as the mini-
mal number of crossing points between h(G1) and G2 over all the homeomorphisms
h : S → S. This quantity was initially introduced by Negami [24] who proved that
any two graphs G1 and G2 embedded on a closed surface of genus g, have joint
crossing number O(g|E(G1)||E(G2)|), where |E(G)| is the number of edges in G.
Furthermore, he made the following conjecture, which is still open.

Conjecture 1.1 There exists a universal constant C such that for any pair of graphs
G1 and G2 embedded on a surface S, the joint crossing number is at most
C |E(G1)||E(G2)|.

This conjecture has been investigated further [1, 16, 25] and variants of this prob-
lem have appeared in various works with applications as diverse as finding explicit

1 Throughout the article, we decompose surface-embedded graphs by cutting them along embedded graphs
which are transverse to the original graph, and count the number of intersections. This is equivalent to the
primal setting studied in, e.g., Lazarus et al. [20] via graph duality.
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bounds for graph minors [11] or designing an algorithm for the embeddability of sim-
plicial complexes into R

3 [21]. From the perspective of topological decompositions,
Negami’s conjecture posits that short decompositions of any fixed shape exist, in the
sense that one can always decompose an embedded graph along a chosen topological
decomposition (modeled by a second, cellularly embedded graph), in such a way that
each edge of the decomposition crosses each edge of the graph O(1) times.2 Such
a bound is known for only very few shapes. Beyond orientable canonical systems of
loops, Colin De Verdière and Erickson [6] proved the existence of a short octagonal
decomposition for orientable surfaces and provided an algorithm to compute it. We
do not know of any other construction of short decompositions than those two and
variants thereof.

In particular, no short decomposition at all seems to be known for non-orientable
surfaces. Even if G1 is a non-orientable canonical system of loops, that is, a system
of one-sided loops with the cyclic ordering a1a1a2a2 . . . agag around the vertex, the
best known bound for this system is O(g|E(G2)|) crossings for each edge of the
decomposition (see [19]), which matches the bound claimed by Negami. Due to their
extra difficulty, non-orientable surfaces have been often somehow neglected in com-
putational topology, but there are many reasons to want to correct this: natural models
of random surfaces yield non-orientable surfaces with overwhelming probability, they
appear naturally as configuration spaces in diverse contexts [12, 28], and insights gar-
nered from non-orientable surfaces can sometimes also be applied in a subtle way
to the orientable ones; see for example [26]. Furthermore the orientable genus of a
graph can be arbitrarily larger than its non-orientable genus, while the reverse does
not happen (see Lemma 2.5).

1.2 Our results

In this article, we initiate a thorough study of short topological decompositions on non-
orientable surfaces. As outlined above, one of the only results known on topological
decompositions of non-orientable surfaces is a theorem of Negami [24]. We first
show that the proof of this result has a minor flaw and exhibit a specific counter-
example to the proof technique. Thenweprovide an alternative proof based ondifferent
techniques.

Theorem 1.2 Let S be a non-orientable surface of genus g ≥ 1 and G1 and G2 be
two graphs embedded on S. Then there exists a homeomorphism h such that any edge
of h(G1) crosses each edge of G2 at most O(g) times. In particular, the total number
of crossings between h(G1) and G2 is O(g|E(G1)||E(G2)|).

In order to prove this theorem we take advantage of a technique in [21] to compute
a short orienting curve, i.e., a curve such that cutting along it yields an orientable
surface. This versatile technique is also primordial in our main result, which is the
following theorem providing, to the best of our knowledge, the first known case of a
short topological decomposition into a disk for non-orientable surfaces.

2 This statement is slightly stronger than Conjecture 1.1 since it enforces a control on the number of
crossings between each pair of edges instead of the total number of crossings, but it is equally open.
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Theorem 1.3 There exists a polynomial time algorithm that given a graph cellularly
embedded on the non-orientable surface N computes a non-orientable canonical
system of loops such that each loop in the system intersects any edge of the graph in
at most 30 points.

Finally, one more application of cutting along an orienting loop is the following
theorem, generalizing results on universal shortest path metrics obtained in [18] to
non-orientable surfaces.

Theorem 1.4 For g ≥ 3, there exists a hyperbolic metric m on the non-orientable
surface N of genus g such that any graph embeddable on N can be embedded so that
every edge is a concatenation of O(g) shortest paths.

The proof of Theorem 1.4 relies, after cutting along an orienting loop, on techniques
fairly identical to those in [18].

1.3 Main Ideas and Proof Techniques

As in many similar works, the first step in most of our results is to contract a spanning
tree of the underlying graph, reducing the problems to the setting of one-vertex graphs
embedded on a non-orientable surface. The combinatorics of a one-vertex embedded
graph are completely described by an embedding scheme, i.e., by the circular order
of the edges around the vertex, and a signature for each loop indicating whether it
is one-sided or two-sided. Such an embedding scheme will be the basic object with
which we work.

A simple but important object thatwe rely on extensively is an orienting curve. Itwas
shown byMatoušek, Sedgwick, Tancer andWagner [21] that given a graph embedded
on a non-orientable surface, one can compute an orienting curve that crosses each edge
of the graph at most a constant number of times. This lemma allows us, at the cost of
slightly increasing the constants in our results, to assume that our embedding schemes
always have an orienting curve. With this tool at hand, we provide a corrected proof
of Theorem 1.2. Furthermore, the existence of this orienting curve will significantly
simplify our work to prove Theorem 1.3.

For the proof of Theorem 1.3, we first point out that the techniques used to prove
the orientable version in [20] do not readily apply, as they rely on a fine control of
the cut-and-pasting operations used in the proof of the classification of surfaces, and
in the non-orientable case there is an additional step in these operations which incurs
an overhead of O(g) in the number of crossings of the resulting curves (see [19,
Thm. 4.3.9]). Instead, our proof of Theorem 1.3 builds on important recent work of
Schaefer and Štefankovič [27]. The foundational idea behind this work, which takes
its roots in an article of Mohar [22] on the degenerate crossing number, is to represent
a graph embedded on a non-orientable surface of genus g as a planar drawing, with g
cross-caps, which are points where multiple edges are allowed to cross in a way that
reverses the permutation, as pictured in the second picture of Fig. 1. Using an intricate
argument inducting on the loops of an embedding scheme, Schaefer and Štefankovič
showed that any graph embedded on a non-orientable surface can be represented by
such a cross-cap drawing so that each edge uses each cross-cap at most twice. Our
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Fig. 1 From left to right: (1) the combinatorial information of a one-vertex graph. (2) A cross-cap drawing
of this graph, with cross-caps connected to a basepoint. (3) A joint drawing of the graph and a canonical
system of loops. (4) A different representation: decomposing the graph with a canonical system of loops

main technical contribution is to upgrade their construction so that the cross-caps can
be connected to each other so as to yield a non-orientable canonical system of loops
(Lemma 2.6), so that each loop intersects each edge of the one-vertex graph in at most
30 points (see Fig. 1).

The complexity of the drawings provided by the proof of Schaefer and Štefankovič
increases too fast to directly obtain a good bound by just connecting the cross-caps.
Therefore, we modify their algorithm. First, by the aforementioned techniques, we
can assume that we always have an orienting loop, which simplifies some of the steps
and provides additional structure to the inductive argument. But more importantly, we
show that one can impose a certain order in which we choose the one-sided loops, as
well as the separating loops, in the inductive argument of Schaefer and Štefankovič
so as to obtain a finer control on the resulting drawing.

The order in which we choose loops comes from a seemingly unrelated problem in
computational biology, and more precisely genome rearrangements. Given a permuta-
tionw on a set of distinct letters with signatures (a bit assigned to each letter), a signed
reversal consists in choosing a subword in w, and reversing it as well as the signatures
of all its letters. The signed reversal distance between two signed permutations is the
minimum number of signed reversals needed to go from one permutation to the other
one. This distance, and in particular algorithms to compute it has been intensively
studied in the computational biology literature due to its relevance for phylogenetic
reconstruction (see for example [15]). A cornerstone of the theory is the breakthrough
of Hannenhalli and Pevzner [13] who provided an algorithm to compute the signed
reversal distance between two signed permutations in polynomial time (see also the
reformulation by Bergeron [2]). Now, as we illustrate in Fig. 2, there is a very strong
similarity between computing the signed reversal distance between two permutations
and embedding a one-vertex graph built from these two permutations with a mini-
mum number of cross-caps (see [3, 17]). Surprisingly the algorithms of Hannenhalli
and Pevzner on one side and of Schaefer and Štefankovič on the other also have
similarities. The proof of Theorem 1.3 leverages the literature on the signed reversal
distance problem, and in particular the structure we impose on the cross-caps drawings
of non-orientable graphs is inspired on ideas from the aforementioned genome rear-
rangements algorithms. We hope that further interpollination between computational
genomics and computational topology will lead to new surprises.
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Fig. 2 Left: a pictorial representation of three signed reversals bringing the signed permutation on the left
to the signed permutation on the right. Right: Attaching the two permutations to a common basepoint yields
a one-vertex graph with an embedding scheme, and the signed reversals provide a cross-cap drawing of that
embedding scheme where each loop enters each cross-cap at most once

Outline After introducing the preliminary definitions and results in Sect. 2, we will
prove Theorems 1.2, 1.3 and 1.4 in Sections 3, 4 and 5 respectively.

2 Preliminaries

While this paper strives to be mostly self-contained, we refer the reader to standard
references such as Hatcher [14] and Stillwell [30] for more topological background,
the book of Mohar and Thomassen for an extensive overview of graphs on surface
[23] and the survey of Colin de Verdiere [5] on topological algorithms for embedded
graphs.

2.1 Surfaces

A surface S is a topological Hausdorff space where each point has a neighborhood
homeomorphic to either the plane or the closed half-plane. The points without a neigh-
borhood homeomorphic to the plane comprise the boundary of M . Compact surfaces
without boundaries are called closed surfaces. A surface is called orientable if it does
not contains a subspace homeomorphic to a Möbius band; otherwise, it is called non-
orientable. Throughout this work, we denote orientable surfaces and non-orientable
surfaces by M and N respectively, and by S whenever orientability does not make a
difference.

The classification theorem for closed surfaces states that any orientable surface M
of genus g ≥ 0 is homeomorphic to a sphere with g handles,3 g is called the orientable
genus of M ; and any non-orientable surface N of genus g ≥ 1 is homeomorphic to a
sphere with g cross-caps,4 in this case, g is the non-orientable genus of N (see Fig. 3).

3 A handle is obtained by removing a small disk and gluing a punctured torus along its boundary to the
boundary circle of the resulting hole (see the left picture in Fig. 3).
4 A cross-cap is obtained by removing a small disk from the sphere and gluing in a Möbius band along its
boundary to the boundary circle of the resulting hole (see the right picture in Fig. 3).
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Fig. 3 Depiction of compact surfaceswithout boundaries obtained by attaching handles (orientable surfaces,
left picture) or cross-caps (non-orientable surfaces, right picture)

Throughout this work, by the genus of a surface, we mean the orientable genus for
orientable surfaces and the non-orientable genus for non-orientable surfaces. If S is a
surface with k boundary components, the classification theorem still applies, except
that we need to replace the initial sphere with a sphere with k holes. Thus a surface is
uniquely determined by its genus, by its number of boundary components, and by its
orientability.

2.2 Curves and Embedded Graphs

A closed curve or a cycle on a surface S is a continuous map θ : S1 → S. A map
θ : S1 → S is called a constant cycle if it is a constant map. By a path from x to y on
a surface, we mean a continuous map θ : [0, 1] → S where θ(0) = x and θ(1) = y.
A path with two ends on the boundary of a surface is called an arc. These are called
simple if the maps are injective.

We call a closed curve on a surface two-sided if a small closed neighborhood of it
is homeomorphic to the annulus. Otherwise, it is called one-sided and it has a closed
neighborhood homeomorphic to theMöbius band. Given a closed curve ν on a surface
S, cutting S along ν gives a (possibly disconnected) surface with one or two boundary
components depending on whether ν is one-sided or two-sided. A curve δ on a surface
S is called non-separating if the surface we obtain by cutting along δ is connected;
otherwise δ is separating. An orienting curve5 on a non-orientable surface N is a curve
γ such that by cutting along γ , we get a connected orientable surface. We recall the
following lemma from [21].

Lemma 2.1 [21, Lem. 5.3] Let N be a non-orientable surface of genus g with h
boundary components and let γ be an orienting closed curve. Let gγ be the (orientable)
genus and hγ be the number of boundary components in N after cutting along γ .

• If g is odd, then γ is one-sided, gγ = g−1
2 , and hγ = h + 1

• If g is even, then γ is two-sided, gγ = g−2
2 , and hγ = h + 2.

5 This terminology is slightly non-standard, we follow Schaefer and Štefankovič [27] who attribute it to B.
Mohar.
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Two paths p and q with the same endpoints a and b on a surface S, are homotopic if
there is a continuousmap H : [0, 1]×[0, 1] → S such that H(0, .) = p , H(1, .) = q,
H(., 0) = a, and H(., 1) = b. Two cycles γ and γ

′
are (freely) homotopic if there is a

continuousmap H : [0, 1]×S1 → S such that H(0, t) = γ (t) and H(1, t) = γ
′
(t) for

all t . A cycle is contractible if it is homotopic to a constant cycle; an arc is contractible
if it is homotopic to a path on the boundary.

2.3 Graph Embeddings

In a drawing of a graph on a surface, every vertex is mapped to a point on the surface
and edges are realized as curves connecting their endpoints. Informally, a drawing of
the graph G on a surface S with no crossing on the edges is called an embedding of
G on S. More precisely, an embedding of G is a continuous, one-to-one map from
G into S. In this work, we generally identify G with its embedding on S. A graph
embedding is called cellular if its faces are homeomorphic to open disks. For a graph
G cellularly embedded on a surface S, Euler’s formula states that v − e + f = χ(S),
where v, e and f represent the number of vertices, edges and faces of G and χ(S)

is the Euler characteristic, a topological invariant that depends only on the surface
and not on the cellular embedding. The Euler genus of a closed surface is defined
by eg(S) = 2 − χ(S). It is easy to see that the Euler genus is twice the orientable
genus for orientable surfaces, and equal to the non-orientable genus for non-orientable
ones. We take these identities as definition for surfaces with boundary, then the Euler
characteristic of a surface with boundary is 2 − eg(S) − k where k is the number of
the boundary components of the surface. Cutting a surface along an arc α increases
the Euler characteristic of the surface by 1 and cutting along a closed curve does not
change the Euler characteristic. These relations allow us to relate the genus and the
number of boundary components of a surface after a cutting.

Lemma 2.2 Let t be a separating (closed) curve on a closed surface S and let S1 and
S2 be the surfaces we obtain by cutting along t. We have eg(S) = eg(S1) + eg(S2).

Proof By cutting along t , we get two boundary components, one on each of S1 and S2
and since t is a closed curve, we have 2−eg(S) = (2−eg(S1)−1)+(2−eg(S2)−1)
which proves the claim. ��

2.4 Discrete Metric on Surfaces

We briefly define the notions of combinatorial and cross-metric surfaces, which define
a discrete metric on a surface and are essentially the same, up to duality (see [6] for
more details). For a graph G cellularly embedded on a surface without boundary, the
dual graph G∗ is defined as follows: to each face of G we associate a vertex and for
each edge e in G that is in common between the faces f1 and f2, we connect the
vertices associated to f1 and f2. In this construction, two vertices can be connected
withmultiple edges if they havemore than one common edge. A dual graph embedding
is also cellular and G∗∗ = G.
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A combinatorial surface is a surface S together with a graph G which is cellularly
embedded on S. In the case that S has boundary, G is embedded so that the boundary
is the union of some edges ofG. In this model, the only allowed curves are walks inG,
and the length of a curveC is the number of edges ofG traversed byC . A cross-metric
surface is a surface S together with a graph G which is cellularly embedded on S.
In the case that S has boundary, G is embedded so that the boundary is the union of
some edges of G. The curves allowed in this definition, are those that cross G only
transversely (i.e., that intersect G only at edges and in a non-tangent way), and the
length of a curve C is the number of edges of G that C crosses.

In thiswork,wemostlywork in the cross-metricmodel andwe refer to the embedded
graph G of the cross-metric surface S, as the primal graph on S. The multiplicity of a
curve, respectively of a system of curves, at some edge e of G is the number of times
e is crossed by the curve, respectively the sum of all the intersections of e with the
curves of the system. Themultiplicity of a curve (or a system of curves) is the maximal
multiplicity of the curve (curves) at any edge e of G.

2.5 Embedding Schemes

For v a vertex of an embedded graph G, by a rotation ρv at v, we mean the cyclic
permutation of the ends of edges incident to v. A rotation system, ρ, of a graph assigns
a rotation to each vertex. We assign to each edge a signature which is a number from
{1,−1}. A rotation system ρ and a signature λ for the edges determine a cellular
embedding for the graph up to homeomorphism i.e. we can compute the faces of the
embedding purely combinatorially (see [23] for further details). The pair (ρ, λ) is
called an embedding scheme for the graph G, we sometimes use scheme instead of
embedding scheme in this work. Since a first step in all of our arguments is to contract
a spanning tree, almost all the embedding schemes considered in this article will have
a single vertex. We sometimes allow ourselves to denote an embedding scheme with
a single letter, e.g., G := (ρ, λ).

A cycle in an embedding scheme is one-sided if the signature of its edges multiply
to −1 and it is two-sided otherwise. An embedding scheme is orientable if all its
cycles are two-sided, and non-orientable otherwise. A loop e in the embedding scheme
divides the half-edges around the vertex into two parts; each part is called a wedge
of e. When a loop g has exactly one end in each wedge of e, we say that the ends
of g alternate with those of e; otherwise both ends of g is in one wedge of e and
we say that the ends of e enclose the ends of g. Finally, we slightly depart from the
convention in topological graph theory: we do not assume that an embedding scheme
describes a cellularly embedded graph, since we will sometimes consider orientable
schemes over non-orientable surfaces. However, we will always consider embedded
graphs (and their embedding schemes) on surfaces of minimal non-orientable genus,
so while these graphs are sometimes not cellularly embedded, they have at most one
non-cellular face with non-orientable genus one (see Lemma 2.5).

Following Schaefer and Štefankovič [27], we will use the following model with
localized cross-caps to represent non-orientable embedded graphs. A planarizing sys-
tem of disjoint one-sided curves on a non-orientable surface, abbreviated PD1S, is a
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Fig. 4 Different localization for the same embedding scheme gives different cross-cap drawings

system of g disjoint one-sided curves such that by cutting along them, we obtain a
sphere with g holes (this was first introduced by Mohar [22]). By cutting along such
a system, from any graph embedded on a non-orientable surface, we obtain a planar
representation. The non-orientable surface is recovered by gluing a Möbius band on
each boundary component, which we depict using

⊗
and call a cross-cap. It can be

easily checked that a family of edges entering a cross-cap emerge on the other side
with a reversed order, and that the sidedness of a loop is determined by the number of
times it enters the cross-caps.

The planar drawing that we obtain by this cross-cap localization is called a cross-
cap drawing, see Fig. 4 for examples. In this model, we say that a drawing realizes an
embedding scheme (G, ρ, λ) if the rotation at each vertex is as prescribed by ρ, and
if whenever a closed curve in the drawing passes through an odd (resp. even) number
of cross-caps, the multiplication of the signatures of the edges it follows is −1 (resp.
1). While a cross-cap drawing uniquely describes an embedded graph, the converse
is not true, see Fig. 4. Throughout this article, by a cross-cap drawing for a graph G
with an embedding scheme (ρ, λ), we mean the planar graph with cross-caps treated
as extra vertices and edges being the sub-edges in G.

The following lemma helps us recognize an orienting loop in a one-vertex scheme.

Lemma 2.3 A loop o in a cellularly embedded one-vertex graph G with a non-
orientable embedding scheme is orienting if and only if its ends enclose the ends of
any two-sided loop and alternate with the ends of any one-sided loop in the embedding
scheme.

Proof For the forward implication, let o be an orienting loop and consider a cross-cap
drawing of G with a minimal number of cross-caps. By the classification of surfaces
and Lemma 2.1, there is, up to homeomorphism, a single orienting loop, and therefore
we can assume that in this cross-cap drawing the loop o goes exactly once through
each cross-cap. The loop o separates the plane into two regions, and since two-sided
loops cross an even number of cross-caps, they start and end in the samewedge formed
by o. Likewise, since one-sided loops cross an odd number of cross-caps, they start
and end in a different wedge, and thus alternate with o.

For the reverse implication, we investigate the surface and the graph obtained after
cutting along o. If o is one-sided, the resulting surface has one boundary, and the
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vertex is split into two vertices on the boundary. If o is two-sided the resulting surface
has two boundaries, and the vertex is split into two vertices, one on each boundary.
In both cases, loops which were alternating with o are now arcs connecting two dis-
tinct vertices, while loops which were not alternating with o has both endpoints on
one vertex. After the cutting, edges keep their signature, and thus we see that edges
connecting the two vertices have signature−1 and any cycle in the resulting graph has
signature 1. Thus the resulting embedding scheme is orientable, and since the graph
embedding was cellular before cutting, it still is after cutting, and the resulting surface
is orientable. Therefore, o is orienting. ��

The following lemma helps us identify separating and orienting loops in cross-cap
drawings. This result also appears in [27, Lems. 3 and 4]. We include a proof for
completeness.

Lemma 2.4 In any cross-cap drawing of an embedding scheme, a separating loop
passes through each cross-cap an even number of times; and an orienting loop passes
through each cross-cap an odd number of times.

Proof Actually this statement does not depend on the whole embedding scheme, only
on the loops. It is enough to show that:

• A cross-cap drawing of a separating closed curve passes through each cross-cap
an even number of times.

• A cross-cap drawing of an orienting closed curve passes through each cross-cap
an odd number of times.

Observe that if γ is one-sided it cannot be separating, moreover γ can separate
the surface into at most two connected components, one for each side of γ and if γ

is separating every time we cross γ we should change connected component. Now
consider a cross-cap drawing of γ , and assume to reach a contradiction that some cross
cap is crossed an odd number of times by γ . Choose any wedge around that cross cap
and notice that if we go around the cross-cap with a curve γ ′, to reach the opposite
wedge defined by γ , then γ ′ and γ intersect an odd number of times, so they should
be in different connected components of the complement of γ . This is a contradiction
since opposite wedges are clearly in the same connected component.

Let γ be an orienting curve, and denote by α1, . . . , αg the PD1S underlying the
cross-cap drawing.By the classification of surfaces,γ is unique up to homeomorphism,
i.e., there exists (another) cross-cap drawing where γ goes exactly once through every
cross-cap. The image of a curve αi under this homeomorphism is a simple closed
curve on the same surface, which in this new cross-cap drawing intersects γ and the
new cross-caps. Furthermore, it intersects the new cross-caps an odd number of times
since it is one-sided. Now it is immediate that in this new representation, γ partitions
the plane into two regions, and any curve crossing the cross-caps an odd number of
times must cross γ an odd number of times. This proves the needed property. ��
Lemma 2.5 Let G be an orientable scheme corresponding to a cellular embedding
on a surface M with a minimum number of g > 0 handles. The minimum number of
cross-caps needed in a cross-cap drawing realizing G is 2g + 1 and this can always
be achieved.
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Proof The embedding scheme has Euler genus 2g, hence at least 2g cross-caps are
required. Lemma 6 in [27] states that any cross-cap drawing of an orientable scheme
of genus g �= 0 requires an odd number of cross-caps, so at least 2g + 1 are required.
To see that this always suffices we begin with the embedding on the orientable surface
and add a cross-cap in one of the faces of G on M ; this gives us an embedding of G
on a non-orientable surface with one cross-cap and g handles that is homeomorphic
to the non-orientable surface N with 2g + 1 cross-caps. ��

2.6 Canonical System of Loops

A system of loops is a family of loops cutting a surface into a topological disk. For an
orientable surface M of genus g, we define the orientable canonical system of loops to
be a family of two-sided loops with the cyclic ordering a1b1a2b2 . . . agbgagbg around
the basepoint, such that cutting M along this family yields a topological disk. For a
non-orientable surface N of genus g, the non-orientable canonical system of loops
is a family of one-sided loops with the cyclic ordering a1a1a2a2 . . . agag around the
basepoint such that cutting N along this family yields a topological disk. Specifying
a system of loops and a cyclic ordering of the edges around the basepoint is the same
as specifying a polygon and data indicating how to glue the edges so as to recover
the surface: such a polygon is called a polygonal scheme; it is a canonical polygonal
scheme if the system of loops is canonical.

The following lemma underpins our strategy to prove Theorem 1.3: in order to find
a non-orientable canonical system of loops, first find a cross-cap drawing and connect
the cross-caps to a root using short paths (see Fig. 1).

Lemma 2.6 Let H be a cross-cap drawing for a graph of non-orientable genus g and
let b be a point in one face of the drawing. Let {pi } be a family of paths in the dual
graph to this drawing from each cross-cap to b. Introduce a loop ci by starting from
b, passing along the path pi , entering the corresponding cross-cap, going around
the cross-cap and passing along pi to return to b. The system of loops {ci } is a non-
orientable canonical system of loops.

Proof It is easy to check that each ci has consecutive ends around b. Each curve ci
is homotopic to a concatenation of a curve in a planarizing system of disjoint one-
sided curves and two copies of a path pi , therefore it is one-sided. Cutting along
these system of curves corresponds to cutting along a planarizing disjoint one-sided
loops which gives us a sphere with g boundary components and then cutting along
the paths {pi } which connect these boundary components and cut them to a single
boundary. Therefore, cutting along {ci }, cuts the surface into a disk, and we obtain a
non-orientable canonical system of loops. This is illustrated in Fig. 1. ��

2.7 Short Orienting Curves

Throughout this paper, to deal with non-orientable surfaces, we turn them to an ori-
entable surface by cutting along an orienting curve. For this approach to work in our
problems, we need to ensure that we can find an orienting curve that crosses our primal
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Fig. 5 The thick lines in the left picture, depict the edges adjacent to a vertex that inherit the same orientation
from different faces. The dashed red lines in the right picture are shortened and shifted copies of these edges
joined according to the pairing. The arrows indicate the refinement of the local orientation

graph not too many times. The following lemma is a restatement of in [21, Prop. 5.5].
We provide a sketch of the proof, explaining how to extend it to arbitrary embedded
graphs and how to modify it to get orienting arcs in the presence of boundaries.

Lemma 2.7 Let N be a non-orientable surface without boundary and with genus g
and G be a graph embedded on N. Then there exists an orienting curve of multiplicity
at most 2.

Sketch of the proof We begin by adding edges to the embedded graph G in order to
get cellular faces. We assign a local orientation to each face, that is a cyclic order
to the vertices of each face along its boundary. Two adjacent faces are said to have
incoherent orientations if they induce the same orientation on the edge they have in
common. Cutting the surface along all incoherent edges gives us an orientable surface.
For any vertex v there is an even number of edgeswith incoherent orientations adjacent
to v. We pair these edges around each vertex, shift them slightly so that they cross the
original graph only transversely and we add segments to join two paired edges. We
can modify our local orientation slightly to show that cutting along our new system
of edges gives us an orientable surface; see Fig. 5 which is almost identical to one in
the proof of [21, Prop. 5.5].

This collection of edges forms a disjoint union of closed curves (possibly a single
curve). These curves can only cross an edge of the graph near the vertices and therefore
the whole system of curves crosses each edge ofG at most twice. If we have one curve,
then this curve is the desired orienting curve. In the case we have more than one curve,
we can find short paths (paths that do not intersect edges that are already crossed
by the curves) that join a pair of these curves at each step. By slightly changing the
orientations around these paths, we can merge these curves and paths to a single curve.
For the complete proof see [21]. ��
Remark 2.8 If N is a non-orientable surface with a boundary component, by a little
modification of the building process in the proof of the lemma, we can get an orient-
ing arc instead of an orienting cycle. If the surface has boundary, the local orientation
around each boundary is similar to that of a vertex. We choose one boundary compo-
nent. We shift incoherent edges around this boundary and join all these edges by pairs
except for one pair of edges. This way we get an arc and a system of closed curves
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and we can proceed as explained in the proof to join these components and get one
orienting arc.

3 Correcting Negami’s Proof

Negami proved in [24] that if we have two graphs embeddable on a closed surface,
we can reembed them simultaneously such that their edges cross few times. The Betti
number of a connected graph G is β(G) = |E(G)| − |V (G)| + 1.

Theorem 3.1 [24, Thm. 1] Let G1 and G2 be two connected graphs embeddable on
a closed surface of genus g, orientable or non-orientable. We can embed them simul-
taneously such that they intersect transversely in their edges at most 4gβ(G1)β(G2)

times.

The statement in Theorem 3.1 is correct in the case of orientable surfaces. In the
non-orientable case, Negami’s proof is incorrect, but the statement remains correct
(with a slightly worse constant factor).

Negami reduces the proof of Theorem 3.1 to the following lemmas (with slightly
different constants). The proof of Lemma 3.2 is correct, but the proof technique behind
Lemma 3.3 is not. An arc is called an essential proper arc if it does not cut off a disk
from the surface.

Lemma 3.2 For two orientable surfaces Mi of genus g ≥ 1, with one boundary com-
ponent and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi ), there exist
an orientable surface M of genus g with one boundary component and homeomorphic
embeddings of M1 and M2 in M so that the images of the arcs in M1 and M2 intersect
at most 4(g − 1)β1β2 times.

Lemma 3.3 For two non-orientable surfaces Ni of genus g ≥ 1 with one boundary
component andβi disjoint essential proper arcs (i = 1, 2), there exist a non-orientable
surface N of genus g with one boundary component and homeomorphic embeddings
of N1 and N2 in N so that the images of the arcs in N1 and N2 intersect at most
18(g − 1)β1β2 times when g is odd and 72(g − 2)β1β2 when it is even.

In the proof ofLemma3.3,Negami uses induction on the genus of the non-orientable
surface. Assuming that the claim is true for genus g − 1, to prove it for genus g, he
claims that there is an essential proper arc α that runs along the center line of a
Möbius band (a one-sided arc). This arc can be either included in the system of arcs
or be disjoint from it. The idea is then to cut along α to get a non-orientable surface
of genus g − 1 to use the induction hypothesis. The problem lies in the fact that such
an arc might be orienting (cutting along an orienting arc leaves us with an orientable
surface; this interferes with the induction). This is illustrated in the following lemma.

Lemma 3.4 Consider the non-orientable surface of genus 3 with one boundary com-
ponent and embedded essential arcs shown in Fig. 6. Any one-sided arc disjoint from
the embedded arcs is orienting.
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c c
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a b

b

Fig. 6 A non-orientable surface of genus 3 with embedded system of arcs. The dents in the picture indicate
the segments of the boundary component

Proof Figure 6 depicts a non-orientable surface of genus 3 (obtained by identifying
the boundary edges according to their letters and orientations) and one boundary
component, and a family of essential arcs on it (consisting of the boundary edges and
the blue arcs). The arc c is a one-sided arc and a and b are two non-homotopic two-
sided arcs. The blue arcs are two-sided arcs embedded on the surface. A one-sided arc
disjoint from the system of arcs in this polygonal schema, must have one end on the
segment of the boundary component between two copies of c and the other end on
one of the two other segments adjacent to c. Such an arc is orienting and by cutting
along it, we obtain an orientable surface of Euler genus 2 with one boundary. ��

3.1 A Correction

ToproveTheorem1.2,we provide a different proof of Lemma3.3. The idea of the proof
is to cut the surface along an orienting curve that does not cross the graph embedded
on the surface too many times (this curve exists by Lemma 2.7). By cutting along
such a curve, we obtain an orientable surface and we can use Lemma 3.2. Let us first
introduce some additional terminology that is tailored to surfaces with boundaries.

Let M be an orientable surface with boundaries that are given with some orien-
tations. We choose an orientation for M , i.e., a consistent choice of clockwise and
counter-clockwise for simple contractible curves (see, e.g., Hatcher [14, Sect. 3.3] for
a formal definition); such an orientation induces a (possibly different) orientation for
each boundary, which we call its natural orientation. We say that the orientations of
the boundaries are mutually compatible if they either all match the natural orienta-
tion or are all oriented oppositely to the natural orientation. Figure 7 shows a surface
with non-compatible boundary orientations. For an arc with both ends on the same
boundary component, we say the arc is two-sided (resp. one-sided) if the closed curve
obtained by connecting the two ends of the arc along one of the boundary segments is
two-sided (resp. one-sided). An orienting closed curve γ is either two-sided or one-
sided depending on the genus, as described in Lemma 2.1. In the same spirit of this
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Fig. 7 An orientable surface with non-compatible boundary orientations

lemma, one can characterize orienting arcs instead of orienting closed curves, the only
difference is that when g is odd, hγ = h and when g is even, hγ = h + 1. This is
because cutting along a two-sided arc increases the number of boundary components
by one and cutting along a one-sided arc does not change the number of boundary
components.

Lemma 3.5 Let N be a non-orientable surface of even genus and M be the orientable
surface obtained from cutting N along an orienting curve. The orientations on the two
boundaries of M induced by the orienting curve are compatible.

Proof If the orientations on the boundaries are not compatible, identifying the bound-
aries along their orientation introduces a handle which contradicts the fact that N was
non-orientable. Figure 7 illustrates this. ��

Proof of Lemma 3.3 For i = 1, 2, let Ni be a non-orientable surface of genus g and
with one boundary component, with �i , a system of βi disjoint essential proper arcs.
We distinguish the cases where g is odd from even.

g is odd. Let γi be an orienting arc in Ni which has ci ≤ 2βi intersections with
�i , whose existence is guaranteed by Lemma 2.7 and Remark 2.8. Cut Ni along γi .
Let Mi be the resulting surface. From Lemma 2.1 we know that Mi is an orientable
surface of orientable genus g−1

2 and with a boundary component. Each arc in �i is cut
into at most 3 arcs by γi . We denote by �′

i the system of disjoint essential arcs in Mi

and thus we have |�′
i | ≤ 3βi . By Lemma 3.2, we know that there exist a surface M

′

with genus g−1
2 and one boundary component and homeomorphisms φ1 and φ2 which

map Mi to M
′
such that φ1(�

′
1) and φ2(�

′
2) have at most 4 g−3

2 |�′
1||�′

2| ≤ 36 g−3
2 β1β2

crossings.
We modify φ2 in a small neighborhood of the boundary so that the copies of γ2 are

aligned with those of γ1. This will allow us to glue back the surface along γ1 (or γ2). In
order to do so, we slide out the ends of the arcs in �′

2 which are not on γ2, containing
2β2 ends, into the two segments of the boundary of N1. Each one of the ends we are
sliding might intersect each end of the arcs in �′

1 which lies in the two segments of the
primary boundary component which contains 2β1 ends. This modification introduces
at most 4β1β2 intersections. Each copy of γi contains ci ends of the arcs �′

i . Next we

123



Discrete & Computational Geometry

λ
1

λ
2

λ
2

λ
1

Fig. 8 The non-orientable surface cut along an orienting curve

Fig. 9 The surface Mi , the red arcs are the copies of γi

align copies of γ1 with γ2 and this introduces at most c1c2 new intersections on each
copy. Therefore, we have 4β1β2 + 2c1c2 ≤ 12β1β2 new intersections.

After this modification, we are able to glue back M
′
along γ1 (or γ2) to get back

to a non-orientable surface N with genus g and one boundary component. Now φ1
and φ2 introduce two homeomorphisms from N1 and N2 into N such that φ1(�1) and
φ2(�2) intersect at most 12β1β2 + 36 g−3

2 β1β2 ≤ 18(g − 1)β1β2 times.
g is even. Let γi be an orienting arc in Ni which has ci ≤ 2βi intersections

with �i whose existence is guaranteed by Lemma 2.7 and Remark 2.8. Let Mi be the
surface obtained by cutting Ni along γi . Each arc in �i is cut into at most 3 arcs by γi .
We denote by�′

i the system of disjoint essential arcs inMi and we have |�′
i | ≤ 3βi . By

Lemma 2.1, we know that Mi is an orientable surface of genus
g−2
2 and two boundary

components with 3βi disjoint essential arcs. Fixing an orientation for γi will let us
see how the two boundary components were pasted and according to Lemma 3.5, we
know that these orientations are compatible (see Fig. 9).

We claim that there is a curve νi with an end on each of the boundary components
and with at most 3βi intersections with the system of arcs in Mi . We know that cutting
along an arc increases the Euler characteristic of the surface by 1 and we choose
νi such that it reduces the number of boundary components by 1. From the relation
χ = 2−2g−h where h is the number of boundary components, we will see that after
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Fig. 10 The orientable surface M
′
with one boundary component

the cut, the genus is unchanged. Therefore, by cutting along νi , we get the orientable
surface M

′
i with genus g−2

2 and one boundary component with 6βi disjoint essential
arcs.

We choose νi such that its ends lie on the segments of the boundary components
which belonged to the primary boundary component of Ni and so that it connects
these two boundaries. The problem reduces to finding such an arc so that it has at most
3βi intersections with the system of arcs in Mi . Consider the graph H such that the
vertices are the endpoints of the arcs and the edges are the arcs �′

i which we denote
by E1 together with the segments on the boundary components denoted by E2. We
choose a face ρ which has one edge in E2 such that a part of this edge lies on the
segment of the primary boundary component. We choose the face ρ′ analogously to ρ

but on the other boundary component. The shortest path between vertices associated
to ρ and ρ′ in the dual graph of H induces a curve with ends on ρ and ρ′ that passes
through the inner faces at most once. We connect the ends of this curve to the edges
on the boundary components in both ρ and ρ′. This gives us an arc νi that intersects
each edge of E1 at most once. Thus νi is the desired arc.

Again, by Lemma 3.2, we know that there exist φ1 and φ2 mapping M
′
1 and M

′
2 to

M
′
with 4 g−4

2 · 6β1 · 6β2 intersections on the arcs (see Fig. 10). Similar to the case
where the genus was odd, we can modify φ1 and φ2 by introducing at most 4 ·6β1 ·6β2
intersections such that we can align copies of γ1 with γ2 and ν1 with ν2 and glue back
M

′
to obtain N and at the end we have at most 72(g − 2)β1β2 intersections. This

finishes the proof. ��
Sketch of the proof of Theorem 1.2 Once we are equipped with Lemma 3.3, the proof
of Theorem 1.2 follows the same strategy as that of Negami [24]. For completeness,
we provide the following sketch. For each i = 1, 2, we contract a spanning tree in Gi ,
reducing it to a one-vertex embedding scheme, and remove contractible arcs, yielding
an embedding scheme Ei . We puncture the surface at the single vertex of Ei , yielding
a non-orientable surface Ni with one boundary component and O(|E(Gi )|) disjoint

123



Discrete & Computational Geometry

essential arcs.We are now in the situation to apply Lemma 3.3, which gives us a pair of
homeomorphisms sending N1 and N2 to N such that the number of crossings between
the arcs is O(g|E(G1)||E(G2)|). We glue back a disk on the puncture and connect
all the incoming arcs of Ei to a basepoint bi , so that the two basepoints b1 and b2 are
slightly off. This induces an additional O(|E(G1)||E(G2)) crossings. Finally, we add
back the contractible arcs and uncontract the spanning trees in small neighborhoods
of b1 and b2, which does not change the number of crossings, concluding the proof. ��

4 Non-orientable Canonical System of Loops

The objective of this section is to prove the following theorem.

Theorem 1.3 There exists a polynomial time algorithm that given a graph cellularly
embedded on the non-orientable surface N computes a non-orientable canonical
system of loops such that each loop in the system intersects any edge of the graph in
at most 30 points.

In order to prove this theorem,we heavily rely on an algorithm introduced by Schae-
fer and Štefankovič in [27] for drawing graphs on non-orientable surfaces. Compared
to that algorithm, our approach enforces more structure on this construction by impos-
ing specific orders in the way we deal with the loops in the induction. In Sect. 4.1,
we first explain this algorithm and then in Sect. 4.2, we introduce and explain our
modifications, ultimately leading to a proof of the theorem in Sect. 4.3.

4.1 The Schaefer–Štefankovic Algorithm

Throughout this section, we will be working with a one-vertex graph G endowed with
an embedding scheme (ρ, λ), which for simplicity we denote by G. Schaefer and
Štefankovič proved the following theorem.

Theorem 4.1 ([27, Lem. 9]) If G is a one-vertex non-orientable (respectively ori-
entable) scheme (ρ, λ), then it admits a cross-cap drawing with eg(G) (respectively
eg(G) + 1) cross-caps in which every edge passes through every cross-cap at most
twice.

The proof is by induction on the number of loops and is readily algorithmic, comput-
ing an actual cross-cap drawingwith the required bound on the number of intersections
with the cross-caps. Before explaining the algorithm, let us introduce the different
moves and techniques we use to deal with different types of loops.

First, let us introduce the following terminology for an embedding scheme around
a vertex v. By flipping a wedge of a one-sided loop e in a one-vertex scheme, we
mean reversing the order of the edges in the wedge and changing the signature of
the loops that have exactly one end in the wedge. We call the empty wedge between
two consecutive half-edges around v a root wedge. A face incident to v in a cross-cap
drawing may correspond to more than one root wedge. We refer to such a face as a
root face.
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4.1.1 Contractible Loop Move

Let c be a contractible loopwith consecutive ends in the embedding schemeG. Remove
c. The new embedding scheme can be drawn using the same number of cross-caps.
Having a drawing for the new embedding scheme, we can draw the loop c without
passing through any of the cross-caps.

4.1.2 Gluing Move

Let s be a non-contractible separating loop in the embedding schemeG. We divide the
embedding scheme to G1 and G2 by cutting along s and splitting the vertex into two
vertices (the embedding schemes of G1 and G2 are induced by the embedding scheme
of G). Denote by F1

o and F2
o the root wedges in G1 and G2 in which s formerly was

placed. Let H1 and H2 be drawings for G1 and G2 respectively. We glue the drawings
by identifying the root wedges F1

o and F2
o to get the drawing H

′
for G \ {s}.

Note that removing s does not change the genus (Lemma 2.2) andwe have eg(G) =
eg(G1)+ eg(G2). If G1 and G2 are both non-orientable, then H

′
can be extended to a

cross-cap drawing for G by adding s without using any of the cross-caps; see Fig. 11.
When at least one of G1 or G2 is orientable, say G2, H

′
uses one extra cross-cap (G2

needs eg(G2) + 1 cross-caps to be drawn). In order to get a drawing with minimum
number of cross-caps, we need to eliminate one cross-cap from the drawing. To deal
with this case, we need the following lemma and the dragging move which allows us
to reduce one cross-cap from the drawing.

Lemma 4.2 Let G be a one-vertex orientable embedding scheme. Adding a one-sided
loop o with consecutive ends to the embedding scheme (anywhere in the rotation
around the vertex) increases the Euler genus by 1. Thus, the new embedding scheme
needs as many cross-caps as G to embed. Furthermore, the loop o is orienting.

Proof Adding a one-sided curve with consecutive ends to an embedding scheme does
not change the number of faces. By the Euler formula we know that the Euler genus
of the new embedding scheme is increased by 1. By Lemma 2.5, G needs eg(G) + 1
cross-caps to embed. Therefore, the new embedding scheme needs as many cross-caps
as G to embed.

The loop o is the only one-sided loop in the embedding scheme and every other
loop is in the same wedge of o. Lemma 2.3 implies that o is orienting. ��

4.1.3 Dragging Move

Let us assume thatG2 is orientable. By Lemma 4.2, we can add a one-sided loop owith
consecutive ends in the root wedge F2

o without increasing the number of cross-caps
that we need to drawG2. The loop o is orienting and the new embedding scheme needs
eg(G2)+1 cross-caps to be drawn. Having a drawing for the new embedding scheme,
we can draw the loop s in the drawing for G2 + {o} as follows: we start the loop from
one of the root wedges between o and another loop of G2, we draw s by following o
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Fig. 11 The gluing move on two cross-cap drawings when G1 and G2 are both non-orientable

through all the cross-caps, except that after coming out of the last cross-cap, we go
back to the first one entered, and traverse all of the cross-caps again. At the end, we
follow o back to the vertex; see Fig. 12. We denote this drawing of G2 + {o} + {s} by
H

′
2.
By gluing H1 to H

′
2, we get a drawing H

′
for G + {o} + {s} but the drawing is not

using the minimum number of cross-caps. We eliminate one of the cross-caps in H
′

as follows.
Let i1 be the rightmost half-edge in G1 that follows immediately the separating

loop in G. Denote by c the first cross-cap that i1 passes through. Let us assume that
there are 2k half-edges passing through c. Let us denote by (i1, F1, . . . , i2k, F1

o ) the
alternating sequence of half-edges and faces adjacent to c in the cross-cap drawing by
moving clockwise around it. Now, we disconnect the edges that enter c and remove the
cross-cap c. We drag i1, . . . , ik through all the cross-caps inG2 along the loop o. After
exiting the last cross-cap in G2, we remove o and we attach the half-edges to their
other ends (ik+1, . . . , i2k). Since G2 uses an odd number of cross-caps (Lemma 2.5),
the half-edges will have the correct orientability and order to get attached to their
other ends; see Fig. 12. If only one of G1 and G2 is orientable, the drawing we get
uses eg(G) cross-caps and if both are orientable, we get a drawing with eg(G) + 1
cross-cap which is the minimum number of cross-caps needed to draw the embedding
scheme in this case.

4.1.4 One-Sided LoopMove

Let r be a one-sided loop in the embedding scheme G. We remove r and flip one
of its wedges. One can check that the new embedding scheme G

′
has Euler genus

eg(G) − 1. Let us assume that H
′
is a drawing for G

′
. We add r to this drawing by

adding a cross-cap near the vertex and the flipped wedge and dragging r and every
edge in the flipped wedge in it; see Fig. 13. Note that flipping different wedges of
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Fig. 12 Left: the gluing move. Right: the dragging move when G2 is orientable: the top right cross-cap is
removed and the corresponding curves are dragged through the bottom component

r

G

H H´

G´

r

Fig. 13 The one-sided loop move on the loop r

r leads to two different cross-cap drawings. This freedom in choosing the wedge is
important for us and we use this later in the paper.

If r is not orienting, the drawing we get at the end uses eg(G) cross-caps. But if
r is orienting, then G

′
is orientable and any drawing for G

′
needs an extra cross-cap

(Lemma 2.5). This means that if we apply a one-sided loop move to an orienting loop,
the drawing we get does not use the minimum number of cross-caps (the embedding
is not cellular).

We use the following move to deal with orienting loops.

4.1.5 Concatenation Move

Let o be an orienting loop in the embedding scheme G such that one of its ends is
immediately followed by an end of a two-sided non-separating loop t in the rotation.
By Lemma 2.3, since t is non-separating, the concatenation of o and t whichwe denote
by o

′
, is not orienting. Denote by G

′
the embedding scheme in which we replace o by

o
′
(we need eg(G) cross-caps to draw both G and G

′
). If H

′
is a drawing for G

′
, one
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Fig. 14 The concatenation move on the loops o and t , when in applying the one-sided loop move we flip

the wedge of o
′
that does not encompass the ends of the loop t
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Fig. 15 The concatenation move on the loops o and t , when in applying the one-sided loop move we flip

the wedge of o
′
that encompasses the ends of the loop t

can obtain from H
′
a drawing for G by replacing the drawing o

′
by its concatenation

with t . Depending on the wedge of o
′
that we choose to flip, we slide o

′
along t in the

drawing:
If we flipped the wedge that does not encompass the loop t , we detach the end of o

′

next to t and slide it along t and we attach it to the vertex. This way, it ends up where
the end of o was placed originally; see Fig. 14.

If we flipped the wedge that encompasses the loop t , we do as follows: the loop o
′

passes through only one cross-cap.We draw o next to the end of o
′
that is not slid along

t , but instead of following o
′
into the cross-cap, we follow t . We can do this because

the loop o
′
is next to the loop t in the rotation around this cross-cap; see Fig. 15.
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4.1.6 Exchange Move

Let G be an embedding scheme that has only two-sided loops and no separating loop.
We exchange two consecutive half-edges and change the signatures of the correspond-
ing edges. One can prove that the new embedding scheme can be drawn using the same
number of cross-caps as the initial embedding scheme. Having a drawing of the new
embedding scheme, we obtain a drawing of the original embedding scheme by adding
a cross-cap near the reversed half-edges. This drawing uses eg(G) + 1 cross-caps
and this is the minimum number of cross-caps we need to draw an orientable scheme
(Lemma 2.5).

Each of these moves provides a way to draw a loop assuming that some simpler
one-vertex graph without that loop has already been drawn. Therefore, we can use the
moves in an inductive algorithm as follows. The input is an embedding scheme G.

The Schaefer-Štefankovič algorithm:

• Step 1: If there exists a contractible loop. We recurse on the embedding
scheme without the loop and apply the contractible loop move.

• Step 2. If there exists a separating (non-contractible) loop s.We divide
the embedding scheme into two sub-schemes on each side of s. We have
the following cases:

– Step 2.1: Both sub-schemes are non-orientable. We recurse on the
two sub-schemes and apply the gluing move.

– Step 2.2: At least one of the sub-schemes is orientable. We recurse
on the two sub-schemes and apply the gluing move followed by the
dragging move.

• Step 3.1: If there is a one-sided non-orienting loop r . We recurse on the
embedding scheme without the loop r and the flipped wedge, and apply
the one-sided loop move to the loop r .

• Step 3.2: If all one-sided loops are orienting. If there exists no two-sided
loop, by Lemma 2.3, all pairs of loops are interleaving and we can draw
the embedding schemewith one cross-cap so that each loop enters it once.
If there exists a two-sided loop in the embedding scheme, we can find a
place in the embedding scheme where an orienting loop o is followed
immediately by a two-sided loop t . We recurse on the embedding scheme
H

′
described in the concatenation move, and apply the concatenation

move to the curve o.
• Step 3.3: If every loop in the embedding scheme is two-sided.We apply
the exchange move to two consecutive half-edges and recurse on the new
embedding scheme.

The proof of Schaefer and Štefankovič of Theorem 4.1 proceeds by analyzing this
algorithm and proving that (1) the resulting cross-cap drawing has the correct number
of cross-caps and (2) each loop passes through every cross-cap at most twice.
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Remark 4.3 By Lemma 2.4, in a drawing that is obtained by this algorithm, every
orienting loop passes through each cross-cap exactly once and if a separating loop
enters a cross-cap, it passes through that cross-cap exactly twice.

There is some leeway in this algorithm: while the steps have to be applied in this
specific order, in each step a loop of the given type is chosen arbitrarily. Our modifica-
tion of the algorithm follows the exact same blueprint but enforces specific orders in
which we choose separating and one-sided non-orienting loops. These specific orders
provide more structure to the resulting drawing, make it lend itself more to connecting
the cross-caps, in order to form the desired non-orientable canonical system of loops
of low multiplicity.

4.2 Our Modification to the Schaefer–Štefankovic Algorithm

4.2.1 Preprocessing

Our algorithm first starts with some preprocessing.

Lemma 4.4 Given a graph G embedded on a non-orientable surface N, there exists a
one-vertex scheme Ĝ such that Ĝ has an orienting loop, and if Ĝ has a non-orientable
canonical system of loops such that each loop crosses each edge of Ĝ at most k times,
then G has a non-orientable canonical system of loops such that each loop crosses
each edge of G at most 3k times.

Proof By Lemma 2.7, there exists an orienting curve γ embedded on the surface N
that has multiplicity two. Denote by G

′
the overlay of G and γ , that is, the graph

obtained by superimposing G and γ and adding dummy vertices of degree four at the
crossings. Each edge in G is divided into at most three sub-edges in G

′
. If γ crosses

G, n times totally, then it corresponds to n edges in G
′
. We choose a spanning tree T

in G
′
that contains n − 1 of these edges. Without loss of generality, we can assume

that all the signatures of the edges of T are +1 (this is because one can apply local
changes to the embedding scheme without changing its homeomorphism class, see,
e.g. [23, Sect. 4.1]). We contract the edges of T into a single point to get a one-vertex
graph Ĝ and merge the rotations in the embedding scheme at the vertices to obtain an
embedding scheme for the one-vertex graph Ĝ. The non-contracted sub-edge of γ is
an orienting loop in Ĝ.

Let us assume that Ĝ has a non-orientable canonical system of loops such that each
loop crosses each edge of Ĝ at most k times. We can uncontract the spanning tree T
close to the vertex so that the uncontracted edges do not cross the canonical system of
loops. This gives us a canonical system of loops for G

′
. To get a drawing for G, we

remove the orienting curve γ . Since any edge of G is formed by at most three edges
of G

′
, the canonical system of loops for G

′
crosses each edge of G at most 3k times.

��
Remark 4.5 The curve γ divides each edge of G into at most three sub-edges. There-
fore, each edge in G is obtained as the concatenation of at most 3 edges of Ĝ.
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Fig. 16 Left: a saturated one-vertex scheme in which the drawn loops are the separating loops; right: the
component tree of the left embedding scheme. The component G4 is an empty sub-scheme

This lemma lets us assume, at the cost of a slightly bigger multiplicity, that (1) the
input graph is a one-vertex graph endowed with an embedding scheme, and (2) the
embedding scheme that we work with contains an orienting loop. This orienting loop
will in turn allow us to avoid some steps in the algorithm.

For the second prepossessing move we need a definition that is inspired by a similar
notion from the literature on sorting signed permutations by reversals [13]. Given an
embedding scheme G, the interleaving graph IG has as vertex set the set of loops of
G, and two vertices are connected if their corresponding loops have interleaving ends,
see Fig. 17 for an example. When we talk about the sidedness of a vertex, we mean the
sidedness of the loop it is associated to. A connected component in the interleaving
graph is called non-orientable if it has a one-sided vertex, and orientable otherwise.We
call a component with only one-vertex a trivial component, and non-trivial otherwise.
Separating loops (contractible or non-contractible) correspond to isolated two-sided
vertices, i.e., trivial orientable components, in the interleaving graph.

Our second preprocessing step aims at subdividing G into sub-schemes Gi such
that each IGi has only one non-trivial component. In order to do this, we saturate
the embedding scheme with auxiliary separating loops, i.e., we add a separating loop
for any non-trivial component that is not divided from the rest of the graph by some
separating loops.

Remark 4.6 If Ḡ is a saturated extension of G, then eg(G) = eg(Ḡ) by Lemma 2.2.
Thus a minimum genus drawing of Ḡ contains a minimum genus drawing of G.

Given a non-orientable scheme G saturated with separating loops and any cellular
embeddingofG on a surface N , cuttingG along the separating loops yields subsurfaces
Ni of N , each containing (possibly empty) components of G, which we denote by Gi

(see Fig. 16). The component tree ofG has a vertex for every such subgraphGi , and two
vertices are connected if their corresponding components are separated by a separating
loop. See Fig. 16 for an example of a component tree. We shall quickly see that in the
context of our algorithm, there will actually be exactly one non-orientable component.
We root the tree at the vertex corresponding to the non-orientable component.

In a saturated embedding scheme, each separating loop relates two subgraphs Gi

that exist on its different sides. If we have k non-trivial components or empty subgraphs
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in total in the interleaving graph, in order to separate all of them from each other, we
need exactly k − 1 separating loops.

4.2.2 A Cross-cap Drawing Algorithm

We are now ready to describe our modified algorithm. Our modification consists of
forcing the presence of an orienting curve on the graph using Lemma 4.4 and putting
more structure on the order we deal with different separating loops and different one-
sided non-orienting loops.

The modified algorithm:
Pre-processing steps:

• Step A. If there is no orienting loop, we add an orienting loop and contract
a spanning tree using Lemma 4.4.

• Step B. If G is not saturated by separating curves, we saturate it.

Main loop:
Throughout the main loop of our algorithm, if we have homotopic loops we
remove all of them except one and after drawing this one, we re-introduce
them parallel to the one drawn.

• Step 1: If there is a contractible loop. We recurse on the embedding
scheme without the loop and apply the contractible loop move.

• Step 2: If there exists a separating (non-contractible) loop. We pick a
separating loop that separates a non-root leaf from the component tree,
recurse on the sub-schemes and apply a gluing and a dragging move.

• Step 3.1: If there exists a one-sided non-orienting loop. We pick a
one-sided non-orienting loop such that the embedding scheme G ′ that we
obtain when removing it and flipping its wedge maximizes the number of
one-sided loops. We recurse on G ′ and apply the one-sided loop move to
this loop.

• Step 3.2.a: If all one-sided loops are orienting and there are two-sided
loops. We pick an orienting loop adjacent to a two-sided loop, recurse
on the drawing H ′ described in the concatenation move and apply the
concatenation move to these loops.

• Step 3.2.b: If all one-sided loops are orienting and there are no two-
sided loops. In this case one cross-cap is sufficient to draw all the loops.

Post-processing steps:

• Step B’. Erase the extra separating loops added in step B.
• Step A’.Uncontract the spanning tree and remove the orienting loop added
in step A.
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The numbering in this algorithm comes from the Schaefer–Štefankovič algorithm.
A main difference with our modified version is that it is not clear at first sight that we
cover all cases as we do not have the steps 2.1 and 3.3 in the Schaefer and Štefankovič
algorithm. Yet we do cover all the cases: this follows from the presence of an orienting
loop and proving it will be the main purpose of the subsections 4.2.3 and 4.2.4. After
that wewill be ready to prove in Lemma 4.15 that our algorithm terminates and outputs
a cross-cap drawing where a loop does not enter each cross-cap more than 6 times.

4.2.3 Completeness of the Case Analysis

The following lemma explains why we do not need to consider the case in which all
loops are two-sided.

Lemma 4.7 An embedding scheme with an orienting loop is non-orientable.

Proof Let us assume that G is an orientable scheme, hence the orienting loop o is
two-sided. By Lemma 2.5, G needs eg(G) + 1 cross-caps to embed and we know
that eg(G) is twice the orientable genus of G. Therefore, G needs an odd number of
cross-caps to embed and the loop o passes through each of them an odd number of
times. Thus, o is one-sided which is a contradiction. ��

Lemma 4.7 guarantees that we do not need to consider the case where all loops are
two-sided when the algorithm starts, but this case might a priori still happen during
recursive calls to the algorithms. Fortunately, this will actually not be the case, as
we will prove in Corollary 4.13 that there is always an orienting loop in each of the
recursive calls.

The following lemma explains why there is only one case that can happen in step
2 of our algorithm.

Lemma 4.8 Let G be an embedding scheme with an orienting loop o and a non-
contractible separating loop s. The loop s separates the graph into an orientable and
a non-orientable subgraph.

Proof By Lemma 4.7, G is non-orientable and therefore it has at least one one-sided
loop. Let us assume that s separates the embedding scheme into G1 which contains
the loop o, and G2. We show that G1 is non-orientable and G2 is orientable.

By Lemma 2.3, any one-sided loop has exactly one end in thewedge of the orienting
loop in G1 and has to have both ends in the same side of the separating loop, therefore
no one-sided loop can exist in G2 so G1 is non-orientable and G2 is orientable. The
case where the only one-sided loop is the orienting loop is trivial. ��

4.2.4 The Order on the One-Sided Non-orienting Loops

In this section, we explain an order on one-sided loops when we apply the one-sided
loop move in step 3.1 of the algorithm. The reason for imposing this restriction is to
avoid creating separating loops in the induction that did not exist in the embedding
scheme initially.
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Fig. 17 Each box represents an embedding scheme with its interleaving graph. In all these embedding
schemes the loop o is orienting; right: the impact of applying the one-sided loop to r1 (top) and p2 (bottom)

Lemma 4.9 If there exists an orienting loop o (two-sided or one-sided) in the
embedding scheme G, the connected component that has the vertex o is the only
non-orientable component in IG.

Proof By Lemma 2.3, the ends of every one-sided loop interleave with the ends of the
orienting loop. Therefore, the vertex o is connected to every one-sided vertex in IG
and this finishes the proof; see Fig. 17. ��

The following lemma is analogous to a similar result in signed reversal distance
theory [2, Fact 2].

Lemma 4.10 Applying a one-sided loop move to a loop r corresponds to removing
the vertex r in the interleaving graph and complementing the subgraph induced by its
neighbors.

Proof In a one-sided loop move, we remove a one-sided loop r and flip one of its
wedges. When we flip, we change the signature of each loop that has exactly one
end in each wedge of r . Thus, we are changing the sidedness of everything that was
connected to the vertex r in the interleaving graph. Also, due to the flip, every two
vertices adjacent to r , that were connected to each other before the flip, are now
disconnected and vice versa. The situation of the loops that are not interleaving with
r in the embedding scheme is unchanged; see Fig. 17. ��

Such a move can change the number of connected components in the interleaving
graph, and might increase the number of orientable components, as is the case when
we apply the one-sided loop move to o in Fig. 17.
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Lemma 4.11 Let G be an embedding scheme with orienting loop o and a one-sided
non-orienting loop r. Let G

′
be the graph we obtain after removing r and flipping its

wedge. The loop o is orienting in G
′
.

Proof We need to show that after removing r , the loop o is connected to all the one-
sided vertices in the interleaving graph and it is not connected to any two-sided vertex
(Lemma 2.3). We know that at the start o is connected to r . Any one-sided loop that r
used to be adjacent to is now two-sided and since o used to be connected to these loops,
by complementing the subgraph induced by the vertices adjacent to r (Lemma 4.10), o
is no longer connected to them. Similarly, we can see that if r used to be connected to
two-sided loops, after flipping the wedge, they become one-sided and since the loop o
was not connected to any two-sided vertex before, now it gets connected to them. The
situation for the loops to which o was connected and r was not, remain unchanged. ��
Lemma 4.12 If G is an embedding scheme that contains only orienting and non-
separating two-sided loops, and has at least one of each, then there exists an orienting
loop o followed by a non-separating two-sided loop t. Denote by o

′
a loop homotopic

to the concatenation of o and t. If G
′
is the embedding scheme obtained by replacing

o by o′, and G ′′
is the embedding scheme obtained by applying a one-sided loop move

to o
′
in G ′, then t is orienting in G

′′
.

Proof Since there exist only orienting and two-sided non separating loops, and there
is at least one of each, there exists an orienting loop o and a non-separating two-sided
loop t such that an end of o is consecutive to an end of t in the embedding scheme.

First we show that t and o belong to different components in IG . Since o is orienting
and there is no one-sided non-orienting loop in the embedding scheme, the component
of o is a complete graph with only orienting loops. Therefore, t does not belong to
this component and everything in the component of t is two-sided. Replacing o by o

′

corresponds to replacing the vertex o
′
with o in IG and connecting it to the neighbors

of t , since o
′
now interleaves with every loop that t interleaves with. Now applying the

one-sided loop move to o
′
makes every neighbor of t one-sided and all the orienting

vertices (that were formerly adjacent to o) two-sided. Therefore, the only one-sided
loops in the new embedding scheme are the neighbors of t and t is not adjacent to
any two-sided vertices since everything in its component used to be two-sided. By
Lemma 2.3, t is orienting in G

′′
. ��

Since the contractible loop move clearly preserves orienting loops, Lemmas 4.8
(the dragging move first adds an orienting loop to the orientable part), 4.11 and 4.12
imply the following Corollary 4.13.

Corollary 4.13 Let G be a one-vertex scheme with an orienting loop. Let G ′ be the
graph on which the modified algorithm recurses when applying one of the following
moves:

• A contractible loop move.
• A one-sided loop move on a one-sided non-orienting loop.
• The concatenation move on an orienting loop.
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Then G ′ has an orienting loop. Likewise, when the modified algorithm applies a gluing
and dragging move to a separating loop s, the two subgraphs G1 and G2 on which it
recurses have an orienting loop.

The next lemma explains our choice of rule in Step 3.1:

Lemma 4.14 Let G be a one-vertex scheme with an orienting loop and no non-
contractible separating loop such that IG has only one non-trivial component. The
embedding schemeG can be drawn by applying a sequence of contractible loopmoves,
one-sided loop moves and concatenation moves. Specifically, we do not use the gluing
move, the dragging move and the exchange move.

This ensures that in Step 3.1 no non-contractible separating loop is created during
the process, hence we can avoid increasing the number of orientable components. This
proof mirrors results in the signed reversal distance theory (see Bergeron [2, Thm. 1])
in which similar claims are proved in the context of applying reversals to permutations.

Proof In order to have a non-contractible separating loop, it is necessary to have either
two non-trivial components, or an orientable non-trivial component and a trivial non-
orientable component (an isolated one-sided vertex).

Since there exists an orienting loop in the embedding scheme and the ends of the
orienting loop interleavewith those of every one-sided loop, all one-sided loops belong
to the same component in the interleaving graph and thus there exists only one non-
orientable component. By Corollary 4.13, in applying these moves, there is always an
orienting loop in every step. This, together with Lemma 4.9, implies that the number
of non-orientable components remains 1 through the algorithm. Therefore, it suffices
to prove that we can draw G such that in each step we do not increase the number of
non-trivial orientable components.

The Non-trivial Component is Non-orientable If there exists no one-sided non-
orienting loop, then every loop in the embedding scheme is orienting or contractible.
In this case, the non-orientable genus is one and the result is trivial. Let us assume
that there exists at least a one-sided non-orienting loop. We claim that if we choose
the one-sided non-orienting loop such that flipping its wedge maximizes the number
of one-sided loops, then we do not increase the number of orientable components. In
Fig. 17, it is shown that applying a one-sided loop move to p2 maximizes the number
of one-sided loops but applying it to r1, increases the number of orientable components
and turns r2 into a separating loop for the new embedding scheme.

Let us assume that applying a one-sided loop move to the one-sided loop r maxi-
mizes the number of one-sided loops and increases the number of non-trivial orientable
components. Let i be a vertex that was adjacent to r , belonging to a componentU that
got disconnected when complementing the subgraph induced by the neighbors of r .
The vertex i was one-sided and we claim that taking i instead of r would have created
more one-sided vertices which is a contradiction.
Denote by #1(r) (resp. #2(r)) the number of one-sided (resp. two-sided) loops adjacent
to r . Removing a one-sided loop is equivalent to removing the vertex in the interleaving
graph and complementing the subgraph induced by its adjacent vertices. Therefore,
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removing r increases the number of one-sided loops in the embedding scheme by
#2(r)− #1(r). All two-sided vertices adjacent to r are one-sided after removing r and
therefore they are not in U , meaning that they were formerly connected to i , so we
have #2(i) ≥ #2(r).
Similarly, r has to be connected to every one-sided vertices that were formerly con-
nected to i , so we have #1(r) ≥ #1(i).
If #2(i) = #2(r) and #1(r) = #1(i), then they have the same neighbors and removing r
will isolate i which contradicts the fact that the connected componentU is not trivial.
Therefore, applying a one-sided loop move to the loop i creates more one-sided loops
than applying a one-sided loop move to the loop r , which is a contradiction. Thus,
removing r cannot add to the number of non-trivial orientable components.

The Non-trivial Component is Orientable In this case, there exists only one one-
sided loop o which is orienting. We replace o with its concatenation with one of the
two-sided loops that is immediately next to it in the rotation. Denote this two-sided
loop by t and the concatenated loop by o

′
. This corresponds to replacing the vertex o

by o
′
that is connected to all the neighbors of t in the interleaving graph and therefore

reduces the number of components by 1. Applying the one-sided loop move to o
′
,

isolates t and makes it orienting for the new embedding scheme (Lemma 4.12). The
resulting graph falls in the last case where the non-trivial component is non-orientable
and therefore we can draw it by applying only contractible loop moves and one-sided
loop moves. This completes the proof. ��

4.2.5 Correctness of the Modified Algorithm

Lemma 4.15 Let G be a graph cellularly embedded on a non-orientable surface. If G
has an orienting loop, applying themodified algorithm, we obtain a cross-cap drawing
of G with eg(G) cross-caps such that each loop of G enters each cross-cap at most
twice. Otherwise, we obtain a cross-cap drawing of G with eg(G) cross-caps such
that each loop of G enters each cross-cap at most 6 times.

Proof By Lemma 4.4, Step A in the algorithm reduces the graph G to a one-vertex
scheme Ĝ that has an orienting loop such that a drawing Ĝ leads to a drawing for G.
Let Ḡ be the embedding scheme that we obtain after step B on Ĝ. This step does not
change the Euler genus of the embedding scheme.

Thus, by Remark 4.5, it is sufficient to prove that there is a cross-cap drawing for Ḡ
with eg(G) = eg(Ḡ) cross-caps in which each edge passes through each cross-cap at
most twice. We prove this claim for any one-vertex scheme G with an orienting loop.

In order to prove this claim, we follow the recursive steps of the main loop of the
modified algorithm, using induction on eg(G) + |E(G)|.

Step 1. We apply the contractible loop move to every contractible loop. By the
induction hypothesis, we can obtain a drawing with eg(G) cross-caps for the resulting
embedding scheme in which every loop passes through each cross-cap at most two
times and the contractible loop does not use any of them.

Step 2. If there exists separating (non-contractible) loops, we deal with them in the
prescribed order. Take the separating loop s and divide the embedding scheme. By
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Lemma 4.8, we know that one of these subgraphs is orientable and the other one is
non-orientable, without loss of generality let us assume that G1 is non-orientable. We
apply a combination of the gluing move and the dragging move to these subgraphs:
we add an auxiliary orienting loop o to G2. By the induction hypothesis, there are
cross-cap drawings H1 with eg(G1) cross-caps and a drawing H2 with eg(G2) + 1
cross-caps for G1 and G2 + {o} so that each edge of G1 and G2 passes through each
cross-cap at most twice. Let H

′
2 be the drawing for G2 + {o} + {s} that we obtain as

described in the dragging move. By Remark 4.3 and by the induction hypothesis, we
know that in H2, the loop o passes through each cross-cap exactly once. The loop s
follows o twice and therefore it passes through each cross-cap in H2 exactly twice.

The gluing move does not interact with the number of entrances for any loop. In the
dragging move, every loop that is being dragged from H1 to H2 follows the auxiliary
orienting loop o in G2. Since each edge in H1 passes through each cross-cap at most
twice, at most two of its sub-edges are being dragged along o and therefore they pass
through the cross-caps in H2 at most twice.

Since our graph is non-orientable, and we have only dealt with two-sided loops so
far, not all of the edges can be orientable at this point.

Step 3.1. If G has one-sided non-orienting loops, we apply a one-sided loop move
to the one that respects our prescribed order; we denote this loop by r . Since r is
non-orienting, the embedding scheme G

′
obtained after removing r and flipping its

wedge is still non-orientable and by the induction hypothesis, there is a drawing H
′

with eg(G) − 1 cross-caps for G
′
in which every loop passes through each cross-cap

at most twice. After drawing r and the new cross-cap, we can see that each loop in the
flipped wedge passes through this cross-cap at most twice (the exact value depends
on the number of its ends within the flipped wedge).

Step 3.2.a We can find an orienting loop o that is followed immediately by a
two-sided loop t . We apply the concatenation move to o and replace it with the non-
orienting loop o

′
(denote by G

′
, the embedding scheme we obtain at this point; we

have eg(G
′
) = eg(G)). We apply the one-sided loop move to o

′
. By the induction

hypothesis, there is a drawing H
′
for G

′
with eg(G) cross-caps in which each loop

passes through each cross-cap at most twice. Since we first apply a one-sided loop
move to o

′
, we can see that o

′
uses only one cross-cap. Depending on our choice in

flipping a wedge of o
′
, the loop t uses this cross-cap either twice or not at all (the loop

t uses every cross-cap except this cross-cap exactly once, since after removing o
′
, t

gets orienting, see Lemma 4.12). One can check that at the end for both choices of
wedge, the loop o passes through each cross-cap exactly once.

Step 3.2.b If all one-sided loops in the embedding scheme are orienting and there is
no two-sided loop in the embedding scheme, all of the orienting loops in the embedding
scheme are homotopic and we can draw them using one cross-cap with all of the loops
passing though the cross-cap exactly once.

By Corollary 4.13, the graph has an orienting loop at each step of the algorithm
and therefore by Lemma 4.8, we never have a graph in which every loop is two-sided
throughout the algorithm. This completes the proof of the claim and we conclude. ��

This proof is independent of the orders we defined for the loops in Step 2 and Step
3.1. These orders are shown to be useful in the next section.
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Fig. 18 H is a cross-cap drawing for an embedding scheme G and H∗ is the dual graph to H . The
rightmost picture shows the overlay of H and H∗. The red loop in H is orienting and the red edges in H∗
correspond to segments of this orienting loop. The faces b∗, u∗ and v∗ in the dual, each has exactly two
edges corresponding to the orienting loop

In addition to the fact that our proof does not cover all the steps that happen in the
original case (the case that there might not exist an orienting loop in the embedding
scheme), another difference between this proof and the proof of the Schaefer and
Štefankovič algorithm is in Step 3.2. In this Step, the original algorithm flips the
wedge of o

′
that does not encompass the loop t . We prove the step for both choices of

wedge because we favour the freedom to choose a wedge that we want to flip for our
further purposes.

4.3 The Non-orientable Canonical System of Loops

The modified algorithm that we described in the previous sections provides us with
a cross-cap drawing of any embedded graph G where each edge of the graph enters
each cross-cap at most six times, as per Lemma 4.15. Furthermore, our algorithm has
the following key advantage compared to the algorithm of Schaefer and Štefankovič:
due to the order in which we choose the loops in Steps 2 and 3.1, we know that
dragging moves and the other moves do not intermingle during the recursive calls of
the algorithm. When the algorithm draws an embedding scheme with a single non-
trivial component, it only relies on contractible, one-sided and concatenation moves.
Second, due to the order in which we choose the loops in Steps 2 and 3.1, we know
that whenever a dragging move is applied, the orientable sub-scheme on which we
recurse has only one non-trivial component. In this section, we leverage these two key
advantages to find a non-orientable canonical system of loops of small multiplicity.

4.3.1 The Dual Graph of the Cross-cap Drawing

In this rather tedious but straightforward section, we first investigate the effect of every
move involved in the modified algorithm on the dual graph of the cross-cap drawing
(viewed as a planar graph). Every edge e in a cross-cap drawing H , corresponds to an
edge e∗ and every face F corresponds to a vertex F∗ in the dual graph. The vertex v

corresponds to the face v∗ and the cross-caps correspond to the other faces in the dual
graph. See Fig. 18 for an example of a cross-cap drawing and its dual. In this section,
cross-caps are denoted by u, b, c, k and g and the letter F is reserved for faces in a
cross-cap drawing.
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By Remark 4.3, in the drawing obtained via the modified algorithm, the orienting
loop passes through each cross-cap exactly once. Thus if G is drawn using k cross-
caps, an orienting loop in G, corresponds to a set of k + 1 edges in the dual graph.
Furthermore, there are exactly 2 dual edges corresponding to the orienting loop in
each face of the dual, see Fig. 18.

The effect of a contractible loop move is as follows:

Lemma 4.16 Drawing a contractible loop in a face F of the cross-cap drawing cor-
responds to adding a vertex with degree one attached to the vertex F∗.

Proof The proof follows directly from the definition of graph duality. Figure 18 depicts
the edge c∗, dual to the contractible loop c. ��

We can see that applying a contractible loop move does not change the situation of
any of the dual edges corresponding to the orienting loop.

Let us assume there is a loop s that separates G into G1 and G2, where G1 is
non-orientable and G2 is orientable. We glue the drawings H1 and H2 for G1 and G2
and we apply a dragging move to this case. The following lemma explains the effect
of this move on the dual graph. In this lemma we use the notation introduced in the
description of the dragging move. We denote the vertex associated to the root face Fi

o
in Hi by Fi∗

o for i ∈ {1, 2}. We use the notation (i1, F1, . . . , i2K , F1
o ) for the sequence

of edges and faces around the eliminated cross-cap in the dragging move, and finally
we denote by o the auxiliary orienting loop drawn in H2.

Lemma 4.17 Let s be a loop that separates the embedding scheme G into the non-
orientable subgraph G1 and the orientable subgraph G2. In this case, the gluingmove,
the dragging move and drawing back the separating loop corresponds to:

• splitting F1∗
o into two vertices F11∗

o and F12∗
o such that F11∗

o inherits only i∗1 and
F12∗
o inherits the rest of the edges incident to F1∗

o ,
• removing the two dual edges corresponding to the loop o incident to the vertex

F2∗
o in v∗

2 (o∗
1 and o∗

2 in Fig. 19),• connecting F11∗
o and F12∗

o to the adjacent vertices to o in the correct order by
adding an edge for each one (this edges correspond to the segments of the sepa-
rating loop that are attached to the vertex),

• connecting F2∗
o to F∗

k by adding an edge,
• replacing the dual edges corresponding to the segments of o in H2 by k + 2 edges.

The operations performed in Lemma 4.17 are pictured in Fig. 19.

Proof Splitting F1∗
o and connecting it to two vertices formerly incident to F2∗

o cor-
responds to the gluing move between the drawings. We can see in Fig. 19 that these
steps merge the faces v∗

1 and v∗
2 to the face v∗. The edges that we add to connect these

vertices correspond to the sub-edges of the separating loop s that are incident to the
vertex. On the other hand, connecting F2∗

o to F∗
k and replacing the dual edges in H2

by a path corresponds to the dragging move; see Fig. 19. ��
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Fig. 19 The impact of the gluing move and dragging move on the dual graph

Remark 4.18 Let us denote by H the drawing of G that we obtain by applying the
three moves in Lemma 4.17. The only modification done on the subgraph induced by
the vertices that come from H∗

1 in H∗ is that we split the vertex F1∗
o to F11∗

o and F12∗
o .

Both F11
o and F12

o are root faces in G.
The modifications in the subgraph induced by the vertices that come from H∗

2 is
that we replace some edges by paths and we disconnect the two root faces adjacent to
F2∗
o by removing the incident edges. Also F2∗

o gets connected to a face in H∗
1 and it

is not necessarily a root face anymore.

The effect of a one-sided loop move is as follows:

Lemma 4.19 Adding a one-sided non-orienting loop r with ends in root faces F1 and
F2 in the drawing (F1 and F2 are possibly identical), corresponds to subdividing the
face v∗ into two faces and adding a path of length k + 2 from F∗

1 to F∗
2 where k is the

length of one of the paths from F∗
1 to F∗

2 in the face v∗.

Proof Figure 20 depicts that the addition of the new cross-cap in the one-sided loop
move corresponds to adding a duplicate of the set of edges and vertices between F∗

1
and F∗

2 in the face v∗. Choosing between the two different sequences from F∗
1 to F∗

2
in the face v∗ corresponds to choosing different wedges of r to flip. ��

Finally, we analyze the effect of the concatenation move. Let G be an embedding
scheme with no separating loop in which every one-sided loop is orienting and it
has at least one two-sided loop. Let o

′
be the one-sided non-orienting loop obtained

by concatenating the orienting loop o and the two-sided loop t which has an end
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Fig. 20 The impact of the one-sided loop move on the dual graph. Left: the drawing for the embedding
scheme before adding the one-sided loop r and its dual; right: the drawings and the dual graphs after drawing
r and the impact of flipping different wedges of r is depicted

immediately next to an end of o in the rotation (step 3.2 of the algorithm). Denote
by G

′
the embedding scheme in which o is replaced by o

′
and let H

′
be a drawing

for G
′
. After applying a one-sided loop move to o

′
, t gets orienting (by Lemma 4.12)

and it goes through eg(G) − 1 cross-caps. The loop o
′
is the last loop that is drawn in

the algorithm and therefore it passes through only one cross-cap. Let us denote this
cross-cap by c . We denote by ti , 1 ≤ i ≤ eg(G), the dual edges to sub-edges of t and
by o

′
1 and o

′
2 the sub-edges of o

′
, where t1 corresponds to the sub-edge next to o

′
1.

Depending on the wedge of o
′
that we choose to reverse, we proceed with con-

catenating o
′
with t to get back the loop o as discussed in the description of the

concatenation move. The following lemmas describe the effect of applying the con-
catenation move on the dual graph of the cross-cap drawing.

Lemmas 4.20 and 4.21 explain the effect of the concatenation move in the dual
graph:

Lemma 4.20 When we reverse the wedge of o
′
that does not encompass t , concatenat-

ing the loop o
′
along t corresponds to:

• subdividing the edge adjacent to t∗1 and o
′∗
1 that is in the cyclic rotation of c∗

• contracting the edge o
′∗
1• subdividing the edges t∗i for i ≥ 2

The added edges together with o
′∗
2 , correspond to the segments of o in H.

Proof By sliding o
′
along t , we remove o

′
1, see Fig. 21. Removing an edge corresponds

to contracting its dual edge. Following t into the cross-caps adds parallel edges in the
cross-cap drawing that corresponds to subdividing the dual edges t∗i . ��
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Fig. 21 The impact of the concatenation move in the dual graph. The bottom graphs are dual to the top
cross-cap drawings

Lemma 4.21 When we reverse the wedge of o
′
that encompasses the ends of t , con-

catenating the loop o
′
with t corresponds to:

• subdividing every t∗i except for i = 1, 2

• subdividing the edge adjacent to t∗2 and o
′∗
1 in the face v∗

• contracting the edge o
′∗
1 and o

′∗
2

The added edges together with o
′∗
2 , correspond to the segments of o in H.

Proof The proof is similar to the proof of Lemma 4.20. ��

4.3.2 Short Paths from Each Cross-cap to the Vertex

Recall that a root face in a cross-cap drawing of a one-vertex graph is a face of the
drawing (seen as a planar graph) adjacent to the vertex. The aim of this section is to
show that there is a cross-cap drawing output by the modified algorithm, in which the
cross-caps are not too far from the vertex (at distance O(|E(G)|)). To show this, we
find paths in the dual graph of the cross-cap drawing from a vertex adjacent to the face
dual to each cross-cap to the vertex corresponding to a root face.

We first show this claim for an embedding scheme with an orienting loop that has
exactly one non-trivial component in its interleaving graph. Additionally, we claim
that we can find a cross-cap drawing which allows us to force the paths to arrive in
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the same vertex in the dual graph that is chosen arbitrarily. Furthermore, we show that
we can find these paths such that they do not use the dual edges corresponding to the
orienting loop.

To prove this we use the modified algorithm, but with an additional specification:
as we mentioned before, different choices in flipping a wedge when doing a one-sided
loop move or a concatenation move yield different cross-cap drawings. The modified
algorithm that we described gives us the freedom to choose the wedge whenever a
one-sided loop move is applied. Here we use this freedom to build our desired paths.

Lemma 4.22 For any one-vertex scheme G with an orienting loop o that has exactly
one non-trivial component in its interleaving graph IG, for any choice of root wedge
ω, there is a choice of wedges in the modified algorithm which outputs a cross-cap
drawing H with eg(G) cross-caps such that for every cross-cap c, there is a dual path
pc from a face adjacent to c to the root face corresponding to ω with multiplicity two,
which does not cross the orienting loop.

Proof We prove the result by induction on eg(G) + |E(G)|, following the recursive
steps of the modified algorithm. By Lemma 4.14, we know that the modified algorithm
draws such an embedding scheme using only contractible loop moves, one-sided loop
moves and concatenation moves. In this proof, we show that these moves can be
applied in each step such that they do not increase the multiplicity of the paths that we
obtain by the induction hypothesis. Crucially, when applying a one-sided loop move
or a concatenation move, this relies on choosing a correct wedge to flip in each step.

We fix an arbitrary root wedge ω around the vertex v. When we remove a loop that
affects ω, we update ω to be the wedge that encompasses the former fixed root wedge
ω. Similarly, when we re-introduce the edges in the drawing, we subdivide ω and we
choose the sub-wedge that is consistent with the first choice of ω.

Contractible LoopMove Denote by G
′
the embedding scheme we have after remov-

ing a contractible loop c. By the induction hypothesis, there exists a drawing H
′
and

a system of paths {pc} from every cross-cap to the wedge ω in H
′∗ with multiplicity

two such that they do no use the dual edges of the orienting loop. When re-introducing
c, if c does not sub-divide the wedge ω, then it does not affect the paths pc. In the
case that we need to update ω to be the empty wedge between the ends of c itself, by
Lemma 4.16, we can see that in this case, the paths need to use the edge c∗ in the dual
once. Thus, the multiplicity of the paths remains two. The paths still do not use the
dual edges of the orienting loop.

One-sided loop move on a one-sided non-orienting loop r . Denote by G
′
the

graph we have after applying a one-sided loop move to r . By the induction hypothesis,
there exists a drawing H

′
and a system of paths {pc} from every cross-cap to the wedge

ω in H
′∗ with multiplicity at most two such that they do not use the dual edges of the

orienting loop. In this case, we flip the wedge of r that does not contain ω. By this
choice, we can see that the situation of the vertex dual to the face ω does not change,
since by Lemma 4.19, drawing a one-sided loop corresponds to adding a path to the
dual graph that does not separate ω from v∗. Therefore, this move does not affect any
pc.
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Fig. 22 The choice of the adjacent root face for the new cross-cap: the loop o is orienting and we applied
the one-sided loop move on the loop r . The dotted arrow shows the wedge of r that we flipped and the blue
arrow shows the adjacent root wedges to the last cross-cap that we can choose from

We know that the orienting loop interleaves with r . For the new cross-cap c1, we
define the path pc1 as follows. We choose a face adjacent to c that is a root face, and
such that it is both in the flipped wedge of r and in the same wedge of the orienting
loop as ω; see Fig. 22. We introduce the path pc1 to be the sequence of dual edges and
vertices around v between ω and this root face such that it does not use the dual edges
corresponding to the orienting loop. Since each edge has exactly two ends around the
vertex, the path pc1 uses each edge at most twice in the dual graph and its multiplicity
is at most two. By construction, all these paths avoid using the dual edges of the
orienting loop.

Concatenation move on an orienting loop o and the two-sided loop t . We denote
by o

′
the concatenation of o and t and by G

′
the graph in which we replaced o by

o
′
. The modified algorithm applies the one-sided loop move to o

′
, and here again

we choose to flip the wedge of o
′
that does not encompass ω. We denote the new

graph after removing o
′
by G

′′
. By the induction hypothesis there exists a drawing

H
′′
for G

′′
and a suitable system of dual paths {pc} in H

′′∗ from a face adjacent to
each cross-cap to the root wedge ω with multiplicity two. These paths do not use the
dual edges corresponding to the loop t since after removing o

′
, t is orienting for the

new embedding scheme (this follows from Lemma 4.12). Similar to the case before in
which the algorithm applies the one-sided loop move, we can see that after drawing o

′

and adding a cross-cap, we can re-introduce the paths {pc} with the same multiplicity
so that they do not use the two dual edges corresponding to o

′
. Now, the modified

algorithm slides o
′
along t to get a drawing for the initial embedding scheme. By

Lemmas 4.20 and 4.21 (depending on the situation of ω with respect to t and o
′
), we

know that sliding o
′
along t corresponds to sub-dividing the dual edges corresponding

to t and since the paths {pi } do not use the dual edges of t , they do not use the dual
edges of o either. For the last added cross-cap, we take a root face adjacent to it in
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the same wedge that ω is placed and introduce a path by going around the vertex. As
before, we know that this path has multiplicity at most two and does not use the dual
edges of the orienting loop. This finishes the proof. ��

Using Lemma 4.22, we prove the claim for the more general case in which the
embedding scheme can have more than one non-trivial component. Here, we do not
need the paths to arrive in the same root face.

Lemma 4.23 For any saturated one-vertex scheme G with an orienting loop o, there
is a choice of wedges in the modified algorithm which outputs a cross-cap drawing
H with eg(G) cross-caps such that there is a path from every cross-cap to a root face
(not necessarily fixed) with multiplicity at most two.

Proof The proof is by induction on the number of separating loops. When there is no
separating loop, the graph has only one non-trivial component and it is non-orientable.
In this case, the result follows by Lemma 4.22.

Let sl be the separating loop chosen by the algorithm during Step 2, separating
two sub-scheme Gl and G \ Gl on which it recurses. Since sl separates a leaf from
the component tree, one of these sub-schemes, say G \ Gl , is non-orientable and has
an orienting loop. Therefore, by the induction hypothesis, there is a drawing H

′
for

G \Gl with eg(G \Gl) cross-caps such that there is a path with multiplicity two from
every cross-cap to a root wedge.

Now, Gl is made of exactly one non-trivial component due to our way of choosing
sl . Let ω be a root wedge of Gl different from Fo, the face where the ends of sl used to
exist.We apply Lemma 4.22 to obtain a cross-cap drawing Hl ofGl +{o} and a system
of dual paths {pc}withmultiplicity at most two from a face adjacent to every cross-cap
to ω, such that none of them use the dual edges corresponding to the orienting loop o.
Now, the algorithm glues Hl to H

′
and proceeds with dragging the loops from H

′
to

Hl . We denote the resulting drawing by H .
By Remark 4.18, we know that the paths connecting cross-caps to root wedges

in H
′
can be re-introduced in H , since dual edges and vertices corresponding to the

edges and faces in H
′
are not changed in H except the vertex that is split into two

vertices. Since both of these vertices are root faces in the new embedding scheme,
this does not interfere with the multiplicity of these paths and each of them arrives at
one of these vertices (recall that we do not require all the paths to arrive at the same
root wedge). By the choice of ω and the fact that none of the paths in {pc} use the
dual edges corresponding to the orienting loop, none of the paths visit the vertex F∗

o
(Fo and ω are in different wedges of the orienting loop o). Since the paths {pc} do
not use o, we can choose the incident face to each cross-cap so that replacing the dual
edges of o by a sequence of edges (as explained in Lemma 4.17), does not impact the
multiplicity of the paths {pc} from each cross-cap to ω. This finishes the proof. ��

It is immediate from the proofs of Lemmas 4.22 and 4.23 that the choice of wedges
in the modified algorithm in these lemmas is computable in polynomial-time. We
call the modified algorithm with the choice of wedges of these lemmas the refined
algorithm. We finally have all the tools to prove our main result, which we recall for
convenience.
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Theorem 1.3 There exists a polynomial time algorithm that given a graph cellularly
embedded on the non-orientable surface N computes a non-orientable canonical
system of loops such that each loop in the system intersects any edge of the graph in
at most 30 points.

In the case that the input graph contains an orienting cycle, our proof yields a better
bound: each loop in the system intersects any edge of the graph in at most 10 points.

Proof Applying the algorithm to G, we obtain the saturated one-vertex scheme Ḡ
that has an orienting loop after the preprocessing steps. By Lemma 4.4, to prove the
theorem, it is sufficient to show that there exists a canonical system of loops for a
drawing of Ḡ such that each loop in the system has multiplicity 10.

The one-vertex scheme Ḡ has an orienting loop and therefore by Lemma 4.23, the
refined algorithm outputs a cross-cap drawing H̄ with eg(N ) cross-caps such that there
are paths {p j } with multiplicity two from a face incident to each cross-cap (denote
this face by b j for each j) to a root face (denote this face by a j for each j) in this
cross-cap drawing.

Fix a root face F in the drawing H̄ . For each path p j , build a loop ν j by going
from F to a j , by going around the vertex in shortest way possible. By doing so, so
far the loop has multiplicity at most two. Follow p j to b j : this adds at most two to
the multiplicity since p j has multiplicity two. Go into the cross-cap and come back
to b j by going around it (this adds at most two to the multiplicity, since every edge
passes through each cross-cap at most twice by Lemma 4.15) Finally, follow p j back
to a j and go back to F from the same path (these two last steps add at most 4 to the
multiplicity). Therefore, each ν j has multiplicity 10. By Lemma 2.6, we know that the
system of loops we obtain, is a non-orientable canonical system of loops. This finishes
the proof. ��

5 O(g)-Universal Shortest PathMetrics on Non-orientable Surfaces

In this section, we explain an analogue of themain result of [18] for non-orientable sur-
faces. The motivation is to reduce Negami’s conjecture (Conjecture 1.1) to a problem
inmetric geometry. In the following, when we refer to a metric wemean a Riemannian
metric (see, e.g., do Carmo and Francis [8] for background on Riemannian geometry).
In a nutshell, a Riemannian metric induces a length for every (reasonable) path on the
surface. A geodesic is a path that locally minimizes the length among all the possible
paths, while a shortest path is a path that globally minimizes the length among all the
possible paths.

If a graph is embedded on a surface equipped with a metric such that every edge
is a shortest path, we call it a shortest path embedding. If there exists a metric on a
surface S such that every graph topologically embeddable on S admits a shortest path
embedding, we call this metric a universal shortest path metric. Since shortest paths
in a Riemannian metric cross at most once, the existence of a universal shortest path
metric for all surfaces would imply Negami’s conjecture (Conjecture 1.1).

Similarly, a k-universal shortest pathmetric on a surface is ametric that allows every
topologically embeddable graph to be embedded such that its edges are concatenations
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of k shortest paths. We refer to [18] and the references therein for more details and
further discussion. One of the main theorems of that paper [18, Thm. 4] is that for any
orientable surface of genus g > 1, there exists an O(g)-universal Riemannian metric
of constant curvature −1. Furthermore, in the non-orientable case, Negami’s bound
on the joint crossing number of two graphs (Theorem 3.2) can be deduced from this
theorem (or more precisely from the proof techniques [18, Cor. 20]).

In [18], proving the existence of O(g)-universal shortest path metrics for non-
orientable surfaces was left as an open problem. In this section, we solve this problem
by providing a construction that generalizes the one in [18] to the non-orientable case.

Theorem 1.4 For g ≥ 3, there exists a hyperbolic metric m on the non-orientable
surface N of genus g such that any graph embeddable on N can be embedded so that
every edge is a concatenation of O(g) shortest paths.

The construction in the orientable case is based on a decomposition of orientable
genus g surfaces into hexagons. Given a graph embedded on a surface, it is first proved
that there exists a hexagonal decomposition such that each edge of the graph is cut
O(g) times by the graph of the decomposition. Each hexagon is endowed with a
hyperbolic metric and the following theorem is applied on each hexagon.

Theorem 5.1 ([18, Thm. 18], see also [7]) Let G be a graph embedded as a triangula-
tion in a hyperbolic hexagon H endowed with the metric of an equilateral right-angled
hyperbolic hexagon. If there are no edges between two non-adjacent vertices on the
boundary of H in G, then G can be embedded with geodesics, with the vertices on the
boundary of H in the same positions as in the initial embedding.

A convex hyperbolic hexagon can be isometrically embedded in the hyperbolic
plane, and therefore exactly one geodesic connects any pair of points. Thus in this
setting, geodesics are shortest paths and this theorem allows us to re-embed the part
of G restricted to each face with shortest paths. The metric that we obtain by pasting
these hyperbolic hexagons is a O(g)-shortest path metric.

It turns out that we can generalize the hexagonal decomposition for non-orientable
surfaces, and apply the same strategy as in the orientable case.

Theorem 5.2 Let N be a non-orientable cross-metric surface, with genus g ≥ 3 and
no boundary. We can decompose N into 2g − 4 hexagons when g is even and into
2g − 6 hexagons and 4 pentagons when g is odd such that the multiplicity of each
curve in the decomposition is O(1) except for one closed curve which has multiplicity
O(g). Furthermore, the graph of the decomposition is the graph shown in Fig. 23 and
its dual graph is the one shown in Fig. 24.

To prove the theorem, we use the following lemma.

Lemma 5.3 Let M be an orientable cross-metric surface with orientable genus g ≥ 1,
and two (resp. one) boundary component(s). We can decompose M into 2g octagons
(resp. 2 hexagons and 2g− 2 octagons) such that each edge of the decomposition has
multiplicity O(1).
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Theproof of this lemma is completely analogous to that of the octagonal decomposition
in Colin de Verdiere and Erickson [6, Thm. 3.1], and thus we only sketch it. The first
step in their proof is to cut the surface along a shortest non-separating curve, yielding
a surface with two boundaries. Their approach applies equally well if one starts with
a surface with two boundaries, as it suffices to skip that first step. Their second step is
to connect the two boundaries with an essential arc so as to have a single boundary.
Thus, we can deal with the case of a surface with a single boundary by skipping these
first two steps.

Then, the octagonal decomposition is obtained, after cutting along a maximum
sequence of non-separating curves (unzipping), by going backwards (zipping) and
adding all the curves one by one (see [6, Sect. 3 and Fig. 3.2(a)]). In the case of two
boundaries, we can go back in an identical fashion to obtain an octagonal decomposi-
tion. In the case of a single boundary, this backwards step ends one step earlier (since
one additional step was skipped at the start), hence we obtain two hexagons instead
of octagons. In that case, the Euler characteristic is odd and thus no decomposition
made exclusively of octagons can exist.

Proof of Theorem 5.2 Denote by G the primal graph of the surface N . The first curve
in the decomposition is the orienting curve λ with multiplicity 2 that exists according
to Lemma 2.7. Cutting along λ, we get an orientable surface with boundary which we
denote byM andwe denote byG ′ the graphwe obtain fromG by cutting along λ. Each
edge of G is cut into at most three sub-edges. Using Lemma 2.1, we know that the
orienting curve is two-sided (resp. one-sided), if the genus of the surface is even (resp.
odd). Therefore, if g is odd, M has orientable genus g−1

2 and one boundary component

and if g is even, M has orientable genus g−2
2 and two boundary components.

ByLemma5.3,we canfind a decomposition forM into octagonswhen g is even, and
to both octagons andhexagonswhen g is odd, such that each curve in the decomposition
crosses each edge of G ′ a constant number of times, see Fig. 23. Since each edge of
G is cut into at most three edges in G ′, we know that the multiplicity of each curve is
constant with respect to G.

We add an arcρ that follows closely the sub-paths of the curves in the decomposition
obtained by Lemma 5.3 as depicted in Fig. 23. The multiplicity of this curve is O(g)
and divides each octagon into two hexagons (and each hexagon to two pentagons).
The segments of this curve that belong to each face have constant multiplicity in G ′
and therefore in G.

There are two arcs that are intersecting the copies of the orienting curve. At the
end, we slide the ends of these curves very close to the boundary so that all of them
build a closed curve after gluing the surface back along λ. Since the orienting loop
has multiplicity 2, this adds at most 2 to the multiplicity of these arcs. This finishes
the proof. ��

Theorem 5.1 is also valid for hyperbolic pentagons with the same proof. As in the
orientable case we apply Theorem 5.1 to each polygon of the decomposition provided
by Theorem 5.2 to obtain the theorem. We rely on the following proposition, showing
that this yields an O(g)-shortest path embedding.
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Fig. 23 Our decomposition for non-orientable surfaces with even genus (top picture) and odd genus (bottom
picture). The pink curve is the orienting curve and the orientations shows how they are pasting together.
These orientations are compatible according to Lemma 3.5. The yellow curve is the arc ρ added as the last
step in the proof of Theorem 5.2
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Fig. 24 Right: The dual graph of the decompositions in both cases of even genus (top picture) and odd genus
(bottom picture). The circular vertices correspond to the four polygons that are adjacent to the orienting
curve and the pink edges are the dual edges to the segments of the orienting curve. Left: the faces a, b,
c and d are the faces adjacent to the orienting curve. Note that these four faces are pentagons in the case
where the genus is odd
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Fig. 25 The surface N cut along the orienting curve γ and the yellow area shows the quadrant Q1

Proposition 5.4 For every face F in the decomposition, every path between x, y ∈ F
that is a shortest path in F is also a shortest path in N.

Coupled with Theorem 5.2, this proposition immediately implies Theorem 1.4.
Its proof makes strong use of the symmetries of the decomposition, which we first
introduce.

Figure 24 depicts the graphs dual to the decompositions output by Theorem 5.1. It
depicts two involutions σ1 and σ2 which, since all the hexagons are isometric, and in
the case of odd genus, the 4 pentagons are isometric, induce isometric involutions of
the whole surface. If we take the square vertices to correspond to the top polygons in
the decomposition and the star vertices to be the ones in the bottom, then the involution
σ1 maps the top polygons to the bottom polygons and vice versa and it is identity on the
edges that are in common between top and bottom polygons. In particular σ1 maps the
faces a and d to each other and b and c to each other. Similarly σ2 maps neighboring
polygons at the top (and the bottom) on each other, in particular it maps a and b to
each other and d and c to each other. We can cut N into four planar quadrants which
we denote by Qi , 1 ≤ i ≤ 4. Each of these quadrants are linear concatenation of
hexagons and pentagons. Take Q1 to be the pictured quadrant in Fig. 25. We can see
that each of the quadrants Q2, Q3 and Q4 can be obtained by applying one of the σ1,
σ2 and σ1σ2 to Q1.

Proof of Proposition 17 Take two points x and y in a face F in Q1 and let θ be a shortest
path between them. The path θ may leave the face F , but we will show that in that
case there is another shortest path between x and y that remains inside F . If θ leaves
Q1, we reflect the parts of the path that leave Q1, using one of the maps σ1, σ2 or σ1σ2
back in Q1. We need to check that the reflected parts together with the part of θ that
is inside Q1 define a path. The only troublesome case here is when our path leaves
Q1 by crossing the orienting curve γ . In this case, we can see that the path enters c.
We use σ1σ2 to reflect the sub-path in c back to a. A closer look at σ1σ2 shows that it
is identity on γ , therefore the sub-path in c gets reflected to a in a way that defines a
new path in Q1. We call the new path θ

′
. Since the maps are all isometric, θ

′
has the

same length as θ and therefore it is a shortest path between x and y which remains in
Q1.

We show that θ
′
must be contained in F . Let us assume that θ

′
leaves F . Since the

dual graph of each Q1 is a line, there is a face F
′
in Q1 that θ

′
enters and leaves once.

We denote by α, the sub-path of θ
′
inside F

′
. The endpoints of α are both on the same

edge of this face. α could be shortcut by following this edge instead of going inside
the face F

′
; see Fig. 26.
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x

y

x

y

Fig. 26 The figure shows the shortest path θ
′
in Q1 and how it can be shortcut

This implies that θ
′
cannot leave F and it is the shortest path between x and y that

we were looking for. This finishes the proof. ��
As for the orientable case, our proof techniques also provide an alternative proof

of Negami’s bound (which we corrected in Theorem 3) on joint crossing numbers on
non-orientable surfaces. If two graphs are simultaneously embedded with our O(g)-
universal shortest path embeddings, then each edge is cut into O(g) shortest paths,
but each hexagon/pentagon contains at most O(1) of those. Since two shortest paths
cross at most once, it follows that each pair of edges crosses at most O(1) times in
each hexagon/pentagon, and thus O(g) times in total.

Acknowledgements We are grateful to Marcus Schaefer and Daniel Štefankovič for providing us the full
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