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Abstract
Let K be a centrally symmetric spherical and simplicial polytope, whose vertices form
a (4n)−1-net in the unit sphere inRn . We prove a uniform lower bound on the norms of
all hyperplane projections P : X → X , where X is the n-dimensional normed space
with the unit ball K . The estimate is given in terms of the determinant function of ver-
tices and faces of K . In particular, if N ≥ n4n and K = conv {±x1,±x2, . . . ,±xN },
where x1, x2, . . . , xN are independent random points distributed uniformly in the
unit sphere, then every hyperplane projection P : X → X satisfies an inequality
‖P‖X ≥ 1 + cnN−(2n2+4n+6) (for some explicit constant cn), with the probability at
least 1 − 3/N .

Keywords Minimal projection · Spherical polytope · Random polytope · Determinant
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1 Introduction

Let X be a real normed space of dimension at least 2. A linear and continuous mapping
P : X → X is called a projection, if it satisfies the equation P2 = P . By a hyperplane
projection we shall mean a projection with the image of codimension 1.

Projection is a very old concept in mathematics and a basic notion of the approxi-
mation theory, as it provides an approximation of the identity operator on a subspace,
by a linear operator defined on the whole space. For this reason, one often seeks for
a projection with the smallest possible operator norm, as the smaller norm yields a
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better approximation. Such a projection P is called a norm-minimal projection from
X onto the image of P .

Norm-minimal projectionwere studied by a lot of different authors in a great variety
of contexts (see for example [1–3, 8–10, 15, 16, 19–21]). The so-called projection
constants were studied most extensively. Projection constants play a profound role
in the functional analysis and the local theory of Banach spaces, as they are deeply
connected with some other important numerical invariants of Banach spaces. We refer
to Chapter 8 in a monograph [26] for a broader picture on the theory of the projection
constants. In terms of the norm, the best possible situation happens, when there exists
a projection of norm 1 onto a given subspace. In this case, we say that a subspace is
1-complemented in the given space.

By the Hahn–Banach theorem, every 1-dimensional subspace is 1-complemented.
For this reason, we shall call a projection non-trivial, if its image has dimension
at least 2, and it is different from the whole space. In a Hilbert space, every sub-
space is 1-complemented by means of the orthogonal projection. Conversely, it is well
known that if every subspace of a given Banach space X , satisfying dim X ≥ 3, is
1-complemented, then X is isometric to a Hilbert space (see for example [17]). Still,
most of the classical spaces posses some 1-complemented subspace of dimension at
least 2, even if they are not necessarily Hilbert. For example, in the classical �np space,
a hyperplane Y is 1-complemented if and only if Y is the kernel of a functional, which
represented as a vector in Rn , has at most two coordinates that are different from zero
(see [1]). Study of 1-complemented subspaces of Banach spaces has a long history
and there is a large volume of published research on this topic (see [24]).

Bosznay and Garay proved in [6] that, in the context of a normed spaces of given
dimension n ≥ 3, this is, in fact, a very rare instance, to posses some non-trivial
projectionwith the norm1. It turns out, that the set of n-dimensional normed spaces, for
which every non-trivial projection P : X → X has norm strictly larger than 1, is open
and dense in the set of all n-dimensional normed spaces. This somewhat reminds of the
well-known fact, that the set of continuous and nowhere differentiable functions forms
an open and dense subset of the set of continuous functions. Moreover, this naturally
raises a question of establishing some explicit, uniform lower bound on the norms of
projections of a given space, which is strictly greater than 1. Thinking more globally, it
is natural to define the constant ρn as the largest positive number, for which there exists
an n-dimensional normed space X , such that every non-trivial projection P : X → X
satisfies ‖P‖X ≥ 1 + ρn . The fact, that ρn is positive, follows immediately from the
result of Bosznay and Garay and a standard compactness argument. By a result of [9],
on every two-dimensional subspace there is always a projection with the norm at most
4/3, so obviously we have ρn ≤ 1/3 for every n ≥ 3.

It seems that no positive lower bounds on ρn are known. This may be related to the
fact, that lower bounds for the norms of projections were studied mostly in the case
of specific subspaces, rather than uniformly. Nevertheless, some remarkable results
related to the uniform lower bounds were obtained. Gluskin in [12] and Szarek in [25]
used norms generated by random polytopes to establish such lower bounds, but only
for projections with the rank in a specific range. Later, a similar construction was
provided also in [22]. All of these results give estimates of the following type: there
exists an n-dimensional normed space X , such that for every projection P : X → X
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with the rank m in an interval of the form [αn, βn] (where 0 < α < β < 1 are
constants), we have ‖P‖X ≥ C

√
m (for some constant C depending on α and β).

Asymptotically speaking, this is best possible up to a constant, as the famous result of
Kadec and Snobar (see [16]) yields the inequality ‖P‖X <

√
m.

A deeply profound role, that randompolytopes play in themodern high-dimensional
geometry, has been started with a pioneering previous work of Gluskin in [13], who
used them to prove that the asymptotic order of the diameter of the Banach–Mazur
compactum is linear. After that, many different important applications of the ran-
dom objects in the high-dimensional geometry have been established, including the
examples above.

It does not seempossible to apply thosemethods directly to projectionswith the rank
not in the interval of the form [αn, βn]. In this case, the examples are generally lacking.
However, some results were obtained in [18] for the case of hyperplane projections.
For each n ≥ 3 let us define a constant ρH

n as the largest positive number, for which
there exists an n-dimensional normed space X , such that every hyperplane projection
P : X → X satisfies ‖P‖X ≥ 1+ ρH

n . Obviously, we have ρH
n ≥ ρn for every n ≥ 3.

Moreover, by a result of Bohnenblust (see [4]), every hyperplane admits a projection
of norm at most 2 − 2/n, and therefore ρH

n ≤ 1 − 1/n for every n ≥ 3. In [18] a
uniform lower bound on the norms of the hyperplane projections was provided in the
case of the space X being a rather general subspace of the �m2p space (where p ≥ 2 is
an integer). In consequence, we have

ρH
n ≥ (8(n + 3)5)−30(n+3)2 , (1)

for every n ≥ 4. This implies an asymptotic lower bound on ρH
n of the form

ρH
n ≥ exp (−Cn2 log n), (2)

for some absolute constant C > 0.
The aim of this paper, is to study uniform lower bounds for the norms of hyperplane

projections in the setting of the spherical polytopes (by which we mean the convex
hulls of points lying on the unit sphere). Ourmain result gives such an explicit, uniform
lower bound for a broad class of normed spaces, with the unit ball being a symmetric
spherical, simplicial polytope whose vertices form a (4n)−1-net in the unit sphere.
If K ⊆ R

n is a convex polytope, then by a term face we shall mean only (n − 1)-
dimensional face (facet) of K . Wewill say that face F of K is given by a vector f ∈ Sn

(or corresponds to f ), if f is a unit vector perpendicular to the affine hyperplane
containing F . We recall that a convex polytope is called simplicial, if every face is
an (n − 1)-dimensional simplex. By ‖ · ‖ we shall always mean the Euclidean norm
inRn . By Sn = {x ∈ R

n : ‖x‖ = 1}we denote the Euclidean unit sphere inRn (not to
be confused with the unit sphere inRn+1). For an n-dimensional normed space X , the
norm of X will be denoted by ‖ · ‖X and the same symbol will be used for the operator
norm of a projection P : X → X . Two faces of K are called non-neighbouring if their
intersection is empty. For a given ε > 0, a set X ⊆ Sn is called an ε-net if for every
point p ∈ Sn , there exists x ∈ X such that ‖x − p‖ ≤ ε. Throughout the paper, we
always assume that n ≥ 3 is an integer. Our main result goes as follows.
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Theorem 1.1 (general lower bound for the spherical polytopes) Let N be a positive
integer andα, β positive real numbers. Suppose that points x1, x2, . . . , xN ∈ Sn satisfy
the following conditions:

(i) Vertices of a convex polytope K = conv {±x1,±x2, . . . ,±xN } form a (4n)−1-net
in Sn.

(ii) K is a simplicial polytope.
(iii) For any 1 ≤ i1 < i2 < . . . < in ≤ N we have |det (xi1 , xi2 , . . . , xin )| ≥ α.
(iv) For any n pairwise non-neighbouring faces of K , given by the vectors

f1, f2, . . . , fn ∈ Sn, we have |det ( f1, f2, . . . , fn)| ≥ β.

Let X be the n-dimensional real normed space with the unit ball K . Then, every
hyperplane projection P : X → X satisfies

‖P‖X ≥ 1 + Cnα
2β,

where

Cn = 23n/2−2 · nn−4

5
√
n − 1

.

Informally speaking, the determinant function that appears in the estimate above, could
be considered as some kind of a measure of the linear independency of the vertices and
facets of K . The probability that a random symmetric polytope, with vertices drawn
uniformly and independently in Sn , is simplicial and the determinant function does
not vanish on any subset of vertices or pairwise non-neighbouring faces is equal to 1.
Thus, if we pick appropriately large number of points at random from the unit sphere,
the resulting normed space, has all hyperplane projections with the norm greater than 1
with a high probability. This is clearly expected by the previously mentioned result
of Bosznay and Garay. The question of estimating this probability for some explicit,
uniform lower bound on the norms of hyperplane projection arises naturally. Points
x1, x2, . . . , xN ∈ Sn will be called randompoints, if they are distributed independently
and uniformly inSn . In the next result, we provide a uniform lower bound for the norms
of hyperplane projections, which holds with a large probability for a random spherical
polytope. The result states, that for the symmetric convex hull of N ≥ n4n random
points in Sn , the corresponding normed space has all hyperplane projections with norm
greater than 1+ cnN−(2n2+4n+6) (for some specific constant cn), with the probability
at least 1 − 3/N .

Theorem 1.2 (lower bound for random spherical polytopes) Let N ≥ n4n be a
positive integer. Let x1, x2, . . . , xN ∈ Sn be random points and let X = (Rn, ‖ · ‖X ) be
the n-dimensional normed space with the unit ball BX = conv {±x1,±x2, . . . ,±xN }.
Then, the probability that every hyperplane projection P: X → X satisfies

‖P‖X ≥ 1 + cnN
−(2n2+4n+6),
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where

cn = n2n
2+7n−11

e2n2+7n+3
,

is at least 1 − 3/N.

We can say that the result above quantifies the original result of Bosznay and Garay
(in the hyperplane setting) in two different ways. It gives a uniform lower bound on
the norms of projections, but it also estimates the measure of the spherical polytopes
with given number of vertices, which satisfy it. In the three-dimensional case, this
gives an estimate of 1 + cN−36 for some explicit constant c > 0—see Remark 4.1.
We note that, even if we work with random polytopes, our methods are different than
those from previously mentioned papers [12, 22, 25]. This may stem from the fact that
the hyperplane case seems to be rather dissimilar to the case of projections with the
rank depending linearly on n. In particular, we do not rely on some more advanced
variants of the concentration of measure, but we use only basic probabilistic tools,
such as Markov’s inequality. Let us also remark, that we took some care, to keep all
constants appearing in our estimates as explicit as possible, but in some instances they
were estimated rather crudely, in order to keep the results clearer.

Since we consider polytopes approximating the unit sphere very well, the corre-
sponding norm is close to the Euclidean norm andwe areworking rather locally around
it. Therefore, as the orthogonal projection has norm 1, it is not reasonable to expect that
our results will yield an optimal lower bound on the constant ρH

n . By taking N = n4n

in Theorem 1.2 we get a lower bound

ρH
n ≥ exp (−Cn3 log n),

which is worse than the lower bound (2) obtained in [18]. We also note that the esti-
mate (1) from [18] works only forn ≥ 4. Thus, our result gives a first non-trivial bound
for the three-dimensional constant ρH

3 = ρ3. See Remark 4.2 for some numerical esti-
mate on ρ3 that can be deduced with our approach. It should be emphasized, that main
goal of the paper is to study uniform bounds on the norms of projections in the setting
of the spherical polytopes with large number of vertices. The general discussion on ρn
and ρH

n was presented for the sake of motivating this line of research. We consider the
derived bounds on ρH

n , which are likely far from being optimal, only as an interesting
by-product of our investigation.

The paper is organized as follows. In Sect. 2 we prove Theorem 1.1. In Sect. 3 we
establish Theorem 1.2 by applying Theorem 1.1 in combination with several auxiliary
results concerning random polytopes. The paper is concluded in Sect. 4, where some
further remarks related to our results, are provided.

2 Proof of the General Lower Bound for the Spherical Polytopes

In this section we prove Theorem 1.1. We start with some simple auxiliary results.
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Lemma 2.1 Let N be a positive integer and suppose that a set {x1, x2, . . . , xN } ⊆
Sn is an ε-net for some 0 < ε < 1. Then, every face of a convex polytope K =
conv {x1, x2, . . . , xN } has diameter not greater than 2ε and an inclusion (1− ε)Sn ⊆
K holds.

Proof Let F be any face of K and let x be the center of the spherical cap determined
by F . Clearly, x is equidistant to the vertices of F . Let us denote this distance by d.
We have d ≤ ε. By the triangle inequality, the distance between any two vertices of
F is at most 2d ≤ 2ε, which shows the first claim. For the second claim, let h be the
distance between x and the hyperplane containing F . Clearly h ≤ d ≤ ε. Moreover,
the hyperplane tangent in x to S is parallel to the hyperplane containing F . Since
(1 − h)−1 ≤ (1 − ε)−1, it is clear that S ⊆ (1 − ε)−1K and the proof is complete.

	

Lemma 2.2 Let x1, x2, . . . , xn ∈ Sn be such that |det (x1, x2, . . . , xn)| ≥ α for some
α > 0. Then, for any v ∈ Sn we have max1≤i≤n |〈xi , v〉| ≥ α/n.

Proof Assume on the contrary, that for for some v ∈ Sn and for each 1 ≤ i ≤ n
we have that 〈xi , v〉 = ri ∈ (−α/n, α/n). Let r = (r1, r2, . . . , rn) ∈ R

n . Then
‖r‖ <

√
nα2/n2 = α/

√
n. Hence, from Cramer’s rule and the Hadamard inequality

it follows that

|v1| =
∣∣∣∣
det (r , x2, . . . , xn)

det (x1, x2, . . . , xn)

∣∣∣∣ ≤ ‖r‖
α

<
1√
n
.

In the same way we prove that |vi | < 1/
√
n for 2 ≤ i ≤ n. Hence

1 = v21 + v22 + · · · + v2n < n · 1
n

= 1,

which gives the desired contradiction. 	

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We denote by ‖ · ‖X the norm of X and by ‖ · ‖X∗ the dual
norm. By the second assumption and Lemma 2.1, every face of K is an (n − 1)-
dimensional simplex of a diameter not greater than d = (2n)−1. Moreover, the
inclusion Sn ⊆ (4n/(4n−1))K holds. Let Y ⊆ X be an arbitrary (n−1)-dimensional
subspace. Suppose that P : X → X is a projection with the image Y , that satisfies
the inequality ‖P‖X < 1 + Cnα

2β. Let us take w ∈ ker P with ‖w‖ = 1 and sup-
pose that Y = {x ∈ R

n : 〈x, v〉 = 0} with ‖v‖ = 1. Assume that Y has non-empty
intersection with the faces F1, . . . , Fk,−F1, . . . ,−Fk of K , given by the vectors
f1, . . . , fk,− f1, . . . ,− fk ∈ Sn . Let us call a face Fi a bad face, if there does not
exist a vector z ∈ Y ∩Fi such that dist(z, bd Fi ) ≥ s (the boundary bd Fi is considered
in the affine hyperplane containing Fi ), where

s = 2n/2−1α2

n2dn−1
√
n − 1

.
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Otherwise, a face Fi is called a good face. We shall prove the following claim.

Claim 2.3 If F is a bad face, then there exists a vertex a of F such that |〈a, v〉| < α/n.

Indeed, let F = conv {a1, a2, . . . , an} be a bad face. A region

F ′ = {x ∈ F : dist(x, bd F) ≥ s}

is a simplex, positively homothetic to F (soon, we shall see that F ′ is non-empty). As
the hyperplane Y does not intersect F ′, the simplex F ′ lies in one of the open half-
spaces determined by Y . Without loss of generality, let us assume that a vertex a1 of
F lies in the opposite (closed) half-space—as Y has a non-empty intersection with F ,
there are vertices in both closed half-spaces. Let f1 be the face of F not containing a1
(thus f1 has dimension n − 2). Then, it is clear that Y intersects the parallelotope

P1 = {x ∈ F : dist(x, f ) ≤ s for every face f �= f1 of F}.

Let a′
1 be a vertex of F

′ corresponding to a1. Then a′
1 ∈ P1 and ‖a1 − x‖ ≤ ‖a1 −a′

1‖
for some x ∈ P1∩Y . We shall now prove an upper estimate on the distance ‖a1−a′

1‖.
Let 0 < k < 1 be the homothety ratio of F and F ′ and let r be the inradius of F . The
homothety center c is the incenter of both F and F ′. In particular, kr + s = r , which
gives us an equality k = (r − s)/r . Furthermore,

‖a1 − c‖ = ‖a1 − a′
1‖ + ‖a′

1 − c‖ = ‖a1 − a′
1‖ + k‖a1 − c‖,

which yields

‖a1 − a′
1‖ = (1 − k)‖a1 − c‖ = s

r
‖a1 − c‖ ≤ ds

r
. (3)

We shall now establish a lower bound on the inradius r . Let us observe that

vol (conv{0, a1, . . . , an}) = |det (a1, . . . , an)|
n! ≥ α

n! ,

but on the other hand,

vol (conv{0, a1, . . . , an}) = h

n
· r

n − 1
(S1 + S2 + · · · + Sn),

where h denotes the distance of the hyperplane determined by F to the origin, and Si
for 1 ≤ i ≤ n denote the (n − 2)-dimensional volumes of the faces of F . Each face
of F is an (n − 2)-dimensional simplex with the edge length not greater than d. Thus,
it is well known that under these constraints, for each 1 ≤ i ≤ n, volume Si is not
greater than that of an (n − 2)-dimensional regular simplex of edge length d, which
is equal to

dn−2
√
n − 1

(n − 2)! · 2n/2−1 .
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Combining the two previous estimates with an obvious inequality h < 1, we get a
lower bound

r >
(n − 1)α

n! · (n − 2)! · 2n/2−1

dn−2
√
n − 1

= 2n/2−1α

ndn−2
√
n − 1

.

Let us note here, that this shows in particular, that the region F ′ is non-empty, as by
the above inequality we clearly have s < r . Now, coming back to (3) we obtain

‖a1 − a′
1‖ ≤ ds

r
<

ds · ndn−2
√
n − 1

2n/2−1α
= α

n
.

Hence

|〈a1, v〉| = |〈a1 − x, v〉| ≤ ‖a1 − x‖ ≤ ‖a1 − a′
1‖ <

α

n
,

which proves Claim 2.3. Now, we shall establish a similar claim for the good faces.

Claim 2.4 If F is a good face, given by the vector f ∈ Sn, then |〈w, f 〉| < β/n.

Since F is a good face, there exists a vector z ∈ Y ∩ F , such that dist(z, bd F) ≥ s.
This means, that a ball B(z, s) with the center z and radius s, intersected with the
boundary of K , is an (n − 1)-dimensional Euclidean ball contained in F . Let us take
any real number λ satisfying |λ| ≤ s/5. Then, we have

∥∥‖z + λw‖X z − (z + λw)
∥∥
X = ∥∥(‖z + λw‖X − 1)z − λw

∥∥
X

≤ ∣∣‖z + λw‖X − 1
∣∣ · ‖z‖X + |λ| · ‖w‖X = ∣∣‖z + λw‖X − ‖z‖X

∣∣ + |λ| · ‖w‖X
≤ |λ| · ‖w‖X + |λ| · ‖w‖X = 2|λ| · ‖w‖X ≤ 2|λ|

1 − (4n)−1 ≤ 3|λ|.

Moreover,

‖z + λw‖X ≥ 1 − |λ| · ‖w‖X ≥ 1 − |λ|
1 − (4n)−1 ≥ 1 − 2|λ|.

By combining two previous estimates we obtain

∥∥∥∥z − z + λw

‖z + λw‖X
∥∥∥∥
X

≤ 3|λ|
1 − 2|λ| ≤ s,

where the last inequality follows easily from the inequality |λ| ≤ s/5. Finally, we
have that

∥∥∥∥z − z + λw

‖z + λw‖X
∥∥∥∥ ≤

∥∥∥∥z − z + λw

‖z + λw‖X
∥∥∥∥
X

≤ s.
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This shows that for |λ| ≤ s/5, the vector (z + λw)/‖z + λw‖X belongs to the inter-
section of a ball B(z, s) with the boundary of K and therefore to the face F . In
consequence, we have

‖z + λw‖X = 〈z + λw, f̃ 〉,

where f̃ = f /‖ f ‖X∗ . Thus

1 + λ〈w, f̃ 〉 = 〈z + λw, f̃ 〉 = ‖z + λw‖X >
‖P (z + λw)‖X
1 + Cnα2β

= ‖z‖X
1 + Cnα2β

= 1

1 + Cnα2β
.

Hence,

λ〈w, f̃ 〉 ≥ −Cnα
2β

1 + Cnα2β
≥ −Cnα

2β.

By taking λ = ±s/5 and using the fact that ‖ f̃ ‖ ≥ ‖ f ‖, we get

|〈w, f 〉| ≤ |〈w, f̃ 〉| ≤ 5Cnα
2β

s
= β

n
,

by the definitions of s and Cn . This proves Claim 2.4.
Now, with both claims at our disposal, we can finish the proof of Theorem 1.1.

We take any point x ∈ Y with ‖x‖X = 1 and any two-dimensional subspace V ⊆ Y
such that x ∈ V . Let us consider a two-dimensional curve (a broken path), lying in
V ∩ bd K , which connects x and −x . Clearly, its Euclidean length is greater than
2‖x‖ ≥ (4n − 1)‖x‖X/(2n) = (4n − 1)/(2n). This means, that we can find points
p1, p2, . . . , p2n−1 on this curve such that, for i �= j we have

‖pi − p j‖ ≥ 4n − 1

2n(2n − 1)
>

1

n
= 2d.

Every point pi lies in the boundary of K , and thus in some face of K . Let Fi be any
face of K such that pi ∈ Fi . Note for i �= j , faces Fi and Fj are non-neighbouring.
Indeed, if u ∈ Fi ∩ Fj , then

2d = 1

n
< ‖pi − p j‖ ≤ ‖pi − u‖ + ‖u − p j‖ ≤ 2d,

which is a contradiction. It is clear, that in the set {F1, F2, . . . , F2n−1} there are at least
n bad faces or at least n good faces. If there are n good faces, then by Claim 2.3, we get
existence ofn verticesa1, a2, . . . , an of K , such that |〈ai , v〉| < α/n for any 1 ≤ i ≤ n.
This is an immediate contradiction with Lemma 2.2 and the third condition of the
theorem. Similarly, if there exist n good faces among F1, F2, . . . , F2n−1, then there
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are n pairwise non-neighbouring faces of K , given by the vectors f1, f2, . . . , fn ∈ Sn ,
such that |〈w, f 〉| < β/n. Again, this contradicts Lemma 2.2 combinedwith the fourth
condition of the theorem. This completes the proof. 	


3 Random Spherical Polytopes

In this section we derive Theorem 1.2 from Theorem 1.1. In order to do this, we
need to establish several probabilistic lemmas. These results are strongly based on the
ideas developed by different authors. We shall rephrase or modify them, according to
our needs. We start with a straightforward reformulation of the lower bound on the
probabilistic measure of the spherical cap, that was given in [5].

Lemma 3.1 Let x ∈ Sn and 0 < r < 1. Then, the probabilistic measure of the
spherical cap

C(x, r) = {y ∈ Sn : ‖x − y‖ ≤ r},

is at least

1√
2π(n − 1)

(
r√
2

)n−1

.

Proof If 0 < ϕ ≤ π/2 is such that

r2 = 2 − 2
√
1 − sin2ϕ,

then by the first part of [5, Cor. 3.2], it follows that the measure of C(x, r) is at least

sinn−1ϕ√
2π(n − 1)

.

However

r2 = 2 − 2
√
1 − sin2ϕ = 2

sin2ϕ

1 +
√
1 − sin2ϕ

≤ 2 sin2ϕ,

and hence the claim follows. 	

In [7] there is an outline of the proof, that for any fixed ε > 0, the probability, that N
random points on the unit sphere inRn form a N−1/(n−1)+ε-net, tends to 1, as N → ∞
(see the proof of (1.27) in Appendix A there). In order to obtain more explicit estimate,
we give a minor modification of this argument in the following lemma.

Lemma 3.2 Let N ≥ n4n be a positive integer. If x1, x2, . . . , xN ∈ Sn are random
points, then the probability, that these random points do not form a (4n)−1-net in the
unit sphere, is less than 1/N.
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Proof It is well known that for any ε > 0, there exists a ε-net in the unit sphere of
cardinality at least (1+2/ε)n . In particular, there exists a (8n)−1-net of the cardinality
(16n + 1)n ≤ (17n)n . Hence, let z1, z2, . . . , z(17n)n be some fixed (8n)−1-net in the
unit sphere. For a fixed 1 ≤ j ≤ (17n)n , the probability that each point x1, x2, . . . , xN
is outside the cap C(z j , (8n)−1), is by Lemma 3.1 at most

(

1 − 1√
2π(n − 1)

(
1

8n
√
2

)n−1
)N

≤
(
1 −

(
1

8n
√
2

)n)N

.

Therefore, the probability that at least one of the caps C(z j , (8n)−1) is empty, is at
most

(17n)n
(
1 −

(
1

8n
√
2

)n)N

≤ e(3+log n)n · e−Na−n = e3n+n log n−Na−n
,

where a = 8n
√
2. Since N ≥ n4n and n ≥ 3 we have that

Na−n ≥ 4
√
N .

It is easy to check that for N ≥ n4n and n ≥ 3 the inequality

3n + n log n + log N <
4
√
N ,

is true. Hence, the probability that at least one of the caps C(z j , (8n)−1) is empty is
less than 1/N . It remains to observe, that if each of these caps is non-empty, then the
points xi form a (4n)−1-net in the unit sphere. This concludes the proof. 	


The last piece of information, that we need to apply Theorem 1.1, in order to prove
Theorem 1.2, is the expected value of the determinant of n random points in Sn . More
precisely, we estimate the (−1/2)-moment of the absolute value of the determinant.
We use the fact, that the distribution of the random variable |det (x1, x2, . . . , xn)|,
where xi ∈ Sn are random points, is well known. We will also refer to the following
well-known inequalities on the ratio of Gamma functions:

√
x ≤ 
(x + 1)


(x + 1/2)
≤ √

x + 1/2 for every x > 0. (4)

The lower bound appeared in this form in [11] and upper bound in [27].

Lemma 3.3 Let Mn be the expected value of |det (x1, x2, . . . , xn)|−1/2, where xi ∈ Sn

for 1 ≤ i ≤ n are random points. Then, we have Mn < en/4(n − 1).

Proof Let us recall that a random variable has a Beta distribution with parameters
α1, α2 > 0, if its density is given by

g(t) = 
(α1 + α2)


(α1)
(α2)
tα1−1(1 − t)α2−1,
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for t ∈ (0, 1). It turns out that the random variable det (x1, x2, . . . , xn)2 has the
distribution

∏n−1
i=1 βi/2,(n−i)/2, where βα1,α2 has a Beta distribution with parameters

α1, α2 and the variables in the product are independent (see [14, 23]). The (−1/4)-
moment of the Beta variable with parameters α1 > 1/4, α2 > 0 is equal to


(α1 − 1/4)
(α1 + α2)


(α1)
(α1 + α2 − 1/4)
.

Therefore,

Mn =
n−1∏

i=1


(i/2 − 1/4)
(n/2)


(i/2)
(n/2 − 1/4)
.

From the inequality (4) we have


(n/2)


(n/2 − 1/4)
≤

(
n

2
− 1

4

)1/4
≤

(
n

2

)1/4
.

Similarly,


(i/2 − 1/4)


(i/2)
≤ (i/2)3/4

i/2 − 1/4
≤ (i/2)3/4

((i − 1)/2)3/4
,

for 2 ≤ i ≤ n − 1. For i = 1, we can check by a direct calculation that


(1/4)


(1/2)
≤ 2

(1/2)1/4
.

Thus,

n−1∏

i=1


(i/2 − 1/4)


(i/2)
≤ 2

(
(n − 2)!
2n−2

)−1/4(n − 1

2

)3/4
= 2

(
(n − 1)!
2n−1

)−1/4 n − 1

2

=
(

(n − 1)!
2n−1

)−1/4

(n − 1).

Hence, we conclude that

Mn ≤
(
nn

n!
)1/4

(n − 1) < en/4 (n − 1),

by Stirling’s approximation formula. This finishes the proof. 	

Finally, we are ready to move to the proof of Theorem 1.2. We will use the following
simple upper bound on the binomial coefficient:

(N
n

) ≤ (Ne/n)n for N ≥ n.

123



Discrete & Computational Geometry (2023) 70:279–296 291

Proof of Theorem 1.2 Let us consider the following probability events:

(i) Points x1, x2, . . . , xN do not form a (4n)−1-net in Sn .
(ii)

|det (xi1 , xi2 , . . . , xin )| ≤
(
e5n/2

n2n−2 N
2n+2

)−1

for some indices 1 ≤ i1 < i2 < . . . < in ≤ N .
(iii) There exist pairwise non-neighbouring faces F1, F2, . . . , Fn of BX , perpendicular

to vectors fi ∈ Sn (where 1 ≤ i ≤ n), such that

|det ( f1, f2, . . . , fn)| ≤
(
e2n

2+5n/2

n2n2+2n−2
N 2n2+2

)−1

.

We shall prove that each of these three events has probability at most 1/N . We can
also assume that BX is a simplicial polytope, as this happens with the probability 1.

(i) Our claim follows directly from Lemma 3.2.

(ii) We use Lemma 3.3 and Markov’s inequality applied to the random variable
|det (y1, y2, . . . , yn)|−1/2, where y1, y2, . . . , yn ∈ Sn are random points. For any
a > 0 we have

P
(|det (y1, y2, . . . , yn)|−1/2 ≥ a(n − 1)en/4) ≤ a−1,

which is equivalent to

P
(|det (y1, y2, . . . , yn)| ≤ (a(n − 1)en/4)−2) ≤ a−1. (5)

Using this inequality for a = N
(N
n

)
, with the union bound for all possible choices

of n points from x1, x2, . . . , xN , along with an estimate
(N
n

) ≤ (Ne/n)n , we get the
desired upper bound of 1/N .

(iii) If A ⊆ {1, 2, . . . , N } is an n-element set, then by x⊥
A ∈ Sn we denote a unit vector

perpendicular to the affine hyperplane containing the points xi for i ∈ A (this hyper-
plane is determined uniquely with the probability 1). To bemore precise, we can define
x⊥
A as the exterior product of xi for i ∈ A. A set of vectors { f1, f2, . . . , fn} ⊆ Sn ,

corresponding to a set of n pairwise non-neighbouring faces of BX , can be repre-
sented as {x⊥

A1
, x⊥

A2
, . . . , x⊥

An
} for a certain n-element family {A1, A2, . . . , An} of

n-element disjoint subsets of the set {1, 2, . . . , N }. Let us denote by F the collection
of all such families. Then, for a given c > 0, the probability that there exist pair-
wise non-neighbouring faces of BX , given by vectors f1, f2, . . . , fn ∈ Sn , that satisfy
|det ( f1, f2, . . . , fn)| ≤ c is, by the union bound, at most
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P

⎛

⎝
⋃

{A1,...,An}∈F
[|det (x⊥

A1
, x⊥

A2
, . . . , x⊥

An
)| ≤ c]

⎞

⎠

≤
∑

{A1,...,An}∈F
P

(|det(x⊥
A1

, x⊥
A2

, . . . , x⊥
An

)| ≤ c
)

= #F · P(|det (x⊥
B1 , x

⊥
B2 , . . . , x

⊥
Bn )| ≤ c

)
,

where {B1, B2, . . . , Bn} ∈ F is any fixed family (this probability is clearly the same
for any family in F). Since the points xi are chosen uniformly and independently
and the sets Bi are disjoint, it easily follows that {x⊥

B1
, x⊥

B2
, . . . , x⊥

Bn
} is a set of n

independent random points in Sn , with respect to the uniform distribution. Thus, we
can use Markov’s inequality as in (5) for a = #F · N to get

P
(|det (x⊥

B1 , x
⊥
B2 , . . . , x

⊥
Bn )| ≤ (#F · N (n − 1)en/4)−2) ≤ (#F · N )−1.

Using the bound
(N
n

) ≤ (Ne/n)n and Stirling’s approximation formula, we can
estimate the cardinality of F as follows:

#F = 1

n!
(
N

n

)(
N − n

n

)
· · ·

(
N − (n − 1)n

n

)

≤
(
e

n

)n(N

n

)n

≤
(
e

n

)n(Ne

n

)n2
= Nn2

(
e

n

)n2+n

.

Hence

P

(

|det (x⊥
B1 , x

⊥
B2 , . . . , x

⊥
Bn )| ≤

(
en

2+5n/4

nn2+n−1
Nn2+1

)−2
)

≤ (#F · N )−1

and in consequence, the probability that there exist pairwise non-neighbouring faces
of BX , { f1, f2, . . . , fn} ⊆ Sn , satisfying

|det ( f1, f2, . . . , fn)| ≤
(
e2n

2+5n/2

n2n2+2n−2
N 2n2+2

)−1

is at most 1/N .

The result follows now from Theorem 1.1 and easy computation, where

α =
(
e5n/2

n2n−2 N
2n+2

)−1

and β =
(
e2n

2+5n/2

n2n2+2n−2
N 2n2+2

)−1

. 	


4 Concluding Remarks

In the following section we present some remarks related to previous results. We start
with the three-dimensional setting.
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Remark 4.1 In the three-dimensional case, the uniform estimate given in Theorem 1.2
gives us

‖P‖X ≥ 1 + cN−36,

where c = (9/e3)14. By taking N = 312 we get a first non-trivial lower bound on
ρ3 = ρH

3 . Better numerical bound on ρ3 will be given in the next remark.

Remark 4.2 It is not hard to prove, that in the three-dimensional case, the condition (i)
in Theorem 1.1 can be replaced with an assumption, that the volume of K is greater
than 4 (here we mean the standard volume inR3) and length of every edge of K is less
than 1/4. With a help of a computer program, a spherical polytope K , satisfying these
conditions was found. Number of vertices of K is equal to 434 and α = 5.303 · 10−7,
β = 1.244 · 10−7. This gives us a better numerical estimate than in Remark 4.1:

ρ3 > 932 · 10−23.

It is rather hard to believe, that this estimate could be close to the true value of ρ3. Still,
in the class of spherical polytopes with 434 vertices, it is not necessarily so weak.

It turns out that if the dimension is fixed, the polynomial bound, given in terms of N ,
can be improved.

Remark 4.3 For the asymptotics with n fixed and N → ∞, the estimate given in
Theorem 1.2 can be strengthened to 1 + cn,εN−(n2+3n+3+ε) for any ε > 0 and some
constant cn,ε, depending on n and ε. Indeed, the expected value of a random variable
|det (x1, x2, . . . , xn)|−1+ε is finite for every ε > 0. This can be easily deduced from
the distribution of a random variable det (x1, x2, . . . , xn)2, given in Lemma 3.3. Thus,
we can replace the exponent of −2, in the right hand sides of the inequalities given
in the properties (ii) and (iii) in the proof of Theorem 1.2, to the exponent of −1 − ε,
albeit with some different constant depending on n and ε.

Remark 4.4 In Theorem 1.1 it seems to be essential that the vertices of K form a good
approximation of the unit sphere (the first condition). Let us consider a convex polytope
K = conv {±e1,±e2, . . . ,±en}, where ei is the i-th vector from the canonical unit
basis of Rn . Thus, the convex polytope K is the unit ball of the �1 norm in Rn . In this
case we have:

– K is a simplicial polytope, that is, the second condition of Theorem 1.1 is satisfied.
– The third condition is satisfied with α = 1.
– The fourth condition is satisfied with any positive β, since it is not possible to
choose any n pairwise non-neighbouring faces of K .

Yet, in the �1 norm there are hyperplane projections of norm 1—for example any
projection P : Rn → R

n of the form

P(x) = x − xi ei ,
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where 1 ≤ i ≤ n. This shows that without the first condition of Theorem 1.1 (or
some substitute of it), it is not possible to give a uniform lower bound on the norms
of the hyperplane projections in terms of the minimum of the determinant function of
vertices and faces.

This also explains, why is it necessary to assume that the number of random points
is large enough in Theorem 1.2, that is N ≥ n4n . By a standard volume argument,
yielding a lower bound on the cardinality of an ε-net in the unit sphere, it is not
possible to significantly improve the estimate given in Lemma 3.2. Therefore, the
presented approachworks only for spherical polytopeswith a sufficiently large number
of vertices.

Remark 4.5 We were interested only in lower bounds on the norms of the hyperplane
projections. In the context of random symmetric spherical polytopes with 2N vertices,
establishing some good upper bounds on the projection constants of hyperplanes, also
seems to be an interesting and non-trivial problem. Here we briefly explain, how to get
a simple uniform upper bound that goes to 1 and that holds with probability tending
to 1, as N → ∞. Indeed, by a result of [7], we know that N random points in Sn , form
an N−1/(2(n−1))-net with the probability tending to 1, as N → ∞ (see the comment
before Lemma 3.2). If this condition is satisfied, then from Lemma 2.1 it follows that
(1 − N−1/(2(n−1)))Sn ⊆ K , where K = conv {±x1, . . . ,±xN }. Hence, if we denote
by X = (Rn, ‖ · ‖X ) the normed space, for which BX = K , then

‖x‖2 ≤ ‖x‖X ≤ ‖x‖2
1 − N−1/(2(n−1))

≤ (
1 + 2N−1/(2(n−1)))‖x‖2.

Now, letY ⊆ X be an arbitrary hyperplane. If P : Rn → Y is an orthogonal projection,
then ‖P‖2 = 1 and from the estimates above it easily follows that ‖P‖X ≤ 1 +
2N−1/(2(n−1)). Thus, combining this with Theorem 1.2 we get, that for N → ∞, the
projection constant of an arbitrary hyperplane in X lies in the interval

[
1 + cnN

−(2n2+4n+6), 1 + 2N−1/(2(n−1))],

with the probability tending to 1. We do not know, to what extent this range is best
possible, but it is likely that it could be improved (restricted) significantly.

We must note that the asymptotic lower bound (2) on ρH
n does not seem to be

optimal. The same is true for the estimate ρ3 > 175 · 10−16 on the three-dimensional
constant.Moreover, we do not have any non-trivial bound on the constant ρn for n ≥ 4.

Providing some different example of a class of normed spaces, for which all non-
trivial projections/hyperplane projections satisfy some explicit uniform lower bound
on the norm, is of its own interest, even if it does not lead to improvement in the
global estimates. We do not know if our results for the random spherical polytopes
are optimal. Studying this example in more depth, certainly seems to be interesting.
Considering the importance of random constructions in modern functional analysis,
it is reasonable to believe, that random polytopes could possibly yield much better
bounds on the constants ρn and ρH

n . It is likely, that our methods could be extended to
all non-trivial projections, providing some bound on ρn . However, to obtain a better
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bound on ρH
n , it would be probably necessary to use random polytopes with the

number of vertices of a smaller order than n4n . Even in the hyperplane setting, this
would possibly require some completely new ideas.
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