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Abstract
For any given full rank lattice � and natural number K , we consider the point set
P(K ) = �/K ∩ (0, 1)2, with N = #P(K ) ≈ K 2, and bound the spherical cap dis-
crepancy of the projection of these points under the Lambert map to the unit sphere.
The bound is of order 1/

√
N , with leading coefficient given explicitly and depending

on� only. The proof is established using a lemma that bounds the number of intersec-
tions of certain curves with fundamental domains that tileR2, and even allows for local
perturbations of � without affecting the bound, proving to be suitable for numerical
applications. A special case yields the smallest constant for the leading term of the
cap discrepancy for deterministic algorithms up to date.
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Mathematics Subject Classification 11K38 · 52C99 · 52A10

1 Introduction andMain Result

The problem of distributing N -many points PN = {p1, . . . , pN } uniformly on a
sphere is well known and has applications in numerical integration, approximation,
cartography and the applied sciences, see [13, 25, 27] for some reviews surveying over
a century of development.
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There are several different notions of uniformity of distribution for a finite point
set PN : one example is the energy,which is the sumof all pairwise interactions of points
under a given lower semi-continuous potential F . When F(x, y) = ‖x − y‖−s one
refers to the corresponding energy as “Riesz s-energy” andminimizers of this potential
have been intensively investigated, see for instance the comprehensive monograph by
Borodachov et al. [12]. Another notion of uniformity is that of separation distance,
i.e., the minimum of the pairwise distances of distinct elements among PN . Our main
result uses the notion of spherical cap discrepancy.

Definition 1.1 Let PN = {p1, . . . , pN } ⊂ S
2. The spherical cap discrepancy is

D(PN ) = sup
w∈S2

sup
−1≤t≤1
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N
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j=1

χC(w,t)(p j ) − σ(C(w, t))

∣
∣
∣
∣
∣
∣

.

Here S
2 ⊂ R

3 is the unit two-sphere, i.e., the set of all unit vectors with norm
induced by the standard dot product 〈 ·, · 〉. A spherical cap with center w ∈ S

2 and
height t ∈ (−1, 1) is the set

C(w, t) = {x ∈ S
2 | 〈w, x〉 ≥ t}.

The boundary of a set S is denoted by ∂S, thus

∂C(w, t) = {x ∈ S
2 | 〈w, x〉 = t},

and σ is the normalized surface measure of S2, such that σ (C(w, t)) = (1− t)/2. The
characteristic function of a set A is χA, i.e., χA(x) = 1 iff x ∈ A, and 0 otherwise. An
application of discrepancy to high-dimensional integration problems is the so-called
“Koksma–Hlawka” inequality:
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f (p j ) −
∫

S2
f dσ
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∣
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∣
∣
∣

≤ D̂(PN )V( f ),

where D̂ is a notion of discrepancy (not restricted to the spherical cap discrepancy)
and V( f ) is a constant depending on the function f , see [15, 20].

This paper deals with point sets on the two-sphere which are derived from pertur-
bations of any full rank lattice under a specific equal area map. This adds to the list of
known constructions with good distribution properties. For the reader’s convenience,
we give below a list of other well-known point sets on S2, including their reference of
origin and other works investigating them.
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Origin Invstigtd.

Probabilistic algorithms
Uniformly at random [16] [1, 14]
Ensembles based on determinantal point processes [22] [2, 9]
Roots of random polynomials in R

2 → S
2 [11] [3]

The diamond ensemble (can also be made deterministic) [8] [8, 18]
Point sets based on jittered sampling [5, 7] [6]

Deterministic algorithms
Spiral points [4, 24] [21]
Hierarchical, equal area and iso-latitude pixelation [19] [21]
Point sets using group action [23] [23]
Spherical Fibonacci lattice [1] [1]
Spherical Fibonacci grid [26] [21]

We will prove a bound on the spherical cap discrepancy of our point constructions
which is of the same order as the best results obtained so far for deterministic point
sets found in the literature. An open (and hard) problem is to improve these bounds
to the order obtained in a fundamental result due to Beck in [5, 6], where we find the
existence of points P�

N and constants independent of N , such that

cN−3/4 ≤ D(P�
N ) ≤ CN−3/4

√

log N .

The construction of Beck is probabilistic and an algorithm to generate random point
sets with discrepancy matching this upper bound with high probability was obtained
for instance in [2].

Bounds for deterministic point sets are usually hard to derive andwere first achieved
by Lubotzky et al. in [23] with an upper bound of the order (log N )2/3N−1/3. Aistleit-
ner et al. showed in [1] that for spherical digital nets and spherical Fibonacci lattices
the spherical cap discrepancy is upper bounded by an order of N−1/2. Further bounds
were given for the diamond ensemble by Etayo in [18] and for HEALPix generated
points by Hofstadler, Mastrianni, and the author in a preprint, where both point sets
are shown to have a spherical cap discrepancy of order N−1/2.

Etayo opened the contest to find deterministic point sets PN which allow for the
smallest constant bounding

√
ND(PN ), where she took the lead in [18] with the

Diamond ensemble and a bound of 4 + 2
√
2. We will identify a family of point sets

where
√
18 suffices, see Sect. 3.1.

We construct point sets based on the method deployed in [1], which originated in
[17]. Let GL(R2) be the group of invertible 2× 2 matrices acting on R2 with identity
matrix 1. The Frobenius norm of the matrix Q is ‖Q‖F = √

trace Qt Q, the Lebesgue
measure on R

2 is λ, and e1, e2 denote the standard basis of R2.

Definition 1.2 A lattice�Q is a set QZ
2 for some Q ∈ GL(R2). The associated scaled

tiling via a fundamental domain �Q = Q[0, 1)2 ⊂ R
2 and K ∈ N is

R
2 =

⋃

p∈�Q

TK (p), where TK (p) = 1

K
(p + �Q).
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Let I 2 = [0, 1) × (0, 1) denote the unit square with three boundary sides removed,
then for fixed K ∈ N we choose arbitrary z pK ∈ TK (p) for p ∈ �Q and define a point
set

PQ(K ) = {z pK | p ∈ �Q} ∩ I 2.

See Fig. 1b. TheLambertmap L : I 2 → S
2, whichwe introduce later, identifies two

sides of ∂ I 2 and maps two sides to the poles—and this identification has an effect on
the discrepancy, see Fig. 1. To bound it we define a parametrization ρ : [0, 4] → ∂ I 2

via f (x) := max (min(x, 1) + min(2 − x, 0), 0),

x 
→ ρ(x) = f (x)e1 + f (4 − x)e2. (1)

Before we state our main result in Theorem 1.3, we need to introduce three terms,
which are bounded above by constants depending on Q only, as we will show:

1) Let NQ(K ) = #PQ(K ) be the number of points in PQ(K ), and set

dQ(K ) = 1

K

∣
∣
∣
∣
NQ(K ) − K 2

|det(Q)|
∣
∣
∣
∣
.

2) Set

CQ
L = sup

w∈S2
sup

−1≤t≤1
length

(

Q−1(L−1(∂C(w, t) ∩ S
2
p)

))

,

3) and with the short hand notation [a, b]c := [0, a] ∪ [b, 1] we define

MQ(K ) = sup
S∈{[a,b],[a,b]c:
0≤a<b≤1}

K

|det(Q)|

∣
∣
∣
∣
∣
∣

∑

p∈Ad(S,K )

(
χPQ(K )(z

p
K )

NQ(K )
− λ(TK (p) ∩ I 2)

)
∣
∣
∣
∣
∣
∣

,

where we sum over all p, such that the interior of TK (p) intersects ∂ I 2 at some
“height” in S: We define R(S) = {x ∈ [0, 4] | f (4 − x) ∈ S} for S ⊂ [0, 1] and
f as in (1), to be all x with 〈ρ(x), e2〉 ∈ S; then

Ad(S, K ) = {p ∈ �Q | TK (p)o ∩ ρ(R(S)) �= ∅}.

The term MQ(K ) bounds the discrepancy that arises around L(∂ I 2), while taking
the geometry of images of spherical caps under L−1 into account.

Theorem 1.3 (main result) Let Q ∈ GL(R2), K ∈ N, and PQ(K ) be chosen as in
Definition 1.2 with N = NQ(K ). Then

D(L(PQ(K ))) ≤ (

dQ(K ) + √
2 · CQ

L + MQ(K )
)
√|det(Q)|√

N
+ O(N−1).
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Fig. 1 Picture a is the image under the Lambert map of picture b. The dots represent PQ(K ), the S-shaped
curve is L−1(∂C) for a spherical cap C with the north pole in its interior, see Fig. 2. Contributing factors to
the spherical cap discrepancy are fluctuations: of the total number of points, of points in TK (p) intersected
by ∂C (shaded in blue) and of points in TK (p) intersected by ∂ I 2 (shaded in red), which are represented
by dQ(K ), CQ(K ), and MQ(K )

Remark A possible choice for PQ(K ) is (K−1�Q)∩ I 2, and Theorem 1.3 shows that
small inaccuracies in numerical representation of the positions of these elements do
not affect the bound on discrepancy.

A less precise but more succinct bound is given by the following:

Corollary 1.4 Let Q ∈ GL(R2), K ∈ N, and PQ(K ) be chosen as in Definition 1.2
with N = NQ(K ). Then

D(L(PQ(K ))) ≤ ‖Q‖F√|det(Q)| · 8 + 3
√
2√

N
+ O(N−1).

Proof This follows from Theorem 1.3 with Lemmas 2.2, 2.3, and 2.8, and the remark
after it. ��

Outline of the paper. In Sect. 2 we first state the definition of the Lambert equal area
map and prove a bound onC1

L . Next we introduce the notion of an n-convex curve, and
then prove in Lemma 2.7 a bound on how many fundamental domains of (1/K )�Q

are intersected by it; this result constitutes the backbone of this work. The section
then ends with a bound on dQ(K ) and a proof of Theorem 1.3. In Sect. 3 we apply
Theorem 1.3 to specific cases, thus obtaining many deterministic point sets with the
least constant for the leading term up to date.
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(a) (b) (c)

Fig. 2 Illustration of the Lambert map. Boundaries of spherical caps on a sphere in a, in b we see their
projection to the enveloping cylindrical surface, which is “cut”, “flipped”, and scaled to the unit square in c

2 Intermediate Results and Proof of Theorem 1.3

2.1 The Lambert Map

By S2p we denote the punctured unit sphere, i.e., S2 with the poles removed.

Definition 2.1 The Lambert map L is a well-known area preserving map, i.e., for open
sets U ⊂ I 2 and the Lebesgue measure λ, we have λ(U ) = σ(L(U )), where

L : I 2 → S
2
p,

(x, y) 
→
⎛

⎝

2
√

y − y2 cos 2πx
2
√

y − y2 sin 2πx
1 − 2y

⎞

⎠ ,

and the inverse is given in terms of the standard parametrization1 of S2,

L−1 : S2p → I 2,
⎛

⎝

cosφ sin θ

sin φ sin θ

cos θ

⎞

⎠ 
→ 1

2π

(

φ

π(1 − cos θ)

)

.
(2)

Lemma 2.2 C1
L ≤ 3.

Proof Note that the map L−1 projects points from the sphere, parallel to the plane
R
2 ×{0}, to the enveloping cylindrical surface, see Fig. 2. In order to bound the length

of the curve L−1(∂C ∩ S
2
p), it will be enough to work with the projection on the

enveloping cylinder. We make the following claim, that we consider obviously true,
see Fig. 2:

1 Here 0 ≤ φ < 2π and 0 < θ < π .
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Given any spherical cap C(w, t), then there exists a cap C(w′, t ′) and ε > 0, such
that

1 − ε = zM (w′, t ′) > zm(w′, t ′) = ε − 1,

where zM (w′, t ′) and zm(w′, t ′) denote the maximal and minimal z-value of C(w′, t ′)
in cylindrical coordinates, and

C(w′, t ′) contains exactly one of the poles in its interior,

with the property that

length (∂C(w, t)) ≤ length (∂C(w′, t ′)).

This inequality then also holds for the length of the projections L−1(∂C(w, t) ∩ S
2
p)

and L−1(∂C(w′, t ′) ∩ S
2
p).

Thus in order to maximize the length we let zM , zm approach ±1 and choose w so
that exactly one of the poles is contained in the cap, i.e., consider C(w, 0) with

w =
(

sin

(
π

2
− ε

)

, 0, cos

(
π

2
− ε

))t

and ε > 0 small. A parametrization for ∂C(w, 0) is then given by

ϕ± : [ε, π − ε] → [0, 2π ],
θ 
→ ± arccos

(

− cot θ cot

(
π

2
− ε

))

,

such that

γ+ : [ε, π − ε] → ∂C(w, 0),

θ 
→
⎛

⎝

cosϕ+(θ) sin θ

sin ϕ+(θ) sin θ

cos θ

⎞

⎠,

defines a curve that runs from zM to zm along ∂C(w, 0), and γ− defines the other half.
Since L−1 ◦ γ+ and L−1 ◦ γ− have the same length, it is enough to consider just one
of these curves, bound its length and multiply by 2: thus we consider the curve

θ 
→ 1

π

⎛

⎝
arccos

(

− cot θ cot

(
π

2
− ε

))

π(1 − cos θ)

⎞

⎠,
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where we already multiplied by a factor of 2 in (2). Thus we have to bound

length =
∫ π−ε

ε

√

1

1 − (cot θ)2(cot (π/2 − ε))2
· (cot (π/2 − ε))2

π2(sin θ)4
+ (sin θ)2 dθ.

We can simplify the expression in the square root, first with the angle sum formula for
the cosine (with ε < θ < π − ε) to obtain

−1

cos (π/2 − ε − θ) cos (π/2 − ε + θ)
· (cos (π/2 − ε))2

π2(sin θ)2
+ (sin θ)2,

and then with cos (ε − π/2) = sin ε and a symmetry argument to get

length = 2
∫ π/2

ε

√

1

sin (ε + θ) sin (θ − ε)
· (sin ε)2

π2(sin θ)2
+ (sin θ)2 dθ.

Let

sinc x = sin x

x
,

then for any choice of a ∈ (0, π/2] we have

x sinc a ≤ sin x ≤ x

for x ∈ [0, a], which we use for small ε and 0 < 2ε < a < π/2 to obtain

length ≤ 2

(sinc a)2π

∫ a−ε

ε

√

1

θ2 − ε2
· ε2

θ2
dθ + ε · π2

4
√

a(a − 2ε)3
+ 2

∫ π/2

ε

sin θ dθ

= 2

π(sinc a)2

∫ a/ε−1

1

√

1

x2 − 1
· 1
x
dx + O(ε) + 2

lim ε→0= 2

π(sinc a)2
· π

2
+ 2,

where we used that the length increases with decreasing ε, and that

d

dx
arctan

√

x2 − 1 =
√

1

x2 − 1
· 1
x
.

The inequality above is thus true for any 0 < a, and hence also for sinc 0 = 1, which
proves the claim. ��

The next lemma relates CQ
L to C1

L .
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Lemma 2.3 Given a matrix A ∈ R
2×2 and a finite length C1-curve β in R

2, then
for �β = length(β), �Aβ = length(Aβ), mA = min {‖Ae1‖, ‖Ae2‖}, and MA =
max {‖Ae1‖, ‖Ae2‖}, we have

mA · �β ≤ �Aβ ≤ MA · �β if A has rank 2 and A is orthogonal,

�Aβ ≤ ‖A‖F · �β if A has rank 2.

Proof Let β(t) = (x(t), y(t)) be an injective C1-parametrization with 0 < t < 1
(thus differing from the geometric curve at most by two endpoints). Let sM =
max‖x‖=1 ‖Ax‖ and sm = min‖x‖=1 ‖Ax‖ denote the maximal and minimal singular
values of A, then we have

sm�β = sm

∫ 1

0
‖β ′(t)‖ dt ≤

∫ 1

0
‖Aβ ′(t)‖ dt ≤ sM

∫ 1

0
‖β ′(t)‖ dt = sM�β.

For an orthogonal matrix we have sm = mA and similarly for MA; also it is clearly
true that sM ≤ ‖A‖F . ��

2.2 Intersection of Convex Curves with Fundamental Domains

In this section we will introduce the notion of an n-convex curve, for which we can
prove sharp bounds on the number of fundamental domains it intersects. This will then
give the boundary contribution in the proof of Theorem 1.3.

Definition 2.4 A continuous curve β : [a, b] → R
2 (a, b ∈ R, a < b) is n-convex for

n ∈ N, if there are points a = t0 < t1 < . . . < tn−1 < tn = b with the property
that β([t j , t j+1]) is a convex curve for each 0 ≤ j < n, i.e., there exist convex sets
A1, . . . , An with β([t j , t j+1]) ⊂ ∂A j .

A circle is 1-convex, as is a straight line segment. Finite spirals (in length and
winding number) are n-convex. It seems that every (finite) connected part of the
boundary of a pseudo-convex set, as introduced in [1], is n-convex and vice versa.
This characterization is not necessary for our purposes, so we do not try to prove it
here.

Corollary 2.5 The images L−1(∂C(w, t)) for all (w, t) ∈ S
2 × (−1, 1) are at most

three distinct curves, each is at most 7-convex, and they are not self-intersecting.

Proof This follows from the analysis of [1, Sect. 6], where the authors show that there
is an admissible covering by pseudo-convex sets of at most seven parts (each part has
some arc of the curve contained in its boundary). ��
Definition 2.6 Given a lattice�Q , a continuous curveβ : [a, b] → R

2 and K ∈ N. Let
�Q = Q[0, 1)2, then the intersection number of β with the tiling (1/K )(�Q + �Q)

is

I Qβ (K ) = #

{

p ∈ �Q
∣
∣
∣

(
1

K
�Q + 1

K
p

)

∩ β([a, b]) �= ∅
}

.
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�(t1)

�(t0)

�(t2)
�(t4)

M2

M1

m1

m2

y

x

�(t3)

Fig. 3 A 4-convex curve to illustrate the proof of Lemma 2.7

Lemma 2.7 Let β be a piece-wise C1-curve in R
2, n-convex with finitely many self-

intersections. Let �Q be a full rank lattice, then

I Qβ (K ) ≤ √
2 · K · length(Q−1β) + 19n + 1.

Proof Let β : [0, 1] → R
2 be a parametrization as in the statement of the lemma, and

denote the x, y-coordinates of β by x(t) = 〈β(t), e1〉 and y(t) = 〈β(t), e2〉.
We will first show monotonicity of the coordinates for β in certain intervals. Let

t1, . . . , tn−1 be as in Definition 2.4. If β([0, t1]) is a line segment, then x(t), y(t) are
monotonous, otherwise let Mj ,m j ∈ β([0, t1]) for 1 ≤ j ≤ 2 satisfy

〈Mj , e j 〉 = max
t∈[0,t1]

〈β(t), e j 〉 and 〈m j , e j 〉 = min
t∈[0,t1]

〈β(t), e j 〉.

See Fig. 3. Choose oMj ∈ β−1(Mj )∩[0, t1] and omj ∈ β−1(m j )∩[0, t1] for j ∈ {1, 2}.
Let o1, o2, o3, o4 denote these omj , oMj in ascending order. In the calculations below the
pair (τ1, τ2) is (ok, ok+1) for some choice of k ∈ {0, 1, 2, 3, 4} such that τ2 − τ1 > 0,
where o0 = 0 and o5 = t1.

It follows by the convexity assumption that the x, y-coordinates of β(t) are mono-
tone for t ∈ [τ1, τ2] as we will show: first, for any κ ∈ [0, t1] and τ ∈ {s ∈ [0, t1] |
β(s) �= β(κ)} we either have that the arc segment of β with domain between τ and κ

is a straight line, or

{(1 − s)β(κ) + sβ(τ) | 0 < s < 1} ∩ β([0, t1]) = ∅.

To prove monotonicity of x(t) and y(t), we work out the example β(τ1) = m2.
The existence of numbers τ1 < ε1 < ε2 < τ2 such that y(ε1) > y(ε2) will lead
to a contradiction in this case (by the assumption on β(τ1), y(t) is monotonously
increasing). Either x(ε1) ≤ x(ε2) or x(ε2) < x(ε1), and in both cases, one of the

123
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polygons with vertices and edges of the form

β(oM2 ) −→ β(τ1) −→ β(ε1) −→ β(ε2),

β(τ1) −→ β(ε1) −→ β(ε2) −→ β(oM2 ),

will contradict convexity, depending if either oM2 < τ1 or oM2 ≥ τ2 (by definition
oM2 /∈ (τ1, τ2)). For one of the polygons, we can find two points A, B on it, such that−→
AB intersects the polygon in three points, and the same will hence also be true for
the arc segments β([oM2 , τ2]) or β([τ1, oM2 ]). Note that y(oM2 ) ≥ y(ε1) > y(ε2) ≥
y(τ1) = y(om2 ).

Thus y(t) is monotonously increasing, and we use this fact to show that x(t) is
monotone. Assume there are numbers τ1 < ε1 < ε2 < ε3 < τ2 so that x(ε2) < x(ε1)
and x(ε2) < x(ε3), and if either o∗

1 < τ1 or o∗
1 ≥ τ2 (here o∗

1 is a place holder where∗ ∈ {m, M} depending on the polygonal shape), one of the polygons with vertices and
edges of the form

β(τ1) −→ β(ε1) −→ β(ε2) −→ β(ε3) −→ β(o∗
1),

β(o∗
1) −→ β(τ1) −→ β(ε1) −→ β(ε2) −→ β(ε3),

contradicts convexity in a similar fashion as above. The case “x(ε1) < x(ε2) and
x(ε3) < x(ε2)” is similar. Thus x(t) is monotonous. The other possibilities for β(τ1)

reduce to the case above by applying rotations to β([0, t1]).
We define two supporting axes for each non-trivial arc β([τ1, τ2]) as follows:

{(1 − t)β(τ j ) + t Z | 0 ≤ t ≤ 1} where Z =
(〈β(τ1), e1〉

〈β(τ2), e2〉
)

∈ R
2.

These line segments above are parallel to the axes, and we denote them accordingly
by Lx and Ly . Let γ = β([τ1, τ2]) and Q be the identity matrix 1, then

I1γ (K ) ≤ I1Lx
(K ) + I1Ly

(K )

by the following argument: since x(t), y(t) are monotonous for t ∈ [τ1, τ2], say both
are increasing, then β can only exit a domain (1/K )�1 + (1/K ) p, p ∈ �1 = Z

2,
through the top or right side.

• If β leaves through the right side, I1γ (K ) and I1Lx
(K ) increase by one,

• or else I1γ (K ) and I1Ly
(K ) increase by one.

Thus, with length(Lx ) = c and length(Ly) = d, we have

I1γ (K ) ≤ I1Lx
(K ) + I1Ly

(K ) ≤ (c + d)K + 4.

We further use the inequality c+ d ≤ √
2 · √c2 + d2 valid for all c, d ∈ R, to derive

I1γ (K ) ≤ √
2 ·

√

c2 + d2 · K + 4 ≤ √
2 · length(γ ) · K + 4,
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where we used that the shortest path between β(τ1) and β(τ2) has length
√
c2 + d2.

The same reasoning applies to all sub-intervals (which are at most five), and after
summing up we obtain

I1β (K ) ≤ √
2 · length(β) · K + 19n + 1.

We will reduce the general case to the one above, by regarding the curve γ = Q−1β.
It is clear that I1γ (K ) = I Qβ (K ). Regularity of a curve is not affected by invertible
matrices, neither is the notion of n-convexity nor the values t1, . . . , tn . ��

Note that the constant
√
2 in Lemma 2.7 cannot be improved, as the example of the

translated diagonal of I 2 with Q = 1 already shows.

2.3 Bound of dQ(K) and Proof of theMain Result

Before proving Theorem 1.3, we first bound the quantity dQ(K ) and use this bound
to express NQ(K )−1/2 in terms of K and Q in (3).

Lemma 2.8 Given a lattice �Q and K ∈ N, then

dQ(K ) ≤ √
2 · 2 · (‖Q−1e1‖ + ‖Q−1e2‖) + 20

K
≤ 4 · ‖Q‖F

|det(Q)| + 20

K
.

Proof Using the notation as introduced in Definition 1.2, we see that |det(Q)| ·K−2 is
the area of eachTK (p),with p ∈ �Q .Now thenumber of points {z pK }withTK (p) ⊂ I 2

is at most �K 2 · |det(Q)|−1�, and this differs from NQ(K ) at most by the number of
points {zqK } where TK (q) intersects ∂ I 2. The number of these points is linear in K by
Lemma 2.7, where the constant can be computed explicitly since image(β) = ∂ I 2.
The last part follows by applying the inequality a + b ≤ √

2 · √
a2 + b2 and the

well-known formula for Q−1 in terms of elements of Q and a factor of det(Q)−1.
��

Remark The term MQ(K ) can be bounded in a similar fashion by the same constant
+ O(K−1): one just has to apply the triangle inequality in its definition, bound each
term by |det(Q)| · K−2, and bound the number of summands as above.

For later use, we note that there is some sK with |sK | ≤ dQ(K )/NQ(K ), such that

√

1

|det(Q)| · NQ(K )
= 1

K

√

1 + K 2 − |det(Q)| · NQ(K )

|det(Q)| · NQ(K )
= 1

K
+ sK . (3)

Proof of Theorem 1.3 Let PQ(K ) = {z1, . . . , zN }where N = NQ(K ). Given a spher-
ical cap C(w, t) ⊂ S

2, we regard Aw,t := L−1(C(w, t) ∩ S
2
p) ⊂ I 2. Since L is area

preserving, the proof will be complete once we can bound

(�) :=
∣
∣
∣
∣
∣
∣

1

N

N
∑

j=1

χAw,t (z j ) − λ(Aw,t )

∣
∣
∣
∣
∣
∣

.
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An upper bound of (�) is established by a classical approach,2 where �Q is reduced
to sets V , B of volume and boundary contributions in order to apply the triangle
inequality: let {p1, . . . , pN } ⊂ �Q be such that z j ∈ TK (p j ), then

(�) ≤
∑

p∈V

∣
∣
∣
∣

1

N
− λ(TK (p))

∣
∣
∣
∣
+

∣
∣
∣
∣

∑

p j∈B

1

N
χAw,t (z j ) −

∑

p j∈B
λ(TK (p j ) ∩ Aw,t )

∣
∣
∣
∣
, (4)

where V and B are defined below, and where the notation is as in Definition 1.2. Set

V = V (w, t, K ) = {p ∈ �Q | TK (p) ⊂ Aw,t },

hence z pK ∈ Aw,t for p ∈ V , and we define the boundary term B = BC ∪ BI by

BC = BC (w, t, K ) = {q ∈ �Q | TK (q) ∩ (∂Aw,t \ ∂ I 2) �= ∅} and

BI = BI (w, t, K ) = {q ∈ �Q | TK (q) ∩ (∂Aw,t ∩ ∂ I 2) �= ∅}.

(Note thatwe potentially over-count in BC or BI , sincewedonot remove points present
in previously defined sets.) For each p ∈ V , the difference εK = N−1 − λ(TK (p))
is constant, thus the contribution to discrepancy coming from the area is given by
(#V ≤ N )

|εK | · #V ≤
∣
∣
∣
∣

1

N
− |det(Q)|

K 2

∣
∣
∣
∣
· N = dQ(K ) · |det(Q)|

K N
· N .

Next we bound the discrepancy coming from the boundary terms BC and BI . If for
q ∈ B we have zqK /∈ Aw,t , then the difference inside the absolute value of the second
sum in (4) has a negative contribution of

λ(TK (q) ∩ Aw,t );

otherwise the difference has a contribution of

1

N
− λ(TK (q) ∩ Aw,t ) = λ(TK (q) \ Aw,t ) + εK .

Both contributions are hence bounded by λ(TK (p)) up to εK , and we obtain

∑

p∈BC

∣
∣
∣
∣

χAw,t (z
p
K )

N
− λ(TK (p) ∩ Aw,t )

∣
∣
∣
∣
≤ |det(Q)|

K
· √

2 · CQ
L + O(K−2),

where we applied Lemma 2.7 (thanks to Corollary 2.5) and the definition of CQ
L .

Finally, the discrepancy coming from the contribution of points in BI is less than
|det(Q)| · K−1MQ(K ) by definition, and (3) puts our bounds in terms of N . ��
2 See the Gauss circle problem, where Lemma 2.7 could be applied.
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Fig. 4 Image of the points P1(50) with N = 2500

3 Applications to Specific Cases

In this section we first focus on point sets with special choice Q = 1, for which we
obtain the lowest upper bound on the leading term of the spherical cap discrepancy
up to date. This example also shows that in general the order of O(N−1/2) cannot
be improved. We further see that a separation distance of matching order cannot be
derived in general. The second example serves as visual evidence that some point sets
of the type regarded in this article should have a spherical cap discrepancy of much
lower order.

3.1 The Standard Lattice

Let

P1(K ) =
(
1

K
Z
2 + 1

2K

(
1

1

))

∩ I 2,

see Fig. 4. Then d1(K ) = 0 and M1(K ) = O(K−1), and we obtain with Theorem
1.3 and Lemma 2.2 the constant mentioned in the introduction:

1

2
≤ √

N · D(L(P1(K ))) ≤ √
18 ≈ 4.242641.

The lower bound comes from a special choice for a spherical cap: take as center
the north pole and let the height t → ((2K − 1)/(2K ))+. The boundary of the
aforementioned cap with height t = (2K −1)/(2K ) has length of order K−1/2, while
there are K points equi-distributed on it, thus the distance between consecutive points
is of order K−3/2 = N−3/4.
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Fig. 5 Image of points related to the lattice �Q(ϕ,1) with K = 50 and NQ = 2500

3.2 Orthonormal Lattices

We choose points PQ(x,y)(K ), where Q is chosen orthonormal up to a factor, i.e.,

Q(x, y) = 1

y

(

x −1
1 x

)

and

Q−1(x, y) = y

x2 + 1

(

x 1
−1 x

)

,

for x ∈ R, y > 0. Then, by Lemma 2.3,

CQ(x,y)
L ≤ 3 · ‖Q−1(x, y)e1‖ = 3

y√
x2 + 1

and also note that y · √
det(Q(x, y)) = √

x2 + 1. We can modify PQ(x,y)(K ) such
that dQ(K ), MQ(K ) are of order K−1, and hence by Theorem 1.3 we obtain many
deterministic point sets with the bound

D(

L
(

PQ(x,y)
mod (K )

)) ≤
√

18

NQ(x,y)
m

+ O

(
1

NQ(x,y)
m

)

.

For ϕ = (1 + √
5)/2, the choice Q(ϕ, 1) yields the image in Fig. 5, resembling

spherical Fibonacci lattices and grids as in [1, 26]. Note that no modification was
necessary for PQ(ϕ,1)(K )—this seems to be related to directional discrepancy as in
[10], but we do not pursue this direction.
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Remark Definition 2.4 and Lemma 2.7 were first developed by this author to prove
the result in a work with with Julian Hofstadler andMichelle Mastrianni, but the items
were improved and streamlined in the current work.

Remark Clearly the proof idea of Theorem 1.3 extends beyond the Lambert projection
to any area preserving map � between a surface and shape R ⊂ R

2 with ∂R being
n-convex—as long as the boundary of the analog of spherical cap under � is n-convex
with universally bounded n and length.
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