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Abstract
In one of their seminal articles on allowable sequences, Goodman and Pollack gave
combinatorial generalizations for three problems in discrete geometry, one of which
being the Dirac conjecture. According to this conjecture, any set of n noncollinear
points in the plane has a point incident to at least cn connecting lines determined by
the set. The notion of allowable sequences of permutations provides a natural combi-
natorial setting for analyzing these problems. Within this formalism, the conjectured
generalization reads as follows: Any nontrivial allowable n-sequence � has a local
sequence �i whose half-period is at least cn. The conjecture is confirmed here with
a concrete bound c = 1/845. Several related problems are discussed.

Keywords Allowable sequence · Dirac’s conjecture · Sylvester’s problem · Crossing
lemma · Szemerédi–Trotter theorem · Székely’s method
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1 Introduction

In one of their seminal articles on allowable sequences [28]Goodman and Pollack gave
combinatorial generalizations (left as conjectures) for the following three problems in
discrete geometry:

A: the Erdős–Szekeres conjecture that any 2n−2 + 1 points in general position in
the plane contains n points in convex position,
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B: the Dirac conjecture that any set of n noncollinear points in the plane contains
a point incident to at least cn connecting lines determined by the set, for some
constant c > 0,
C: the problem of finding the minimum number of directions determined by n
noncollinear points in the plane.

The notion of allowable sequences of permutations provides a natural combinatorial
setting independent from geometry for analyzing these problems and making them
more transparent. Within this formalism, the conjectured generalizations for the three
statements above read as follows:

A′: [28] Let� be an allowable (2n−2+1)-sequence in which only strings of length
two are reversed. Then there are n indices such that each occurs as the first or as
the last in this subset—in some term of �.
B′: [28] Any nontrivial allowable n-sequence � has a local sequence �i whose
half-period is at least cn, for some constant c > 0.
C′: [28] If � is a nontrivial allowable n-sequence, the half-period of � is at least
2�n/2�.

The formalism will be made precise in Sect. 2, at the end of which we state our results
and review the status of the three problems and their generalizations. It will be evident
at that point that A′ ⇒A, B′ ⇒B, and C′ ⇒C, though not conversely. Our goal in this
paper is the proof of statement B′.
Connecting lines and a theorem of de Bruijn and Erdős. Before discussing Dirac’s
conjecture, it is natural to mention how this question appeared in the broader context
of estimating the total number of connecting lines determined by a noncollinear point
set (clearly the answer is 1 for collinear sets). Theorem 2 below provides the answer.

Historically, the study of point sets and their connecting lines draws from a question
asked by Sylvester [54] about 50 years earlier:For a finite set of points, not all on a line,
does there always exist a line that contains exactly two of the points? If the answer is
positive, the corresponding equivalent statement would read: if for every pair of points
in the set, the line determined by these points contains a third one, then all the points
are collinear. Given a point set S, a connecting line (i.e., a line determined by the set) is
called ordinary if it contains precisely two points of S; see also [7]. Sylvester problem
got forgotten over time but was rediscovered by Erdős [18] in 1943.

The first proof of existence of an ordinary line dates back to those times and it is now
commonly referred to as the Sylvester–Gallai Theorem (solutions were found by sev-
eral researchers). Its colorful history is recounted by Chvátal in his recent monograph
[11]. Earlier accounts on its development can be found in [8, 12, 20, 35, 47].

Theorem 1 (Sylvester–Gallai) Every set of n noncollinear points in the plane admits
an ordinary line.

Motzkin [41] was the first to show that the number of ordinary lines tends to infinity
with n. Further, Kelly and Moser [34] proved that there are at least 3n/7 ordinary
lines, and Csima and Sawyer [13] raised this bound to 6n/13 for n ≥ 8. Finally, Green
and Tao [30] proved that if n is sufficiently large then there are at least n/2 ordinary
lines, thereby settling the so called strong Dirac–Motzkin conjecture for large n (even
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though neither of the authors seem to have conjectured this in print, see [30]). On the
other hand, there are arbitrarily large points sets with no more than n/2 ordinary lines:
for even n, take a regular (n/2)-gon, which determines n/2 directions, and the n/2
projective points corresponding to these directions; see [8, Chap. 7.2].

Erdős [18] deduced the following interesting corollary of Theorem 1. Here the term
near-pencil describes a point set that is almost collinear, in the sense that all but of
one the points are collinear.

Theorem 2 For a set of n noncollinear points in the plane, the number of connecting
lines is always at least n; and it is equal to n if and only if the points form a near-pencil.

In fact every other configuration determinesmore lines as quantified in the following
result of Kelly and Moser [34].

Theorem 3 Let S be a set of n points and let λ = λ(S) denote the number of connecting
lines. If at most n − k points of S are collinear and n > {3(3k − 2)2 + 3k − 1}/2 then
λ ≥ kn − (3k + 2)(k − 1)/2.

In particular (k = 2), if at most n − 2 points are collinear and n ≥ 27, the number of
connecting lines is always at least 2n − 4; the lower bound actually holds for n ≥ 10,
see [35, Chap. 6].

Perhaps even more interesting than Theorem 2 is the following result of de Bruijn
and Erdős [9] from about the same time—which provides the same answer under more
general circumstances that distill the essential features present in the theorem. See also
[38, Chap. 19] and [45].

Theorem 4 (deBruijn andErdős [9]) Let (V , E), |V | = n, |E | = m, be a hypergraph,
where every pair of elements in V is contained in precisely one edge in E and where
V itself is not an edge. Then m ≥ n, with equality if and only if (i) one of the sets
contains all but one elements of V and the others are two-element sets containing the
remaining element; or (ii) E is the system of lines of a finite projective plane defined
on V .

A result ofMotzkin [42], Rabin, andChakerian [10] states that any set of n two-colored
(say, by red or blue) noncollinear points in the plane determines amonochromatic line;
see also [2, Chap. 13].

Dirac’s conjecture. For a noncollinear set S of n points in the plane, let t(S) be the
maximum number of lines spanned by S that are incident to a point in S. In a dual
setting, for a set L of n lines in the plane, no two of which are parallel, let r(L) be the
maximum number of crossing points (vertices of the line arrangement) on a line in L.

Dirac [14] and Motzkin [41], independently of each other and at the same time
proposed the following problem: Does every noncollinear set of points contain some
point that is incident to at least n/2 lines determined by the set? Initially Dirac proved
that there are at least

√
n + 1 lines incident to one of the points and conjectured the

existence of a point incident to at least �n/2� connecting lines, namely that t(S) ≥
�n/2� for every noncollinear set S. Several counterexamples were found byGrünbaum
(for n = 9, 15, 19, 25, 31, 37), see [31] and [12, F12], and so the conjecture has been
modified [19] to read as follows:
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Conjecture 1 (Dirac) Given a set S of n noncolllinear points in the plane, there exists
a point in S incident to cn lines determined by S, for some constant c > 0.

From the other direction, Akiyama et al. [4] considered the problem of finding non-
collinear point sets S with t(S) ≤ �n/2�. They showed that for every n ≥ 8 of the
form n = 12k + r , r 	= 11, there exists a set S of n noncollinear points satisfying
t(S) ≤ �n/2�. An infinite family of counterexamples to the original Dirac conjecture
was found by Felsner [8, p. 313]. In the dual setting it consists of 6k + 7 lines in the
real projective plane (r.p.p.) where no line is incident to more than 3k + 2 points of
intersection. In a stronger form—the so called strong Dirac conjecture—the bound is
replaced by n/2 − c, where c > 0 is a constant [43]; see also [8, Chap. 7.3].

In 1983 Beck [5] proved the following result and further observed that Conjecture 1
immediately follows from it.

Theorem 5 Let S be a set of n points in the plane. If at most � points of S are collinear,
then S determines at least �(n(n − �)) distinct lines.

At about the same time Szemerédi and Trotter [56] obtained their classic result on
the number of point-lines incidences in the plane: Theorem 6 or 7 below. Their result
also implies Conjecture 1. Interestingly enough, as remarked by Székely [55], Beck
obtained his result on connecting lines froma resultweaker than the Szemerédi–Trotter
theorem.

Herewe give two equivalent formulations of the Szemerédi andTrotter result. Given
a point set S in R

2, for any integer k ≥ 2, a line is called k-rich if it is incident to at
least k points of S.

Theorem 6 (Szemerédi–Trotter [56]) The number of point-line incidences among n
points and � lines in R

2 is

I (n, �) = O(n2/3�2/3 + n + �).

Theorem 7 (Szemerédi–Trotter [56]) Given n points in R
2, the number of k-rich

lines, k ≥ 2, is

O
(
n2

k3
+ n

k

)
.

The resulting constants, however, in the above proofs for Conjecture 1 are quite small;
for instance, the constant obtained in [56] is 10−1087; see also [35, Chap. 6]. New
developments in the theory of geometric graphs have lead over time to better constants
in Dirac’s conjecture. One such tool is the classic crossing lemma proved in the early
1980s by Ajtai et al. [3] and Leighton [37]. The sharper constant appearing at the
end of the lemma was established recently by Ackerman [1] who improved an earlier
bound by Pach et al. [46]; see also [47, Chap. 4].

Lemma 1 (Ajtai et al. [3], Leighton [37], Ackerman [1]) Let G = (V , E), where
|V | = n, |E | = e, be a simple graph with with n vertices and e ≥ 4n edges. Then
cr(G) ≥ ce3/n2, for a suitable constant c > 0. In particular, one may take c = 1/64;
and if e ≥ 6.95n, then one may take c = 1/29.
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Fig. 1 Left: A simple arrangementA. Center: Wiring diagram ofA. Right: An arrangementA′ that is not
isomorphic to the arrangement A on the left

Another key development is due to Székely [55], whose groundbreaking approach of
constructing suitable graphs and running the crossing lemma machinery led to new
bounds and improved constants in relation to Dirac’s conjecture, but in many other
problems as well. For instance, using this approach, Payne [48] showed in his thesis
that Conjecture 1 holds with c = 2−15; see also [49]. Further, Payne and Wood [49]
raised the bound to c = 1/37; notably, Hirzebruch’s inequality is used in their proof;
see also [8, Chap. 7]. Another approach for improving the constant in Conjecture 1was
proposed around the same time by Pinchasi [51]. Subsequently, Pham and Phi refined
the argument of Payne andWood and improved the bound to c = 1/26 [50]. Recently,
Han [32] established the current best result in Dirac’s conjecture, showing that there
is a point incident to 
n/3� + 1 connecting lines; notably, the Bojanowski–Pokora
inequality is used in their proof. His result answers a question of Klee andWagon [35,
Chap. 6]; the same question was reposed 20 years later by Akiyama et al. [4].

In regard to the proof techniques, it isworthmentioning that neither theHirzebruch’s
inequality nor the Bojanowski–Pokora inequality are known to hold in a pseudoline
setting (discussed in Sect. 2).

Outline of the paper. Sect. 2 gives an overview of pseudoline arrangements and
allowable sequences and lists our results. The main results are the lower bounds in
Theorems 8 and 9 in relation to Conjecture 2 in Sect. 2 (i.e., statement B′ at the
beginning of Sect. 1). The upper bound in Theorem 10 gives a partial answer to a
question of Lund et al. [40]. Section 3 contains the proofs of Theorems 8 and 9.
Section 4 contains the proof of Theorem 10.

2 Pseudolines, Allowable Sequences, andWiring Diagrams

Pseudoline arrangements. A family (collection) of two-way infinite x-monotone
curves in the plane is called an (Euclidean) arrangement of pseudolines if any two
curves have precisely one point in common, at which they properly cross [23, Chap. 6].
An arrangement is simple if no three pseudolines have a common point of intersection,
see Fig. 1 (left). An arrangement is nontrivial if not all pseudolines cross at a single
point.

A family P of pseudolines is stretchable if there exists a family of lines L such
that the cell decompositions induced by P and L are topologically isomorphic. Two
arrangements are isomorphic, i.e., considered the same, if they can be mapped onto
each other by a homeomorphism of the plane [25]; see Fig. 1 (right). Equivalently,
two arrangements are isomorphic if there is an isomorphism between the induced cell
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decompositions [23, Chap. 6]. Two classic representations of pseudoline arrangements
are allowable sequences [27, 29] and wiring diagrams [24].

Allowable sequences. Let P be a set of n points in the plane and assume that no two
points have the same x-coordinate. Label the points of P by 1, 2, . . . , n in increasing
order of their x-coordinate. Take a horizontal line � and start rotating it counterclock-
wise about a fixed point; In each position, the order of the orthogonal projections of
the elements of P onto � makes a permutation of 1, 2, . . . , n. As the line � rotates
counterclockwise about a fixed point, we obtain a periodic sequence of permutations
which is called the circular sequence of the configuration [28]; see also [16, Chap. 2],
[23, Chap. 6], [24], [47, Chap. 1]. The first half-period of this sequence starts with
the identity permutation 1, 2, . . . , n and ends with its reversal, n, n − 1, . . . , 1; this
corresponds to a rotation of � by 180◦. During this half-period the following rule is in
effect:

1. Every permutation is obtained from the previous one by reversing one or more
nonoverlapping increasing subsequences of adjacent elements.

If the rotation of � continues, we obtain the same sequence of permutations as before,
except that now each of them is reversed. After a complete rotation of 360◦, we get
back 1, 2, . . . , n, the permutation we started with. And so one is usually interested
only in the sequence for the first half-period.

Goodman and Pollack [28] generalized this process associated with a point set to
an abstract setting. Any sequence of permutations that starts with 1, 2, . . . , n, ends
in n, n − 1, . . . , 1, and satisfies the above rule is called an allowable sequence (or n-
sequence). Thehalf-period of this sequence is one less than the number of permutations
in the sequence, i.e., the number of steps (or moves) in the process.1 An allowable
sequence � is simple if any two consecutive permutations in � differ by the reversal
of an adjacent pair i j , where i < j . An allowable sequence is nontrivial if it has more
than two permutations; equivalently 1, 2, . . . , n is not reversed in one step. Throughout
this paper, we only consider nontrivial sequences.

One can extract an allowable sequence of permutations from any given arrangement
of pseudolines by sweeping a vertical line from left to right and recording the switches
that occur in that order. Even though not every allowable sequence is geometrically
realizable as the circular sequence generated by a set of points (or lines), it is however
true that every allowable sequence is realizable as the n-sequence generated by an
arrangement of pseudolines [29]. Write each permutation in the sequence as a vertical
column of n numbers and put the columns one after the other. The i th pseudoline
is the piecewise linear x-monotone curve obtained by connecting all occurrences of
number i , for i = 1, 2, . . . , n and extended both ways to infinity. By construction,
this family of curves is a pseudoline arrangement whose sweep-sequence is the given
allowable sequence. By this equivalence, in our arguments we may use language
that applies to one setting (allowable sequences) or the other one (pseudolines) as
convenient.

1 If convenient, the process can be extended beyond the term n, n − 1, . . . , 1, so that a periodic sequence
of permutations results that cycles back to 1, 2, . . . , n. Terms a half-period apart are the reverses of each
other. However, this extension won’t be needed here.
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Fig. 2 Wiring diagrams of a simple arrangement (left) and a non-simple one (right)

Let � be an allowable n-sequence. For each i ∈ [n], its local sequence �i (�)

is the sequence of reversals involving the index i . Obviously such reversals appear
in succession, i.e., no two are simultaneous. The half-period (or length) of a local
sequence is the number of reversals in the sequence.

Wiring diagrams. A wiring diagram is an Euclidean arrangement of pseudolines
consisting of piece-wise linear ‘wires’, each horizontal except for shorter slanted
segments where it crosses other wires. Each pair of wires cross exactly once; see
Fig. 1 (center). Wiring diagrams are also known as reflection networks, i.e., networks
that bring n wires labeled from 1 to n into their reflection by means of performing
switches of (two or more) adjacent wires [36, p. 35]. For example, the 5-sequence for
the wiring diagram in Fig. 2 (right) is

12345
12,45−−−→ 21354

135−−→ 25314
25,14−−−→ 52341

34−→ 52431
24−→ 54231

23−→ 54321.

Its half-period is 6. Its five local sequences are the following. �1 = 12, 135, 14;
�2 = 12, 25, 24, 23; �3 = 135, 34, 23; �4 = 45, 14, 34, 24; and �5 = 45, 135, 25.
The half-period of �5 is 3.

Applications of allowable sequences. A classic example is the result of Ungar men-
tioned in the introduction on the minimum number of directions determined by n
noncollinear points in the plane. If D(n) denotes this number, Ungar [57] showed
that D(n) = 2�n/2�, which is tight for the near-pencil configuration. His proof via
allowable sequences concentrates on the subsequence of switches crossing the mid-
line that separates the first n/2 elements from the last n/2 elements (assuming that
n is even). Another key result is one obtained by Edelsbrunner and Welzl [17] in the
study of k-sets; they showed that the number of k-sets in a set of n points isO(nk1/2);
see also [16, Chap. 2]. More recent applications can be found in [15] and [44]. In
the latter article, Nilakantan obtained an alternative proof of Theorem 1 via allowable
sequences by arguing the existence of a simple switch, namely one that involves only
two elements.

Dirac–Goodman–Pollack conjecture for pseudolines. For an arrangement L of
pseudolines let r(L) be the maximum number of crossing points (vertices of the
line arrangement) on a pseudoline in L. The conjecture can be formulated in terms of
allowable sequences (as mentioned in Sect. 1) or in terms of systems of pseudolines.
The latter formulation is as follows.

Conjecture 2 [14, 28] Let L be a nontrivial arrangement of n pseudolines. Then
r(L) ≥ cn, for some constant c > 0.
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Lund et al. [40] claimed that such a bound holds, but did not provide any proof. From
the other direction, they constructed arrangements with r(L) ≤ 4n/9. Regardless,
here we obtain the first concrete lower bound (Theorem 8) and an extension for many
pseudolines (Theorem 9).

Theorem 8 Let L be a nontrivial arrangement of n pseudolines. Then there is a pseu-
doline in L that is incident to at least cn crossing points. In particular, one may take
c = 1/845 for large n.

Theorem 9 Let 0 < δ < 1 be any constant. Consider an arrangement of pseudolines
inwhich every crossing involves atmost δn elements. Then there exist�(n)pseudolines
whose local sequences have length (i.e., half-period) �(n).

From the other direction, an old construction studied by Rigby [52] shows the
following.

Theorem 10 There is an infinite family of arrangements of n lines (as a system of
pseudolines), such that

• each vertex is incident to at most three lines, and
• no line is incident to more than n/2 + O(1) vertices.

We end this section with a brief review of the status of the three problems and their
generalizations (from Sect. 1). Statement C′ has been settled by Ungar in 1982 [57].
Statement B′ is proved in Theorem 8 with a bound of n/845 (for n sufficiently large).
Statement A′ remains open, however, recent results are closing in on this problem. Let
f (n) denote theminimumnumber of points in general position that determine a convex
n-gon. For the geometric variant A, Erdős and Szekeres [21, 22] proved many years
ago that 2n−2 + 1 ≤ f (n) ≤ 4n(1−o(1)); after several constant-factor improvements
by other researchers that we skip here, Suk [53] managed to bring the upper bound
to same base as the lower bound, i.e., f (n) ≤ 2n+O(n2/3 log n). Holmsen et al. [33]
generalized Suk’s result to pseudoline arrangements and improved the error term. The
improvement carries over to the geometric variant and implies f (n) ≤ 2n+O(

√
n log n).

3 Proofs of theMain Results

In this section we prove Theorems 8 and 9. The key component in the proof is a dual
extension of the Szemerédi–Trotter theorem for point-line incidences to arrangements
of x-monotone pseudolines. We employ Székely’s method [55]. Let 2 ≤ k ≤ n. A
crossing point is k-rich if it is incident to at least k pseudolines.

Lemma 2 Let 5 ≤ k ≤ n − 1. For an arrangement of n pseudolines, the number of
k-rich crossing points is at most

c1
n

k
+ c2

n2

k3
, (1)

for a suitable constants c1, c2 > 0. In particular, onemay take c1 = 5 and c2 = 125/2;
and if k ≥ 8 one may take c1 = 14 and c2 = 18.12.
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Fig. 3 The graph G; here n = 9, k = 3, m = 9, and |E | = 19

Proof Construct a graph G = (V , E) drawn in the plane, where V is the set of k-
rich crossing points in A and edges connect vertices along the pseudolines in A. Let
|V | = m. Refer to Fig. 3 for an example.

The graph G is simple since every pair of pseudolines cross exactly once. SinceA
is an arrangement of n pseudolines, cr(G) ≤ (n

2

)
. We have |V | = m and |E | ≥ km−n

by easy counting. We distinguish two cases.

Case 1: km ≤ 5n. Then m ≤ 5n/k, as required.
Case 2: km ≥ 5n. Then |E | ≥ km − km/5 = 4 km/5 ≥ 4m by the assumption
k ≥ 5. The former setting of the crossing lemma (Lemma 1) can be applied and it
gives

(
n

2

)
≥ cr(G) ≥ |E |3

64|V |2 , or n2 ≥ 2

64
· 4

3

53
· k

3m3

m2 .

It follows that m ≤ 62.5 · n2/k3, as required.
Assume now that k ≥ 8. We distinguish two cases.

Case 1: km ≤ 14n. Then m ≤ 14n/k, as required.
Case2: km ≥ 14n.Then |E | ≥ km−km/14 = 13km/14 ≥ 7m by the assumption
k ≥ 8. The latter setting of the crossing lemma can be applied and it gives

(
n

2

)
≥ cr(G) ≥ |E |3

29|V |2 , or n2 ≥ 2

29
· 13

3

143
· k

3m3

m2 .

It follows that m ≤ 18.12 · n2/k3, as required. ��
Showing that � has a local sequence �i whose half-period is �(n) is equivalent

to showing that at least one pseudoline is incident to �(n) crossing points (these may
be vertices of G or edge crossings with the respective pseudoline).

Observation 1 Let L′ ⊂ L be the subset of pseudolines participating in a crossing ξ

and � ∈ L \ L′ be any other pseudoline. Then � must cross every pseudoline in L′ at
a different crossing point.
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Proof Let L′′ ⊂ L be the subset of pseudolines participating in a fixed crossing other
than ξ . Then |L′ ∩L′′| ≤ 1, since every pair of pseudolines cross exactly once. Since
� must cross every other pseudoline, in particular, every pseudoline in L′, � must have
at least |L′| different crossing points. ��
Note that the condition on the uniqueness of any pairwise intersection (as above) is
essentially the same as that appearing in Theorem 4; see also [38, Chap. 19].

Proof of Theorem 8 First assume that there exists a k-rich crossing point ξ for k =
n/845. Consider the subset of pseudolines L′ ⊂ L involved in this crossing. We
have |L′| ≥ n/845; recall that |L′| ≤ n − 1. Pick any pseudoline � ∈ L \ L′. By
Observation 1, � must intersect every element in L′ at a different crossing point. In
other words, the length of �’s local sequence is at least |L′| ≥ n/845, as required.

Wemay now assume for the remainder of the proof that there are no k-rich crossing
points for k = n/845. Since every pair of pseudolines intersect exactly once, the total
number of pair switches is

(n
2

)
. We next compute an upper bound on the number of

pair switches at the k-rich crossing points for 256 ≤ k < n/845. Since k ≥ 8, we can
use the latter setting of Lemma 2, with c1 = 14 and c2 = 18.12. Once this bound is
obtained, we deduce from it (and the total count) a lower bound on the total number of
switches at k-rich crossing points for 2 ≤ k ≤ 255. Finally we obtain a lower bound
on the maximum number of crossings on some pseudoline in L.

For i ≥ 1, let Vi ⊂ V denote the subset of vertices incident to at least 2i and at most
2i+1 −1 pseudolines. Observe that a vertex in Vi contributes fewer than

(2i+1

2

) ≤ 2 ·4i
switches (out of

(n
2

)
).

Let N1 denote the number of switches at k-rich vertices for 256 ≤ k < n/845
contributed by the first term (linear in n) in (1). Let x be the minimum integer such
that 2x+1 ≥ n/845. Then 2x < n/845, whence we have

N1 ≤ c1n
x∑

i=8

1

2i

(
2i+1

2

)
≤ 2c1n

x∑
i=8

2i ≤ 4c1n · 2x ≤ 4c1n · n

845
≤ 4.242

64
n2.

Let N2 denote the number of switches at k-rich vertices for 256 ≤ k < n/845
contributed by the second term (quadratic in n) in (1). We have

N2 ≤
∞∑
i=8

c2
n2

23i

(
2i+1

2

)
≤ 2c2n

2
∞∑
i=8

1

2i
= 2c2

n2

128
= 18.12

64
n2.

Adding up the two contributions yields

N1 + N2 ≤ 22.362

64
n2.

Hence at least
(
n

2

)
− 22.362

64
n2 ≥ 9.637

64
n2 (2)
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switches occur at crossing points that involve at most 255 pseudolines. In the last
inequality we used the fact that n is large enough. A crossing of j pseudolines, where
2 ≤ j ≤ 255, distributes j credits to the respective lines and uses

( j
2

)
switches from

the pool in (2). One credit received by a pseudoline counts for one crossing point on
the respective pseudoline. The ratio of credits to switches in such a crossing,

j( j
2

) = 2

j − 1
,

is minimized at j = 255, when the ratio is 1/127. Consequently, by the pigeonhole
principle, there is a pseudoline that receives at least

9.637

64
n2 · 1

127
· 1
n

≥ n

845

credits, i.e., has at least this number of crossing points, as required. ��

The resemblance of the argument in the proof of Theorem 8 with the following result
of Beck [5] is worth noting.

Theorem 11 There is constant c > 0 such that for any set S of n points in the plane,
either

(α) some line contains at least cn points of S, or
(β) the number of distinct lines determined by S is at least cn2.

In general, one cannot guarantee the existence of more pseudolines with the property
in Theorem 8. Indeed, consider the n-sequence of permutations:

1, 2, . . . , n − 1, n
1,2,...,n−1−−−−−−→ n − 1, n − 2, . . . , 2, 1, n
1,n−→ n − 1, n − 2, . . . , 2, n, 1 −→ · · · −→ n, n − 1, . . . , 2, 1.

The only pseudoline whose local sequence is of length �(n) is the nth one. However,
under very mild conditions, the stronger statement in Theorem 9 is in effect. Its proof
is analogous to that of Theorem 8.

Proof of Theorem 9 (sketch) Assume first that there exists a k-rich crossing point ξ

for k = cn, for some positive constant c ≤ δ. Consider the subset of pseudolines
L′ ⊂ L involved in this crossing. We have cn ≤ |L′| ≤ δn. By Observation 1, for
every pseudoline � ∈ L\L′, the length of �’s local sequence is at least cn. Moreover,
|L\L′| ≥ (1 − δ)n, as required. If there is no k-rich crossing point for k = cn, for a
sufficiently small c > 0, the proof is finished as before, by obtaining an �(n2) lower
bound analogous to (2). We omit the details. ��

It should be noted that Theorem 9 is a dual extension of Beck’s result mentioned above.
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4 Upper Bound Questions and Concluding Remarks

In this section we prove Theorem 10. In 2014, Lund et al. [40] demonstrated an
infinite family of (nontrivial) pseudoline arrangements, in which an arrangement of
n pseudolines has no member incident to more than 4n/9 points of intersection (i.e.,
vertices of the arrangement), and thereby showed that the strong Dirac conjecture
does not hold for pseudolines. One feature of the respective family of arrangements
is that they contain vertices with high incidence, in particular, about n/3 pseudolines
are incident to a single vertex. The authors asked the following.

Question 1 Is there an infinite family of arrangements of n pseudolines, such that

• no vertex is incident to �(n) pseudolines, and
• no pseudoline is incident to more than (1 − ε)n/2 vertices, for some constant

ε > 0?

The authors further relaxed the second requirement by replacing (1 − ε)n/2 with
cn, where c < 1 is a constant, and asked for such an arrangement. Here we give a
positive answer to the latter question, while we show that the first requirement can
be substantially strengthened in that case. Interestingly enough, the best construction
we found uses straight lines as we were not able to exploit the power of curved
pseudolines. The features of the construction are described in Theorem 10. It is worth
noting, however, that this construction falls short of answering Question 1.

The deltoid construction. The construction can be traced back to Rigby [52] who
provided an analysis, and even further back; for instance, an illustration can be found in
[39, Chap. 8]. This line arrangement has been also used in [6, 26], where descriptions
and useful properties can be found. Let �(θ) denote the line connecting eiθ and ei(π−2θ)

on the unit circle, with the understanding that �(θ) is the tangent line when the two
points coincide. We take the freedom to denote the construction in this way based
on the fact that �(θ) envelops a deltoid as θ varies. Its key property stems from the
following.

Lemma 3 (Rigby [52], Füredi and Palásti [26]) The lines �(α), �(β), and �(γ ) are
concurrent if and only if α + β + γ ≡ 0 (mod 2π).

Consider a regular n-gon inscribed in the unit circle centered at the origin, where n
is even, and refer to Fig. 4. Let p0, p1, . . . , pn−1 denote its vertices labeled counter-
clockwise starting from p0 = (1, 0). For i = 0, 1, . . . , n−1, draw the lines connecting
pi with pn/2−2i , where indices are considered modulo n. If the points pi and pn/2−2i
coincide, draw the tangent line to the circle at pi . The resulting arrangement has n lines,
1+ 
n(n − 3)/6� triple points (i.e., vertices incident to three lines), and n − 3+ δ(n)

double points (i.e., ordinary vertices), where δ(n) = 0 if n ≡ 0 (mod 3) and δ(n) = 2
otherwise; see, e.g., [6]. Moreover, double points may only appear on the outer enve-
lope, whence each line is incident to at most three double points, and Theorem 10
follows. Obviously, the constant 1/2 in the theorem is the best possible (for lines or
pseudolines) under the first constraint.

Determining the right constant inConjecture 2 remains an interesting open problem.
It is easy to obtain small improvements in the lower bound by slightly adjusting the
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Fig. 4 The deltoid construction for n = 18 lines

parameters in the proof of Theorem 8. Since we suspect that the answer is much closer
to the best known upper bound of Lund, Purdy, and Smith, we did not insist in that
direction.
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combinatorial geometry. Combinatorica 3(3–4), 281–297 (1983)

6. Bokowski, J., Pokora, P.:On theSylvester–Gallai and the orchard problem for pseudoline arrangements.
Period. Math. Hungar. 77(2), 164–174 (2018)

7. Borwein, P., Moser, W.O.J.: A survey of Sylvester’s problem and its generalizations. Aequationes
Math. 40(2–3), 111–135 (1990)

8. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)
9. de Bruijn, N.G., Erdös, P.: On a combinatorial problem. Nederl. Akad.Wetensch., Proc. 51, 1277–1279

(1948)

123



Discrete & Computational Geometry

10. Chakerian, G.D.: Sylvester’s problem on collinear points and a relative. Amer. Math. Monthly 77,
164–167 (1970)

11. Chvátal, V.: The Discrete Mathematical Charms of Paul Erdős—A Simple Introduction. Cambridge
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