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Abstract
Let K and L be two convex bodies in R

n , n ≥ 2, with L ⊂ int K . We say that L
is an equichordal body for K if every chord of K tangent to L has length equal to
a given fixed value λ. Barker and Larman (Discrete Math. 241(1–3), 79–96 (2001))
proved that if L is a ball, then K is a ball concentric with L . In this paper we prove that
there exist an infinite number of closed curves, different from circles, which possess
an equichordal convex body. If the dimension of the space is more than or equal to 3,
then only Euclidean balls possess an equichordal convex body.

Keywords Euclidean sphere · Equichordal body · Isoptic curves

Mathematics Subject Classification 52A10 · 52A20

1 Introduction

Let K be a convex body in the plane, i.e., a compact and convex set with non-empty
interior, and let x be a point in its interior.We say that x is an equichordal point if every
chord of K through x have the same length. The famous Equichordal Problem, due to
Blaschke et al. [2], and Fujiwara [5], asks about the existence of a convex body with
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two equichordal points. There are many false proofs about the non existence of such
a body, however, Rychlik finally gave a complete proof about the non existence of a
body with two equichordal points in [12]. It is worth mentioning that there are many
convex bodies, different from the disc, which have exactly one equichordal point. Here
we are interested in a generalization of the notion of equichordal point in the following
way: Let K and L be two convex bodies in R

n , n ≥ 2, with L ⊂ int K . We say that
L is an equichordal body for K if every chord of K tangent to L have length equal to
a given fixed value λ. In [1], Barker and Larman proved that if K is a convex body
that possesses an equichordal ball then it is also a ball. However, we wonder if there
exist convex bodies different from balls which possess an equichordal convex body in
its interior. It seems that bodies which float in equilibrium in every position provide
examples of such bodies in the plane (see for instance [15]), however, it is not clear if
the considered bodies K are convex or not.

In Sect. 3 we study convex bodies L for which the chords of one of its isoptic curves
(defined in the following section), that are supporting L have length equal to a constant
number λ. In Sect. 5 we also prove that in dimension 3 or higher, only Euclidean balls
(or simply balls) possess an equichordal convex body in its interior.

2 Preliminary Concepts

We give first some definitions and notation. Let K be a given planar convex body;
for every real number t we denote by �(t) the supporting line of K with outward
normal vector u(t) = (cos t, sin t). The function p : R → R, defined as p(t) =
maxx∈K 〈u(t), x〉, is known by the name of supporting function of K . When the origin
O is contained in K , p(t) is nothing else than the distance from O to the support line
�(t). The distance between the support lines �(t) and �(t +π) is called the width of K
in direction u(t) and it is denoted by w(t), in other words, w(t) = p(t)+ p(t +π). If
w(t) is constant, independently of t , we say that K is a body of constant width. For any
α ∈ (0, π), the α-isoptic Kα of K is defined as the locus of points at which two tangent
lines to K intersect at an angle α. Using the support function, ∂K is parameterized
(see for instance [14]) by

γ (t) = p(t)u(t) + p′(t)u′(t), for t ∈ [0, 2π ].

The isoptic curve Kα can be parameterized by the same angle by the formula (see [4]
or [9])

γα(t) = p(t)u(t) +
[
p(t) cot α + p(t + π − α)

sin α

]
u′(t).

For any t ∈ R we define (see Fig. 1)

a(t) = |γα(t) − γ (t)|, b(t) = |γα(t) − γ (t + π − α)|,
c(t) = |γα(t) − γα(t + π − α)| = b(t) + a(t + π − α),

q(t) = |γ (t) − γ (t + π − α)|.
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Fig. 1 Parameters of the isoptic curve

By some tedious but simple calculations we can express the lengths of all these
chords in terms of the support function of K :

a(t) = p(t + π − α) + p(t) cosα − p′(t) sin α

sin α
,

b(t) = p(t + π − α) cosα + p′(t + π − α) sin α + p(t)

sin α
,

c(t) = 2p(t + π − α) cosα + p(t) + p(t − 2α)

sin α
. (1)

Finally, the support function of a strictly convex body, i.e., a convex body without
segments in its boundary, is a periodic function,with period 2π , and it is also absolutely
continuous, indeed it is of class C2. So we can consider its expansion in terms of the
Fourier series (see [6, p. 139]), i.e.,

p(t) = a0 +
∞∑
n=1

(an cos nt + bn sin nt).

The first and second derivatives of p are expressed as

p′(t) = −
∞∑
n=1

(nan sin nt − nbn cos nt), (2)

p′′(t) = −n2
∞∑
n=1

(an cos nt + bn sin nt).
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3 Some Results About Equichordal Bodies in the Plane

In this section we present two results which give conditions under which a body (not
necessarily convex) that possesses an equichordal convex body in its interior, is a disc.
However, the question about whether there exists a convex body L , different from the
disc, which possesses an equichordal convex body, remains open. Our first result is
the following.

Theorem 3.1 Let K be a strictly convex body in the plane with differentiable boundary
and let α ∈ (0, π) be a fixed angle such that α/π is an irrational number. Suppose
c(t) = c0, for every t ∈ [0, 2π ], for a positive number c0. Then K is a disc.

Proof Since c(t) = c0 we have by (1) that

c(t) = 2p(t + π − α) cosα + p(t) + p(t − 2α)

sin α
= c0,

it follows that

2p′(t + π − α) cosα + p′(t) + p′(t − 2α) = 0. (3)

If we substitute the Fourier coefficients of p(t) in the differential equation (3), by (2)
we have

2 cosα

∞∑
n=1

(nbn cos n(t + π − α) − nan sin n(t + π − α))

+
∞∑
n=1

(nbn cos nt − nan sin nt)

+
∞∑
n=1

(nbn cos n(t − 2α) − nan sin n(t − 2α)) = 0.

Since this holds for every real number t , we must have that for every n,

cos nt · [−2nan sin n(π − α) cosα

+ nan sin 2nα + 2nbn cos n(π − α) cosα + nbn + nbn cos 2nα]
+ sin nt · [−2nan cos n(π − α) cosα − nan

− nan cos 2nα − 2nbn sin n(π − α) cosα + nbn sin 2nα] = 0.

The coefficients of cos nt and sin nt must be both equal to 0, hence we have that

[ −2 sin n(π − α) cosα + sin 2nα 2 cos n(π − α) cosα + 1 + cos 2nα

−2 cos n(π − α) cosα − 1 − cos 2nα −2 sin n(π − α) cosα + sin 2nα

]
·
[
an
bn

]
=

[
0
0

]
.
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The determinant of the matrix above is given by

(−2 sin n(π − α) cosα + sin 2nα)2 + (2 cos n(π − α) cosα + 1 + cos 2nα)2.

This determinant is zero only if

− 2 sin n(π − α) cosα + sin 2nα = 0 (4)

and

2 cos n(π − α) cosα + 1 + cos 2nα = 0. (5)

Since α ∈ (0, π), for every n ≥ 2 we have that none of (4) and (5) is satisfied if
α/π is an irrational number. Hence, we have that the determinant is non zero and then
an = bn = 0 for every n ≥ 2. It follows that p(t) = a0 + a1 cos t + b1 sin t , i.e., p is
the support function of a disc (see for instance [14]). 
�
Remark 3.2 Theorem 3.1 can be also proved using a result due to Lumer [10] as soon
as the isoptic curve Kα be a convex curve. However, in the proof given here we are
not assuming that Kα is a convex curve.

If we impose the additional condition that q(t) is also constant, then K must be a disc.

Theorem 3.3 Let K be a strictly convex body in the plane with differentiable boundary
∂K, and let α ∈ (0, π) be a fixed angle. Suppose c(t) = c0, and q(t) = q0, for every
t ∈ [0, 2π ], and for two positive numbers c0 and q0. Then K is a disc.

Proof By some simple calculations we have that |γ ′
α(t)| = q(t)/sin α (see e.g. [4]).

Since c(t) = c0 is also constant, we have

d

dt
(|γα(t + π − α) − γα(t)|2)

= d

dt
(〈γα(t + π − α) − γα(t), γα(t + π − α) − γα(t)〉) = 0,

hence

〈γα(t + π − α) − γα(t), γ ′
α(t + π − α)〉 = 〈γα(t + π − α) − γα(t), γ ′

α(t)〉.

It follows that

c0 · |γ ′
α(t + π − α)| cosβ1 = c0 · |γ ′

α(t)| cosβ2,

which implies that β1 = β2, where β1 is the angle between the vectors γα(t+π −α)−
γα(t) and γ ′

α(t+π −α), and β2 is the angle between the vectors γα(t+π −α)−γα(t)
and γ ′

α(t). It follows that the angles between the chord [γα(t + π − α), γα(t)] and the
tangent lines at γα(t) and γα(t + π − α), are equal (see Fig. 2). Similarly, we obtain
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Fig. 2 The angle between the chord [γα(t + π − α), γα(t)] and the tangent lines are equal

that the angles between the chord [γα(t −π +α), γα(t)] and the tangent lines at γα(t)
and γα(t − π + α), are equal. Since the length of the tangent vector γ ′

α(t) is constant
for every t , and all the triangles �γα(t − π + α)γα(t)γα(t + π − α) are congruent,
we also have that the angles between the chord [γα(t −π +α), γα(t +π −α)] and the
tangent lines at γα(t + π − α) and γα(t − π + α), are equal. By elementary geometry
we have that the circle circumscribed to �γα(t − π + α)γα(t)γα(t + π − α) and the
body Kα , share the tangent lines at the points γα(t −π +α), γα(t), and γα(t +π −α);
under this condition it was proved in [7, Lemma 3.3] that Kα must be a disc. Now we
use [8, Theorem 2(b)] and conclude that K is a disc. 
�

4 Some Comments About Rotors in the Plane

Let K be a convex body in the plane and let P be a convex polygon. It is said that K is
a rotor in P if for every rotation ρ, there is a translate of P that contains ρ(K ) and all
sides of P are tangent to K . There are many results about rotors in regular polygons,
see for instance [6], and for the particular case of rotors in equilateral triangles see
[16]. The case of rotors in squares is well known, indeed, bodies of constant width are
a very important topic in Convex Geometry and have many interesting properties and
applications in mechanisms (see the quite nice book [11]).

In this section we give some words about how the results obtained in the previous
section are related to rotors in polygons. Moreover, in all the examples shown below,
if we fix the convex body and the circumscribed polygon is rotated, while maintained
circumscribed to K , the vertices describe an isoptic curve of K .

When c(t) has constant value, using the Fourier series for the support function of
p in the proof of Theorem 3.1 we arrived to the equations

−2 sin n(π − α) cosα + sin 2nα = 0 and

2 cos n(π − α) cosα + 1 + cos 2nα = 0.
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α

K

K

Fig. 3 A centrally symmetric rotor in the equilateral triangle

If n is even, then

sin nα · (cos nα + cosα) = 0 and

cos nα · (cos nα + cosα) = 0.

Both of them are zero if cos nα + cosα = 0, or after some trigonometric transforma-
tions

cos
nα + α

2
cos

nα − α

2
= 0.

It follows that α = (2r+1)π/(n+1) or α = (2r+1)π/(n−1), where r is any integer
number. In this case the determinant of the associatedmatrix is zero andwe can choose
the coefficients an, bn arbitrarily. For instance, for n = 4 we select α = π/3, a0 = 30,
a4 = 0, b4 = 1, and for any other natural number n we have that an = bn = 0, i.e., the
support function of K is p(t) = 30 + sin 4t (see Fig. 3). The body K in this example
is centrally symmetric.

If n is odd, then

sin nα · (cos nα − cosα) = 0 and

cos nα · (cos nα − cosα) = 0.

Both of them are zero if cos nα − cosα = 0, or after some trigonometric transforma-
tions

sin
nα + α

2
sin

nα − α

2
= 0.

It follows that α = 2rπ/(n + 1) or α = 2rπ/(n − 1), where r is any integer number.
Notice that we can obtain an example for any angle of the form α = sπ/q, where s
and q are integers such that 0 < s < q. We just use this case, since α = 2sπ/(2q), we
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α
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Fig. 4 A rotor with constant width in the regular hexagon

select r = s and n = 2q+1 or n = 2q−1. For instance, for α = 2π ·π/3 = 4π ·π/6,
and then we select n = 7. In Fig. 4 we show the body K with its isoptic K2π/3, with
the property that c(t) has a constant value. The support function for this example is
p(t) = 80 + cos 7t . The body in this example has constant width.

5 Some Results in Higher Dimensions

The following lemma is needed for some of the subsequent results.

Lemma 5.1 Let K , L ⊂ R
n, n ≥ 3, be convex bodies with L ⊂ int K a strictly convex

body, such that every (n − 1)-dimensional section of K tangent to L is an (n − 1)-
dimensional ball, then K is a ball. If additionally, the centre of every tangent ball is
at the point of contact with L, then K and L are concentric balls.

Proof There are several ways to prove this lemma. Here we give the following proof.
First note that if all the 3-dimensional sections of a convex body through a given point
in its interior are 3-dimensional balls, then it is an n-dimensional ball. We consider
any point in the interior of L for such a point and since the hypothesis of the theorem
is inherited to every 3-dimensional section, we have that it is sufficient to prove the
theorem in the 3-dimensional case.

Let x be any point in ∂K and let � be any line supporting K at x . Consider the
two supporting planes of L which share the line �, to say H1 and H2. Let H be any
other supporting plane of L through the point x . By hypothesis H ∩ K is a disc which
intersects each one of the circles H1 ∩ ∂K and H2 ∩ ∂K at two points. The circle
H ∩ ∂K passes through three points of the set (H1 ∩ ∂K ) ∪ (H2 ∩ ∂K ), and since
there is a unique sphere which contains the two circles H1∩∂K and H2 ∩∂K , it holds
that this sphere contains H ∩ ∂K . Since H is any supporting plane of L through x , we
have thatRx = {H ∩ ∂K : H is a support plane of L through x} is a closed subset of
a sphere. Let y ∈ ∂K be any point such thatRy ∩Rx �= ∅, thenRy ∪Rx is contained
in the same sphere. Continuing in this way, since K is a compact set, we can prove
that ∂K is a sphere.
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Now, let H be any hyperplane supporting L at a point z and suppose the centre of
the (n − 1)-dimensional ball H ∩ K is z. The line orthogonal to H through z passes
through the centre of the ball K , this implies that indeed H is the tangent plane of L
through z. Suppose to the contrary, that there exists another plane H1 supporting L
at z. In this case H1 ∩ K would be a circle centred at z and then the line orthogonal
to H1, through the point z, would pass through the centre of K . We would have that z
must be the centre of the ball K . This can happen only for one point in ∂L , it follows
that except at this point, ∂L must be a differentiable surface. Since all the normal lines
of ∂L pass through the centre of K , we have that (see for instance [13]) ∂L is a sphere
with centre at the centre of K . We conclude that K and L are concentric balls. 
�
The following result shows that in dimension 3 or higher, only Euclidean balls have
an equichordal convex body.

Theorem 5.2 Let K ⊂ R
n, n ≥ 3, be a strictly convex body which possesses an

equichordal convex body L in its interior. Then K and L are concentric balls.

Proof Suppose the length of the chords of K tangent to L is λ. First we prove that L
is strictly convex, i.e., L has no segments in its boundary. Suppose to the contrary that
there is a segment [a, b] ⊂ ∂L and consider any 2-dimensional plane H supporting
L at [a, b]. By hypothesis, every chord of H ∩ K through a has length λ, and the
same happens for every chord through b. This implies that H ∩K has two equichordal
points, but as was proved by Rychlik [12] this is not possible.

Now, let H be any 2-dimensional plane supporting L at a point x . We will prove
that the diameter of H ∩ K is λ. Suppose this is not the case and there is a chord [a, b]
of H ∩ K with |a − b| > λ. Clearly, [a, b] ∩ L = ∅. Consider a 2-dimensional plane

 that contains [a, b] and such that 
 ∩ int L �= ∅. Let c, d ∈ ∂(
 ∩ L) such that
the lines through c and d, respectively, that are parallel to [a, b] are supporting lines
of 
 ∩ L . Since |a − b| > λ, we have that there exists a chord [e, f ] of 
 ∩ K that is
separated from 
 ∩ L by the chord [a, b] and |e − f | = λ. We have three chords of

 ∩ K parallel to [a, b] and with length λ. This contradicts that K is strictly convex,
then the diameter of H ∩ K must be λ.

Every chord of H ∩ K through x has length equal to λ, then every chord of H ∩ K
through x is a binormal of H ∩ K ; it follows that H ∩ K is a disc centred at x (see for
instance [3]). Since this is true for every 2-dimensional plane H through x , we have
that any (n− 1)-dimensional section of K tangent to L at x is an (n− 1)-dimensional
sphere centred at x . This is also true for every x ∈ ∂L , so we apply Lemma 5.1 and
conclude that K and L are concentric balls. 
�
Corollary 5.3 Let K , L ⊂ R

n, n ≥ 3, be two convex bodies. Suppose that for every
hyperplane H that intersects L it holds that H ∩ L is an equichordal body of H ∩ K.
Then K and L are concentric balls.

Proof It is quite simple to prove that all the chords of K tangent to L have the same
length. The conclusion follows applying Theorem 5.2. 
�
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