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Abstract
Weprove that the stack-number of the strongproduct of threen-vertex paths is�(n1/3).
The best previously known upper bound was O(n). No non-trivial lower bound was
known. This is the first explicit example of a graph family with bounded maximum
degree and unbounded stack-number. The main tool used in our proof of the lower
bound is the topological overlap theorem of Gromov. We actually prove a stronger
result in terms of so-called triangulations of Cartesian products. We conclude that
triangulations of three-dimensional Cartesian products of any sufficiently large con-
nected graphs have large stack-number. The upper bound is a special case of a more
general construction based on families of permutations derived fromHadamard matri-
ces. The strong product of three paths is also the first example of a bounded degree
graph with bounded queue-number and unbounded stack-number. A natural question
that follows from our result is to determine the smallest �0 such that there exists a
graph family with unbounded stack-number, bounded queue-number and maximum
degree �0. We show that �0 ∈ {6, 7}.
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1 Introduction

Stack layouts are ubiquitous objects at the intersection of combinatorics, geometry and
topology with applications in computational complexity [14, 15, 26, 34], RNA folding
[38], graph drawing in two [5, 56] and three dimensions [59], traffic light scheduling
[45], and fault-tolerant multiprocessing [19, 55].

For a graph1 G and ordering (v1, . . . , vn) of V (G), two edges viv j , vkv� ∈ E(G)

cross with respect to (v1, . . . , vn) if i < k < j < �. For s ∈ N0, an s-stack layout of
G consists of an ordering (v1, . . . , vn) of V (G) together with a function φ : E(G) →
{1, . . . , s} such that for each a ∈ {1, . . . , s} no two edges in φ−1(a) cross with respect
to (v1, . . . , vn); see Fig. 1 for an example. Each set φ−1(a) is called a stack. Edges
in a stack behave in a last-in-first-out manner (hence the name). Stack layouts can
also be viewed topologically via embeddings into books (first defined by Ollmann
[50]). The stack-number sn(G) of a graph G is the minimum s ∈ N0 for which there
exists an s-stack layout of G (also known as page-number, book-thickness, or fixed
outer-thickness).

Stack layouts have been studied for planar graphs [9, 17, 41, 62, 63], graphs of
given genus [31, 42, 49], treewidth [29, 30, 35, 58], minor-closed graph classes [12],
1-planar graphs [2, 7, 8, 16], and graphs with a given number of edges [48], amongst
other examples.

This paper studies stack layouts of 3-dimensional products. As illustrated in Fig. 2,
for graphs G1 and G2, the Cartesian product G1 � G2 is the graph with vertex-set
V (G1) × V (G2) with an edge between two vertices (x, y) and (x ′, y′) if x = x ′
and yy′ ∈ E(G2), or y = y′ and xx ′ ∈ E(G1). The strong product G1 � G2 is the
graph obtained from G1 �G2 by adding edges (x, y)(x ′, y′) and (x, y′)(x ′, y) for all
edges xx ′ ∈ E(G1) and yy′ ∈ E(G2). Since the Cartesian and strong products are
associative, we may write G1 �G2 �G3 and G1 �G2 �G3 (identifying pairs of the
forms ((v1, v2), v3) and (v1, (v2, v3)) with the triple (v1, v2, v3)).

Let Pn denote the n-vertex path. Our first main result is the following tight bound
on the stack-number of the strong product of three paths (the 3-dimensional grid plus
crosses).

Theorem 1.1 sn(Pn � Pn � Pn) ∈ �(n1/3).

Note that (Pn � Pn) � Pn and (Pn � Pn) � Pn both have bounded stack-number, as
we now explain. Bernhart and Kainen [10] showed that if G1 and G2 are graphs with
bounded stack-number and G1 is bipartite with bounded maximum degree, then the
stack-number of G1 � G2 is bounded. Pupyrev [54] showed that if additionally G2
has bounded pathwidth, then the stack-number of G1 � G2 is also bounded. Since
the Cartesian product is commutative, these results imply that (Pn � Pn) � Pn and
(Pn � Pn) � Pn indeed have bounded stack-number. This shows that in Theorem 1.1,
we cannot replace even one ‘strong product’ by a ‘Cartesian product’.

No non-trivial lower bound on sn(Pn � Pn � Pn) was previously known. Indeed,
Theorem 1.1 provides the first explicit example of a graph family with bounded max-
imum degree and unbounded stack-number. Malitz [48] first proved that graphs of

1 All graphs in this paper are simple and, unless explicitly stated otherwise, undirected and finite. Let V (G)

and E(G) denote the vertex-set and edge-set of a graph G. Let N = {1, 2, . . . } and N0 = N ∪ {0}.
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Fig. 1 A 4-stack layout of the strong product P5 � P5 of two paths

(a) (b)

(c) (d)
Fig. 2 (a) P4 � P4 � P2, (b) P4 � P4 � P2, (c) a triangulation of P4 � P4 � P2, (d) P4 � P4 � P2

maximum degree 3 have unbounded stack-number (using a probabilistic argument).
Further motivation for Theorem 1.1 is provided in Sect. 2 where we present various
connections to related graph parameters, shallow/small minors and growth.

We nowdiscuss the lower bound in Theorem1.1.We actually prove a stronger result
that depends on the following definitions. For graphs G1 and G2, a triangulation of
G1 � G2 is any graph obtained from G1 � G2 by adding the edge (x, y)(x ′, y′) or
(x, y′)(x ′, y) for each xx ′ ∈ E(G1) and yy′ ∈ E(G2). A triangulation of G1 �G2 �

G3 is any graph obtained by triangulating all subgraphs induced by sets of the form
{v1} × V (G2) × V (G3), V (G1) × {v2} × V (G3), and V (G1) × V (G2) × {v3} with
vi ∈ V (Gi ); see Fig. 2(c) for an example.

For directed graphs G1 and G2, if Ui is the undirected graph underlying Gi , then
let G1 � G2 be the triangulation of U1 �U2 containing the edge (x, y)(x ′, y′) for all
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directed edges (x, x ′) ∈ E(G1) and (y, y′) ∈ E(G2). Similarly, for directed graphs
G1, G2, and G3, let G1 �G2 �G3 be the appropriate triangulation ofU1 �U2 �U3.
When using the notation G1 �G2 or G1 �G2 �G3, if some Gi is a path Pn , then Pn
is a directed path.

Every triangulation of G1 � G2 is a subgraph of G1 � G2 and every triangulation
of G1 � G2 � G3 is a subgraph of G1 � G2 � G3. So the next result immediately
implies the lower bound in Theorem 1.1.

Theorem 1.2 Let T1, T2, and T3 ben-vertex treeswithmaximumdegree�1,�2, and�3
respectively, where �1 ≥ �2 ≥ �3. Then for every triangulation G of T1 � T2 � T3,

sn(G) ∈ �

((
n

�1�2

)1/3)
.

Theorem 1.2 is similar in spirit to a recent result of Dujmović et al. [22], who showed
that if Sn is the n-leaf star, then

sn(Sn � (Pn � Pn)) ∈ �(
√
log log n). (1.1)

Their proof actually establishes the following stronger result2:

Theorem 1.3 [22] For every triangulation G of Pn � Pn,

sn(Sn � G) ∈ �(
√
log log n).

Theorem 1.2 has the advantage over Theorem 1.3 in that it applies to bounded degree
graphs (for examplewhen each Ti is a path).Moreover, the lower bound inTheorem1.1
(as a function of the number of vertices) is much stronger than the lower bound of
Theorem 1.3.

We prove Theorem 1.2 by relating the stack-number of a graph to the topological
properties of its triangle complex. The triangle complex of a graph G, denoted by
Tr(G), is the 2-dimensional simplicial complex with 0-faces corresponding to vertices
ofG, 1-faces corresponding to edges ofG, and 2-faces corresponding to triangles of G.
For topological spaces X and Y , define

overlap(X ,Y ) = min
f ∈C(X ,Y )

max
p∈Y | f −1(p)|,

where C(X ,Y ) denotes the space of all continuous functions f : X → Y . In Sects. 3
and 4, respectively, we prove the following two lemmas.

Lemma 1.4 For all n-vertex trees T1, T2, and T3, and for every triangulation G of
T1 � T2 � T3,

overlap(Tr(G),R2) ∈ �(n).

2 A key step in the proof of (1.1) is the application of the Hex Lemma, which holds for any triangulation
of Pn � Pn (see [61] for example). Theorem 1.3 then follows by the method in [22].
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Lemma 1.5 For every graph G such that every vertex is in at most c triangles,

sn(G) ≥
(
overlap(Tr(G),R2)

3c

)1/3
.

Lemma 1.4 has a natural geometric consequence: A straight-line drawing of a graph
represents each vertex by a distinct point in the plane, and represents each edge by the
line segment between its endpoints, such that the only vertices an edge intersects are
its own endpoints. Let T1, T2, and T3 be n-vertex trees and let G be a triangulation
of T1 � T2 � T3. Lemma 1.4 implies that for every straight-line drawing of G, there
exists a point in the plane within �(n) triangles of G.

Theorem 1.2 (and thus the lower bound in Theorem 1.1) follows from Lemmas 1.4
and 1.5 since (using the notation from Theorem 1.2) each vertex of G is in at most
2(�1�2 + �1�3 + �2�3) ≤ 6�1�2 triangles. So Lemma 1.5 is applicable with
c = 6�1�2.

The lower bound on sn(G) in Theorem 1.2 is non-trivial only if�1�2 ∈ o(n). Nev-
ertheless, we have the following result with no assumption on the maximum degree.
Theorems 1.2 and 1.3 imply that the stack-numbers of triangulations of Pn � Pn � Pn
and Sn � Pn � Pn grow with n. Moreover, Sn � Sn contains a subgraph isomorphic
to a 1-subdivision of Kn,n , so its stack-number grows with n as well (see [13, 32]).
Since every sufficiently large connected graph contains a copy of Pn or Sn , we deduce
the following.

Corollary 1.6 For every s ∈ N, there exists n ∈ N such that for all n-vertex connected
graphs G1, G2, and G3, if G is any triangulation of G1 � G2 � G3, then sn(G) > s.

The best previously known upper bound on sn(Pn�Pn�Pn)was O(n), which follows
from Theorem 1 of Dujmović et al. [24] or from Corollary 1 of Pupyrev [54]. The
upper bound in Theorem 1.1 follows from a more general result in Sect. 5, which says
that for every graph G with bounded stack-number and bounded maximum degree,
sn(G � Pn) ∈ O(n1/2−ε) for some ε > 0 that depends on the chromatic number of
G. The proof is based on families of permutations derived from Hadamard matrices.

Our final results concern maximum degree. Theorem 1.2 implies that (Pn � Pn �

Pn)n∈N is a family of graphs with maximum degree 12, unbounded stack-number and
bounded queue-number (defined in Sect. 2). It is natural to ask what is the smallest
bound on the maximum degree in such a family. We prove the answer is 6 or 7.

Theorem 1.7 The least integer �0 such that there exists a graph family with max-
imum degree �0, unbounded stack-number and bounded queue-number satisfies
�0 ∈ {6, 7}.

The proof of the upper bound inTheorem1.7 uses the same topologicalmachinery used
to prove Theorem 1.2, and is based on the tessellation of R3 by truncated octahedra.
The proof of the lower bound exploits a connection with clustered colouring.
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2 Connections

This section provides further motivation for our results by discussing connections with
related graph parameters, minors and growth.

Consider a graphG. The geometric thickness ofG is theminimum k ∈ N0 forwhich
there is a straight-line drawing of G and a partition of E(G) into k plane subgraphs;
see [4, 20, 29]. A k-stack layout of G defines such a drawing and edge-partition,
where the vertices are drawn on a circle in the order given by the stack layout. Thus
the geometric thickness of G is at most its stack-number. The slope-number of G is
the minimum k ∈ N0 for which there is a straight-line drawing of G with k distinct
edge slopes; see [3, 4, 23, 27, 46, 51]. Since edges of the same slope do not cross, the
geometric thickness of G is at most its slope-number.

Note that Pn�Pn�Pn has slope-number and geometric thickness at most 6 (simply
project the natural 3-dimensional representation to the plane). Hence Theorem 1.1
provides a family of graphswith bounded slope-number, bounded geometric thickness,
and unbounded stack-number. Eppstein [32] previously constructed a graph family
with bounded geometric thickness and unbounded stack-number, but notwith bounded
slope-number (since the graphs in question have unbounded maximum degree).

For a graph G and ordering (v1, . . . , vn) of V (G), two edges viv j , vkv� ∈ E(G)

nest with respect to (v1, . . . , vn) if i < k < � < j . For q ∈ N0, a q-queue layout of
G consists of an ordering (v1, . . . , vn) of V (G) together with a function φ : E(G) →
{1, . . . , q} such that for each a ∈ {1, . . . , q} no two edges in φ−1(a) nest with respect
to (v1, . . . , vn). Each set φ−1(a) is called a queue. Edges in a queue behave in a first-
in-first-out manner (hence the name). The queue-number qn(G) of a graph G is the
minimum q ∈ N0 for which there exists a q-queue layout of G.

Stack and queue layouts are considered to be dual to each other [43]. However,
for many years it was open whether there is a graph family with bounded queue-
number and unbounded stack-number, or bounded stack-number and unbounded
queue-number. Theorem 1.3 by Dujmović et al. [22] resolved the first question, since
they also showed that qn(Sn � (Pn � Pn)) ≤ 4. Observe that a 4-queue layout of
Pn � Pn � Pn can be obtained by taking the lexicographical ordering (v1, . . . , vn3)

of the vertices and letting φ(viv j ) be determined by which of the sets {1}, {n, n + 1},
{n2, n2 + 1}, {n2 + n} contains |i − j |. By Theorem 1.1, (Pn � Pn � Pn)n∈N is
therefore another graph family with queue-number at most 4 and unbounded stack-
number. It remains open whether there is a graph family with bounded stack-number
and unbounded queue-number.

While stack-number is not bounded by a function of queue number in general, it is of
interest to find graph classes for which this property holds. In Sect. 6, we show that the
class of graphs with maximum degree 5 has this property, but the class of graphs with
maximum degree 7 does not. Bipartite graphs are another class where stack-number
is bounded by a function of queue-number [25, 53]. On the other hand, 3-colourable
graphs do not have this property, since Pn�Pn�Pn and Sn�(Pn�Pn) are 3-colourable
with bounded queue-number and unbounded stack-number by Theorems 1.2 and 1.3.

We now discuss the behaviour of stack- and queue-number with respect to taking
minors. Let G, H , and J be graphs. Let r , s ∈ N0 and let k ≥ 0 be a half-integer
(that is, 2k ∈ N0). H is a minor of G if a graph isomorphic to H can be obtained
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from G by vertex deletions, edge deletions, and edge contractions. A model of H in
G is a function μ with domain V (H) such that: μ(v) is a connected subgraph of G;
μ(v) ∩ μ(w) = ∅ for all distinct v,w ∈ V (G); and μ(v) and μ(w) are adjacent for
every edge vw ∈ E(H). Observe that H is a minor of G if and only if G contains a
model of H . For r ∈ N0, if there exists a model μ of H in G such that μ(v) has radius
at most r for all v ∈ V (H), then H is an r -shallow minor of G. For s ∈ N0, if there
exists a model μ of H in G such that |V (μ(v))| ≤ s for all v ∈ V (H), then H is an
s-small minor of G. We say that J is an (≤ s)-subdivision of H if J can be obtained
from H by replacing each edge by a path with at most s internal vertices. If every path
that replaces an edge has exactly s vertices, then J is the s-subdivision of H . We say
that H is a k-shallow topological minor of G if a subgraph of G is isomorphic to a
(≤ 2k)-subdivision of H . Note that if a graph H is an s-small minor or an s-shallow
topological minor of a graph G, then H is an r -shallow minor of G whenever s ≤ r .

Blankenship and Oporowski [13] conjectured that stack-number is ‘well-behaved’
under shallow topological minors in the following sense:

Conjecture 2.1 [13] There exists a function f such that for every graph G and
half-integer k ≥ 0, if H is any k-shallow topological-minor of G, then sn(H) ≤
f (sn(G), k).

Dujmović et al. [22] disproved Conjecture 2.1. Their proof used the following lemma
by Dujmović and Wood [28].

Lemma 2.2 [28] For every graph G, if s = 1+ 2
log2 qn(G)� then the s-subdivision
of G has a 3-stack layout.

Lemma 2.2 implies that the 5-subdivision of Sn � (Pn � Pn) admits a 3-stack layout.
Using Theorem 1.3, Dujmović et al. [22] concluded there exists a graph class G
with bounded stack-number for which the class of (5/2)-shallow topological minors
of graphs in G has unbounded stack-number. Thus stack-number is not well-behaved
under shallow topological minors.We now prove an analogous result for small minors.

Theorem 2.3 There exists a graph class G with bounded stack-number for which the
class of 2-small minors of graphs in G has unbounded stack-number.

Proof Lemma 2.2 implies that the 5-subdivision of Pn � Pn � Pn admits a 3-stack
layout. Since Pn � Pn � Pn has maximum degree at most 12 and 12
5/2�+1 = 37, it
follows that Pn � Pn � Pn is a 37-small minor of its 5-subdivision. Let G0 be the class
of graphs with stack-number at most 3, and for each i ∈ N0, let Gi+1 be the class of
2-small minors of graphs in Gi . Thus, G37 contains all 37-small minors of graphs in G0,
including all graphs of the form Pn � Pn � Pn . Hence, there exists i ∈ {0, . . . , 37}
such that stack-number is bounded for Gi and unbounded for Gi+1. �
In contrast to Theorem 2.3, queue-number is well-behaved under small minors. In
fact, the following lemma shows it is even well-behaved under shallow minors, which
is a key distinction between these parameters.

Lemma 2.4 [44] For every graph G and for every r-shallow minor H of G,

qn(H) ≤ 2r (2 qn(G))2r .
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We now compare stack and queue layouts with respect to growth. The growth of a
graph G is the function fG : N → N such that fG(r) is the maximum number of ver-
tices in a subgraph ofG with radius atmost r . Similarly, the growth of a graph classG is
the function fG : N → N∪{∞}where fG(r) = sup { fG(r) : G ∈ G}. A graph class G
has linear/quadratic/cubic/polynomial growth if fG(r) ∈ O(r)/O(r2)/O(r3)/O(rd)
for some d ∈ N. Let Zd

n be the d-fold strong product Pn � · · · � Pn . Every subgraph
of Zd

n with radius at most r has at most (2r + 1)d vertices. Thus (Pn � Pn � Pn)n∈N
has cubic growth, so Theorem 1.1 implies that graph classes with cubic growth can
have unbounded stack-number. In contrast, we now show that graphs with polyno-
mial growth have bounded queue-number. Krauthgamer and Lee [47] established the
following characterisation of graphs with polynomial growth.

Theorem 2.5 [47] Let G be a graph with growth fG(r) ≤ crd for some c, d > 0. Then

G is isomorphic to a subgraph of Z�c′·d log d�
n for some n, and for some c′ depending

only on c.

It follows from the upper bound on the queue-number of products by Wood [60] that
qn(Zd

n) ≤ (3d − 1)/2. Theorem 2.5 therefore implies the following.

Corollary 2.6 If a graph G has growth fG(r) ≤ crd for some c, d > 0, then qn(G) ≤
2c

′d log d , for some c′ depending only on c.

3 Proof of Lemma 1.4

The topological arguments in this paper exclusively involve finite 2-dimensional topo-
logical simplicial complexes3, and so for brevity we refer to such an object as simply a
complex. The proof of Lemma 1.4 relies on a Topological Overlap TheoremofGromov
[36]. To use it we need a technical variation of the overlap parameter. For a complex
X and topological space Y , define

overlap�(X ,Y ) = min
f ∈C(X ,Y )

max
p∈Y |{F ∈ X=2 | p ∈ f (F)}|,

where X=2 denotes the set of 2-dimensional cells of X .We now state the 2-dimensional
case of Gromov’s theorem.

Theorem 3.1 [36, p. 419, topological �-inequality] There exists α > 0 such that

overlap�(Tr(Kn),R
2) ≥ αn3

for every integer n ≥ 3.

We use Theorem 3.1 in combination with the following straightforward lemma to
lower bound overlap(X ,R2) for a complex X in terms of overlap�(Tr(Kn), X).

3 See [11, Sect. 12] for background on simplicial complexes.
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Lemma 3.2 For every complex X0 and for all topological spaces X and Y ,

overlap(X ,Y ) ≥ overlap�(X0,Y )

overlap�(X0, X)
.

Proof Let f0 : X0 → X be a continuous function such that

overlap�(X0, X) = max
p∈X |{F ∈ X=2

0 | p ∈ f0(F)}|.

Let f : X → Y be an arbitrary continuous function. Then f0 ◦ f : X0 → Y is
continuous and so there exists p0 ∈ Y such that

|{F ∈ X=2
0 | p0 ∈ ( f0 ◦ f )(F)}| ≥ overlap�(X0,Y ).

But

|{F ∈ X=2
0 | p0 ∈ ( f0 ◦ f )(F)}| ≤

∑
p∈ f −1(p0)

|{F ∈ X=2
0 | p ∈ f0(F)}|

≤ | f −1(p0)| · overlap�(X0, X).

It follows that

| f −1(p0)| ≥ overlap�(X0,Y )

overlap�(X0, X)
,

as desired. �
A family B of subcomplexes of a complex X is a bramble over X4 if:

• every B ∈ B is non-empty,
• B1 ∪ B2 is path-connected5 for every pair of distinct B1, B2 ∈ B,
• B1 ∪ B2 ∪ B3 is simply connected6 for every triple of distinct B1, B2, B3 ∈ B.

The congestion cong(B) of a brambleB is themaximumsize of a collection of elements
in B that all share a point in common; that is,

cong(B) = max
p∈X |{B ∈ B | p ∈ B}|.

4 This definition is inspired by the definition of a bramble in a graph, which is used in graph minor theory.
A bramble of a graph is only required to satisfy the first and second among the conditions we impose.
5 A topological space X is path-connected if there is a path joining any two points of X ; that is, for all
x, y ∈ X there exists a continuous map f : [0, 1] → X such that f (0) = x and f (1) = y.
6 A topological space is simply connected if it is path-connected and any two paths with the same endpoints
can be continuously transformed into each other.
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Lemma 3.3 There exists β > 0 such that for every complex X and bramble B over X,

overlap(X ,R2) ≥ β |B|
cong(B)

.

Proof Let B = {B1, . . . , Bn}. Let X0 = Tr(Kn) be the triangle complex of the com-
plete graph with vertex set {v1, . . . , vn}. We construct a continuous map f : X0 → X
as follows. Let pi ∈ Bi be chosen arbitrarily, and set f (vi ) = pi for every
i ∈ {1, . . . , n}. Extend f to the 1-skeleton of X0 by mapping each edge viv j to a
path πi j ⊆ Bi ∪ Bj from pi to p j .

Finally, we need to continuously extend f to the interior of every 2-simplex Fi jk
of X0 with vertices vi , v j , and vk . Since Bi ∪ Bj ∪ Bk is simply connected, and the
boundary of Fi jk is mapped to a closed curve in Bi ∪Bj ∪Bk , there is such an extension
such that f (Fi jk) ⊆ Bi ∪ Bj ∪ Bk .

Consider arbitrary p ∈ X and let I = {i ∈ {1, . . . , n} | p ∈ Bi }. Then |I | ≤
cong(B) and

|{F ∈ X=2 | p ∈ f (F)}| ≤ |{{i, j, k} ⊆ {1, . . . , n} | {i, j, k} ∩ I �= ∅}| ≤ 3|I |
(
n

2

)
.

It follows that overlap�(X0, X) ≤ 3n2 cong(B)/2. Thus by Theorem 3.1 and
Lemma 3.2,

overlap(X ,R2) ≥ overlap�(X0,R
2)

overlap�(X0, X)
≥ αn3

3n2 cong(B)/2
,

where α is from Theorem 3.1. It follows that β = 2α/3 satisfies the lemma. �
Lemma 3.3 allows one to lower bound overlap(X ,R2) by exhibiting a bramble with
size large in comparison to its congestion. To simplify the verification of the conditions
in the definition of a bramble we use a simple consequence of vanKampen’s theorem.7

Lemma 3.4 Let B1, B2 be subcomplexes of a complex X. If B1 and B2 are simply
connected, and B1 ∩ B2 is non-empty and path-connected, then B1 ∪ B2 is simply
connected.

Corollary 3.5 Let X be a complex. Let B be a family of subcomplexes of X such that:

• every B ∈ B is simply connected,
• B1 ∩ B2 is path-connected for every pair of distinct B1, B2 ∈ B,
• B1 ∩ B2 ∩ B3 is non-empty for every triple of distinct B1, B2, B3 ∈ B.

Then B is a bramble over X.

7 See [39, Thm. 1.20] for the general statement of vanKampen’s theorem, or [18, Sect. 2.1.3] for an example
of the application of the theorem in the setting generalizing Lemma 3.4.
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Proof The first condition in the definition of a bramble trivially holds. The second
condition holds since B1 ∪ B2 is simply connected for all distinct B1, B2 ∈ B by
Lemma 3.4.

It remains to show B1∪B2∪B3 is simply connected for all distinct B1, B2, B3 ∈ B.
Since B1 ∪ B2 and B3 are simply connected, this follows from Lemma 3.4 as long as
B3 ∩ (B1 ∪ B2) = (B3 ∩ B1) ∪ (B3 ∩ B2) is non-empty and path-connected. By the
assumptions of the corollary, each of B3 ∩ B1 and B3 ∩ B2 is path-connected and they
share a point in common. Thus their union is path-connected as desired. �
We are now ready to prove Lemma 1.4.

Proof of Lemma 1.4 Let G be any triangulation of T1 � T2 � T3, where T1, T2, and T3
are n-vertex trees. To simplify our notation we assume that T1, T2, and T3 are vertex-
disjoint. We denote by T̂i the 1-dimensional complex corresponding to Ti , to avoid
confusion between discrete and topological objects.

For u ∈ V (T1), let G(u) be the subgraph of G induced by all the vertices of G with
the first coordinate u. That is, V (G(u)) = {(u, u2, u3) | u2 ∈ V (T2), u3 ∈ V (T3)}.
So G(u) is isomorphic to a triangulation of T2 � T3. Let X(u) = Tr(G(u)). As a
topological space, X(u) is homeomorphic to T̂2 × T̂3. Define G(u) and X(u) for
u ∈ V (T2) ∪ V (T3) analogously.

For (u1, u2, u3) ∈ V (G), let B(u1, u2, u3) = X(u1) ∪ X(u2) ∪ X(u3), and let
B = {B(u1, u2, u3) | (u1, u2, u3) ∈ V (G)}. We claim that B is a bramble over Tr(G).
It suffices to check that it satisfies the conditions of Corollary 3.5.

To verify the first condition forB, we use Corollary 3.5 to show that {X(u1), X(u2),
X(u3)} is a bramble over Tr(G) for every (u1, u2, u3) ∈ V (G). Note that each T̂i is
simply connected. As the product of simply connected spaces is simply connected, it
follows that X(u) is simply connected for every u ∈ V (T1)∪V (T2)∪V (T3). Consider
now (u1, u2, u3) ∈ V (G). Then X(u1) ∩ X(u2) is homeomorphic to T̂3 and is path-
connected. Similarly, X(u1)∩ X(u3) and X(u2)∩ X(u3) are path-connected. Finally,
X(u1) ∩ X(u2) ∩ X(u3) consists of a single point (and is path-connected). By Corol-
lary 3.5 the set {X(u1), X(u2), X(u3)} is a bramble. In particular, B(u1, u2, u3) =
X(u1)∪ X(u2)∪ X(u3) is simply connected. Thus the first condition in Corollary 3.5
for B holds.

For the second condition, consider distinct B(u1, u2, u3), B(v1, v2, v3) ∈ B. Let
R = B(u1, u2, u3)∩B(v1, v2, v3) for brevity.Assumefirst, for simplicity, that ui �= vi
for i ∈ {1, 2, 3}. Then

R =
⋃

i, j∈{1,2,3}
i �= j

X(ui ) ∩ X(v j ).

Each set X(ui ) ∩ X(v j ) in this decomposition is path-connected, since it is homeo-
morphic to T̂k for {k} = {1, 2, 3} \ {i, j}. Moreover, when ordering these sets,

X(u1) ∩ X(v2), X(u3) ∩ X(v2), X(u3) ∩ X(v1),

X(u2) ∩ X(v1), X(u2) ∩ X(v3), X(u1) ∩ X(v3),
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each pair of consecutive sets share a point, for example, (u1, v2, u3) ∈ (X(u1) ∩
X(v2)) ∩ (X(u3) ∩ X(v2)). It follows that their union is path-connected.

It remains to consider the case ui = vi for some i ∈ {1, 2, 3}. Assume i = 1without
loss of generality. If u2 �= v2 and u3 �= v3 then R = X(u1) ∪ (X(u2) ∩ X(v3)) ∪
(X(v2) ∩ X(u3)). Each of the sets in this decomposition is again path-connected and
the second and third sets intersect the first, implying that their union is path-connected.
Finally, if say u2 = v2 then R = X(u1)∪X(u2) and is again a union of path-connected
intersecting sets. This verifies the second condition of Corollary 3.5 for B.

For the last condition, for any B(u1, u2, u3), B(v1, v2, v3), B(w1, w2, w3) ∈ B,

(u1, v2, w3) ∈ B(u1, u2, u3) ∩ B(v1, v2, v3) ∩ B(w1, w2, w3),

and so B(u1, u2, u3) ∩ B(v1, v2, v3) ∩ B(w1, w2, w3) �= ∅. By Corollary 3.5, B is a
bramble.

As noted above, |B| = n3. Moreover, for every p ∈ Tr(G) and every i ∈ {1, 2, 3}
there exists at most one vi ∈ V (Ti ) such that p ∈ X(vi ). Thus cong(B) ≤ 3n2, and
by Lemma 3.3,

overlap(Tr(G),R2) ≥ β |B|
cong(B)

≥ βn

3
,

as desired. �
Note that Tr(Pn � Pn � Pn) has a natural affine embedding into R

3 with vertices
mapped to points in {1, . . . , n}3. Since any line in a direction sufficiently close to
an axis direction intersects this complex in n + O(1) points, projecting along such
a direction we obtain an affine map Tr(G) → R

2 that covers every point at most
n + O(1) times. Thus overlap(Tr(Pn � Pn � Pn),R2) ≤ n + O(1) and so the bound
in Lemma 1.4 cannot be substantially improved.

4 Proof of Lemma 1.5

The proof of Lemma 1.5 depends on the following result.

Lemma 4.1 Let T1, . . . , Tm be pairwise vertex-disjoint pairwise intersecting triangles
in R

2 with all the vertices on a circle S. Assume that the edges of T1, . . . , Tm can be
partitioned into k non-crossing sets. Then m ≤ k3.

Proof Number the vertices of T1, . . . , Tm by 1, . . . , 3m in clockwise order starting at
an arbitrary point on S. By assumption there is a function φ : ⋃

i E(Ti ) → {1, . . . , k}
such thatφ(e1) �= φ(e2) for all crossing edges e1, e2 ∈ ⋃

i E(Ti ). Say the vertices of Ti
are (ai , bi , ci ) with ai < bi < ci . Define the function f : {1, . . . ,m} → {1, . . . , k}3
by f (i) = (φ(aibi ), φ(ai ci ), φ(bi ci )). Suppose for the sake of contradiction that
f (i) = f ( j) for distinct i, j ∈ {1, . . . ,m}. Thus aibi does not cross a jb j , ai ci does
not cross a j c j , and bi ci does not cross b j c j . Without loss of generality, ai < a j . Then
a j < ci since Ti and Tj intersect. If ci < c j then ai ci crosses a j c j , so ai < a j <
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b j < c j < ci . Now consider bi . If ai < bi < a j or c j < bi < ci , then Ti and Tj do
not intersect. So a j < bi < c j . If a j < bi < b j , then aibi crosses a jb j . Otherwise,
b j < bi < c j implying b j c j crosses bi ci . This contradiction shows that f (i) �= f ( j)
for distinct i, j ∈ {1, . . . ,m}. Hence m ≤ k3. �
Proof of Lemma 1.5 Let k = sn(G), and let (v1, . . . , vn) together with a function
φ : E(G) → {1, . . . , k} be a k-stack layout of G. Let p1, p2, . . . , pn be pairwise
distinct points chosen on a circle S in R

2, numbered in cyclic order around S. Let
X = Tr(G). Define a continuous function f : X → R

2 by setting f (vi ) = pi for
all i ∈ {1, . . . , n}, extending f affinely to 2-simplices of X (triangles of G), and, for
simplicity, mapping every edge of G that does not belong to a triangle continuously
to a curve internally disjoint from S and its interior, so that every point of R2 belongs
to at most two such curves.

Let m′ = overlap(X ,R2). Then there exists p ∈ R
2 such that | f −1(p)| ≥ m′. If

m′ ≤ 2 the lemma trivially holds, and so we assume m′ > 2. Since the restriction
of f to each simplex of X is injective, there exist triangles T1, T2, . . . , Tm′ ⊆ R

2

corresponding to images of distinct 2-simplices of X so that p ∈ ⋂m′
i=1 Ti . Let m =


m′/(3c − 2)� > m′/(3c). Since every triangle shares a vertex with at most 3c − 3
others, we may assume that T1, T2, . . . , Tm are pairwise vertex-disjoint by greedily
selecting vertex-disjoint triangles among T1, T2, . . . , Tm′ . By Lemma 4.1, m ≤ k3.
Thus

sn(G) = k ≥ m1/3 ≥
(
m′

3c

)1/3
=

(
overlap(X ,R2)

3c

)1/3
. �

This lemma completes the proof of the lower bound in Theorem 1.1 as well as Theo-
rem 1.2.

We finish this section by showing that Lemma 4.1 is best possible up to a constant
factor.

Proposition 4.2 For infinitelymany k ∈ N, there is a set of (k/3)3 pairwise intersecting
and pairwise vertex-disjoint triangles with vertices on a circle in R

2, such that the
edges of the triangles can be k-coloured with crossing edges assigned distinct colours.

This result is implied by the following (with k = 3 · 2�).

Lemma 4.3 Let S bea circle inR2 partitioned into three pairwise disjoint arcs A, B,C.
For every � ∈ N0 there is a set T of 8� triangles, each with one vertex in each of
A, B,C, such that the AB-edges can be 2�-coloured with crossing edges assigned
distinct colours, the BC-edges can be 2�-coloured with crossing edges assigned dis-
tinct colours, and the C A-edges can be 2�-coloured with crossing edges assigned
distinct colours.

Proof We proceed by induction on �. The claim is trivial with � = 0. Assume that
for some integer � ≥ 0, there is a set T of 8� triangles satisfying the claim. Let
X be the set of 2� colours used for the AB-edges. Let Y be the set of 2� colours
used for the BC-edges. Let Z be the set of 2� colours used for the CA-edges.

123



Discrete & Computational Geometry (2024) 71:1210–1237 1223

Fig. 3 Construction in the proof of Lemma 4.3

Let X ′ = {x ′, x ′ | x ∈ X} be a set of 2�+1 colours. Let Y ′ = {y′, y′ | y ∈ Y }
be a set of 2�+1 colours. Let Z ′ = {z′, z′′ | z ∈ Z} be a set of 2�+1 colours.
Let T ′ be the set of triangles obtained by replacing each T ∈ T by eight tri-
angles as follows. Say the vertices of T are u, v, w where u ∈ A, v ∈ B, and
w ∈ C . Replace u by u1, . . . , u8 in clockwise order in A, replace v by v1, . . . , v8
in clockwise order in B, and replace w by w1, . . . , w8 in clockwise order in C .
By this we mean that if p, q are consecutive vertices in the original ordering, then
p1, . . . , p8, q1, . . . , q8 are consecutive vertices in the enlarged ordering. Add the tri-
angles u1v4w6, u2v3w5, u3v2w8, u4v1w7, u5v8w2, u6v7w1, u7v6w4, u8v5w3 to T ′.
Say uv is coloured x ∈ X , vw is coloured y ∈ Y , and wv is coloured z ∈ Z . Colour
each of u1v4, u2v3, u3v2, u4v1 by x ′ ∈ X ′, and colour each of u5v8, u6v7, u7v6, u8v5
by x ′′ ∈ X ′. Colour each of v1w7, v3w5, v5w3, v7w1 by y′ ∈ Y ′, and colour each
of v2w8, v4w6, v6w4, v8w2 by y′′ ∈ Y ′. Colour each of w1u6, w2u5, w5u2, w6u1 by
z′ ∈ Z ′, and colour each of w3u8, w4u7, w7u4, w8u3 by z′′ ∈ Z ′. As illustrated in
Fig. 3, crossing edges are assigned distinct colours. Thus T ′ is the desired set of 8�+1

triangles. �

5 Upper Bound

This section proves the upper bound in Theorem 1.1 showing that Pn � Pn � Pn has
an O(n1/3)-stack layout. Assume V (Pn) = {1, . . . , n} and E(Pn) = {i (i + 1) | i ∈
{1, . . . , n − 1}}. We start with a sketch of the construction. Take a particular O(1)-
stack layout and a proper 4-colouring of Pn � Pn . In the corresponding ordering of
V (Pn � Pn) replace each vertex (x, y) by vertices ((x, y, z1), . . . , (x, y, zn)) where
(z1, . . . , zn) is a permutation of {1, . . . , n} determined by the colour of (x, y). An
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Fig. 4 A proper 4-colouring of P8 � P8 and four permutations of {1, . . . , 8}. For n = 8, the stack layout
of the graph Pn � Pn � Pn is obtained from a stack layout of Pn � Pn by replacing each vertex by a
permutation of vertices on the corresponding copy of Pn . The permutation is determined by the colour of
the vertex

appropriate choice of the permutations ensures that the edges of Pn � Pn � Pn can be
partitioned into O(n1/3) stacks. See Fig. 4 for an illustration of the case n = 8.

We actually prove a more general result, Theorem 5.1 below, which relies on the
following definition from the literature. An s-stack layout ((v1, . . . , vn), ψ) of a graph
G is dispersable [1, 10, 54] (also called pushdown [26, 34]) if ψ−1(a) is a matching
in G for each a ∈ {1, . . . , s}. The dispersable stack-number dsn(G) is the mini-
mum s ∈ N0 for which there is a dispersable s-stack layout of G. For example,
dsn(Pn � Pn) = 8 since in the 4-stack layout of Pn � Pn illustrated in Fig. 1, each
stack is a linear forest; putting alternative edges from each path in distinct stacks
produces a dispersable 8-stack layout. In general, max {�(G), sn(G)} ≤ dsn(G) ≤
(�(G) + 1) sn(G) by Vizing’s Theorem. So a graph family has bounded dispersable
stack-number if and only if it has bounded stack-number and bounded maximum
degree.

Theorem 5.1 Let G be a graph with chromatic number χ and dispersable stack-
number d. Let n ∈ N and p = max {2
log2 χ�, 2}. Then

sn(G � Pn) ≤ 2p/2−1d (2p − 1) · n1/2−1/(2p−2) + 2p − 3.

Since χ(Pn � Pn) ≤ 4 and dsn(Pn � Pn) = 8, Theorem 5.1 implies that

sn(Pn � Pn � Pn) ≤ 2 · 8 · 7n1/3 + 5 = 112n1/3 + 5.

Furthermore, χ(G) ≤ �(G) + 1 ≤ dsn(G) + 1. So Theorem 5.1 shows that graphs
G with bounded dispersable stack-number satisfy sn(G � Pn) ∈ O(n1/2−ε) for some
ε > 0.

For an even positive integer p, an Hadamard matrix of order p is a p × p matrix
H with all entries in {+1,−1} such that every pair of distinct rows differs in exactly
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p/2 entries. An example of an Hadamard matrix of order 4 is

⎡
⎢⎢⎣

+1 +1 +1 +1
−1 −1 +1 +1
−1 +1 −1 +1
+1 −1 −1 +1

⎤
⎥⎥⎦ .

Sylvester [57] proved that the order of an Hadamard matrix is 2 or is divisible by 4.
He also constructed an Hadamard matrix whose order is any power of 2. Paley [52]
constructed an Hadamard matrix of order q + 1 for any prime power q ≡ 3 (mod 4),
and an Hadamard matrix of order 2(q + 1) for any prime power q ≡ 1 (mod 4).
The Hadamard Conjecture proposes that there exists an Hadamard matrix of order p
whenever p is divisible by 4. This conjecture has been verified for numerous values
of p; see [21] for example.

To prove Theorem 5.1, we construct a stack layout of G � Pn from a d-dispersable
stack layout of G by replacing each vertex by a copy of the corresponding path Pn . To
determine the orderings of these paths, we use a family of permutations without long
common subsequences by Beame et al. [6]. To avoid many pairwise crossing edges
between two paths, it is necessary to choose permutations without long common
subsequences. However, this is not sufficient because of the edges in G � Pn between
the i-th vertex and the (i+1)-th vertex in distinct paths. To deal with this, the following
lemma provides additional properties of the construction by Beame et al. [6].

Lemma 5.2 Assume there exists an Hadamard matrix of order p. Let m ∈ N and
n = mp−1. Then there exist permutations π1, . . . , πp : {1, . . . , n} → {1, . . . , n} such
that for all distinct k, � ∈ {1, . . . , p},

| {πk(i) + π�( j) | i, j ∈ {1, . . . , n}, | i − j | ≤ 1} | ≤ (2p − 1)n1/2−1/(2p−2),

and for each k ∈ {1, . . . , p} there exists a (2p−3)-stack layout of Pn using the vertex
ordering (π−1

k (1), . . . , π−1
k (n)).

Proof Since there exists an Hadamard matrix of order p, there exist ±1-vectors
h1, . . . , h p of length p each, such that any two of them differ in exactly p/2 entries.
Denote hk = (hk(0), . . . , hk(p − 1)) for each k ∈ {1, . . . , p}. By possibly negat-
ing all entries in some of these vectors, we may assume hk(p − 1) = +1 for all
k ∈ {1, . . . , p}.

For each i ∈ {1, . . . , n}, let d(i, 0), . . . , d(i, p − 2) ∈ {0, . . . ,m − 1} denote the
digits of i − 1 in base m, so that

i = 1 +
p−2∑
a=0

d(i, a)ma .
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Note that the mapping {1, . . . , n} � i �→ (d(i, 0), . . . , d(i, p − 2)) ∈ {0, . . . ,
m−1}p−1 is bijective. For all k ∈ {1, . . . , p}, i ∈ {1, . . . , n}, and a ∈ {0, . . . , p−2},
let

dk(i, a) =
{
d(i, a) if hk(a) = +1,

m − 1 − d(i, a) if hk(a) = −1.

Observe that for any k, � ∈ {1, . . . , p} and a ∈ {0, . . . , p − 2}, if hk(a) = −h�(a)

then dk(i, a) + d�(i, a) = m − 1 for all i ∈ {1, . . . , n}. For every k ∈ {1, . . . , p},
define πk by

πk(i) = 1 +
p−2∑
a=0

dk(i, a)ma .

Note that each πk is an involution; that is, πk = π−1
k .

We claim that π1, . . . , πp satisfy the lemma. Fix distinct k, � ∈ {1, . . . , p}. For
i, j ∈ {1, . . . , n} and a ∈ {0, . . . , p − 2}, define τa(i, j) = dk(i, a) + d�( j, a), and
let

τ(i, j) = (τ0(i, j), . . . , τp−2(i, j)).

Since πk(i)+π�( j) = 2+∑p−2
a=0 τa(i, j)ma , the value of τ(i, j) determines the value

of πk(i) + π�( j). As such, to prove the first part of the lemma it suffices to show that

|{τ(i, j) | i, j ∈ {1, . . . , n}, |i − j | ≤ 1}| ≤ (2p − 1)n1/2−1/(2p−2).

Let A+ = {a ∈ {0, . . . , p − 2} | hk(a) = h�(a)} and A− = {a ∈ {0, . . . , p − 2} |
hk(a) = −h�(a)}. Since hk and h� differ in exactly p/2 entries and hk(p − 1) =
+1 = h�(p − 1), we have |A+| = p/2 − 1 and |A−| = p/2.

Let i ∈ {1, . . . , n}. For every a ∈ A−, we have τa(i, i) = m − 1 since hk(a) =
−h�(a). For every a ∈ A+ we have dk(i, a) = d�(i, a) ∈ {0, . . . ,m − 1}, and thus
τa(i, i) is an even integer between 0 and 2m − 2. Hence

|{τ(i, i) | i ∈ {1, . . . , n}}| ≤ 1|A−|m|A+| = mp/2−1

= n(p/2−1)/(p−1) = n1/2−1/(2p−2).

Now, let i, j ∈ {1, . . . , n} be such that j − i = 1. In particular, we have j > 1, so
there exists c ∈ {0, . . . , p − 2} such that d( j, c) �= 0. Let ci, j denote the least such c.
As j − i = 1 and d( j, 0), . . . , d( j, p − 2) are the digits of j − 1 in base m, the value
of ci, j determines the value of d( j, a) − d(i, a) for each a ∈ {0, . . . , p − 2}:

d( j, a) − d(i, a) =

⎧⎪⎨
⎪⎩

−(m − 1) if a < ci, j ,

1 if a = ci, j ,

0 if a > ci, j .

123



Discrete & Computational Geometry (2024) 71:1210–1237 1227

Hence for any c ∈ {0, . . . , p − 2} and a ∈ A−, for all pairs (i, j) with j − i = 1 and
ci, j = c, the value of τa(i, j) = dk(i, a) + d�( j, a) is determined and is independent
of i and j : if hk(a) = +1, h�(a) = −1, then τa(i, j) = m − 1− (d( j, a) − d(i, a)),
and if hk(a) = −1 and h�(a) = +1, then τa(i, j) = m − 1 + (d( j, a) − d(i, a)).

Let a ∈ A+. If a < ci, j , then d(i, a) = m − 1 and d( j, a) = 0 whence
{dk(i, a), d�( j, a)} = {0,m − 1} and thus τa(i, j) = m − 1. If a = ci, j , then
|dk(i, a) − d�( j, a)| = 1 since d( j, ci, j ) − d(i, ci, j ) = 1, and thus τa(i, j) is an
odd integer between 1 and 2m − 3. If a > ci, j , then dk(i, a) = d�( j, a) since
d(i, a) = d( j, a), and thus τa(i, j) is an even integer between 0 and 2m − 2. In each
of these three cases we can see that, for any c ∈ {0, . . . , p− 2} and a ∈ A+, there are
at most m possible values of τa(i, j) for pairs (i, j) with j − i = 1 and ci, j = c.

Summarizing, for any a, c ∈ {0, . . . , p − 2},

|{τa(i, j) | i, j ∈ {1, . . . , n}, j − i = 1, ci, j = c}| ≤
{
1 if a ∈ A−,

m if a ∈ A+.

Hence

|{τ(i, j) | i, j ∈ {1, . . . , n}, j − i = 1}|

≤
p−2∑
c=0

|{τ(i, j) | i, j ∈ {1, . . . , n}, j − i = 1, ci, j = c}|

≤ (p − 1)1|A−|m|A+| = (p − 1)mp/2−1 = (p − 1)n1/2−1/(2p−2).

By a symmetric argument,

|{τ(i, j) | i, j ∈ {1, . . . , n}, j − i = −1}| ≤ (p − 1)n1/2−1/(2p−2).

Therefore

|{τ(i, j) | i, j ∈ {1, . . . , n}, | j − i | ≤ 1}| ≤ (1 + 2(p − 1))n1/2−1/(2p−2)

= (2p − 1)n1/2−1/(2p−2),

which completes the proof of the first part of the lemma.

It remains to show that for each k ∈ {1, . . . , p}, the set E(Pn) can be partitioned
into 2p − 3 stacks with respect to (π−1

k (1), . . . , π−1
k (mp−1)). Partition E(Pn) into

sets E0, . . . , Ep−2 where Ea consists of all edges i(i + 1) such that i is divisible
by ma but not by ma+1. By our construction of πk , any edge in E0 is between two
consecutive vertices in (π−1

k (1), . . . , π−1
k (mp−1)), so the set E0 is a valid stack. Now

it suffices to show that for every a ∈ {1, . . . , p − 2}, the set Ea can be partitioned
into two stacks. Fix a ∈ {1, . . . , p − 2}, and partition (π−1

k (1), . . . , π−1
k (mp−1))

into blocks Ba,1, . . . , Ba,mp−1−a each consisting of ma consecutive elements, so that
Ba, j = {π−1

k (( j −1)ma +1), . . . , π−1
k ( jma)}. By our construction of πk , each block
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Ba, j consists of ma consecutive integers, where the largest integer in the block is
divisible by ma . Furthermore, every edge i (i + 1) ∈ Ea is between two consecutive
blocks Ba, j and Ba, j+1. Assign the edge i (i + 1) to a set E0

a when j is even and to a
set E1

a when j is odd. The resulting sets E0
a and E1

a are indeed stacks; in fact, no two
edges cross or nest in these sets. Thus E(Pn) can be partitioned into 2p − 3 stacks. �
Theorem 5.1 is a consequence of the following technical variant.

Lemma 5.3 Assume there exists an Hadamard matrix of order p. Let m ∈ N and
n = mp−1. Let G be a p-colourable graph with a dispersable d-stack layout. Then

sn(G � Pn) ≤ d(2p − 1)n1/2−1/(2p−2) + 2p − 3.

Before proving Lemma 5.3, we show that it implies Theorem 5.1.

Proof of Theorem 5.1 Let m = 
n1/(p−1)�. Since p is a power of 2, there exists an
Hadamard matrix of order p. Since Pn ⊆ Pmp−1 , Lemma 5.3 implies

sn(G � Pn) ≤ sn(G � Pmp−1) ≤ d(2p − 1)m(p−1)(1/2−1/(2p−2)) + 2p − 3

= d(2p − 1)mp/2−1 + 2p − 3

< d(2p − 1)(n1/(p−1) + 1)p/2−1 + 2p − 3

≤ d(2p − 1)(2n1/(p−1))p/2−1 + 2p − 3

= 2p/2−1d(2p − 1)n1/2−1/(2p−2) + 2p − 3. �
Proof of Lemma 5.3 Let ρ : V (G) → {1, . . . , p} be a proper colouring of G. Let
π1, . . . , πp be the permutations of {1, . . . , n} given by Lemma 5.2. For each v ∈
V (G), let Pv denote the path in G � Pn induced by {v} × {1, . . . , n}, and let−→
Pv = ((

v, π−1
ρ(v)(1)

)
, . . .

(
v, π−1

ρ(v)(n)
))
. Let N = |V (G)|, and let ((v1, . . . , vN ), ψ)

be a dispersable d-stack layout of G. Let
−→
V = (

−→
Pv1;−→

Pv2; . . . ;−−→
PvN ) be an ordering

of V (G � Pn). By our choice of the permutations π1, . . . , πp, for each v ∈ V (G), the
set E(Pv) can be partitioned into 2p − 3 stacks. Since the paths Pv occupy disjoint
parts of

−→
V , it follows that

⋃
v∈V (G) E(Pv) admits a partition into 2p − 3 stacks with

respect to
−→
V .

We partition the set E(G�Pn)\⋃
v∈V (G) E(Pv) into sets Euv indexed by the edges

ofG. For an edgeuv ∈ E(G), let Euv = {xy ∈ E(G�Pn) | x ∈ V (Pu), y ∈ V (Pv)}.
For each xy ∈ Euv , let γ (xy) = ψ(uv). We claim that for all k ∈ {1, . . . , d}, γ −1(k)

can be partitioned into at most (2p− 1)n1/2−1/(2p−2) stacks with respect to
−→
V . Since

ψ is a dispersable stack-layout, it suffices to show that for every uv ∈ E(G), Euv can
be partitioned into at most (2p − 1)n1/2−1/(2p−2) stacks.

Fix an edge uv ∈ E(G). For each edge e = (u, i)(v, j) ∈ Euv , define

φ(e) = πρ(u)(i) + πρ(v)( j).
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Fig. 5 The truncated octahedron Q0 inscribed in a cube

By our choice of the permutations π1, . . . , πp, the size of the image of φ is at
most (2p − 1)n1/2−1/(2p−2). It remains to show that φ partitions Euv into stacks
with respect to

−→
V . Let e = (u, i)(v, j) and e′ = (u, i ′)(v, j ′) be two edges from

Euv which cross. Without loss of generality, assume that the vertices are in the
order (u, i), (u′, i ′), (v, j), (v′, j ′) in −→

V . This means that πρ(u)(i) < πρ(u)(i ′) and
πρ(v)( j) < πρ(v)( j ′), so φ(e) = πρ(u)(i)+πρ(v)( j) < πρ(u)(i ′)+πρ(v)( j ′) = φ(e′),
soφ(e) �= φ(e′).Henceφ partitions Euv into (2p−1)n1/2−1/(2p−2) stacks, as required.

�
Note that when p is not a power of 2 but there exists an Hadamard matrix of order p,
Lemma 5.3 gives a stronger bound than Theorem 5.1.

6 Smaller MaximumDegree

This section proves Theorem 1.7, which says that if �0 is the minimum integer for
which there exists a graph family withmaximum degree�0, unbounded stack-number
and bounded queue-number, then �0 ∈ {6, 7}. These upper and lower bounds are
respectively proved in Theorems 6.1 and 6.4 below.

Theorem 6.1 There exists a graph family with maximum degree 7, unbounded stack-
number and bounded queue-number.

The construction for Theorem 6.1 is based on a tessellation of R3 with truncated
octahedra, first studied by Fedorov [33]. Let Q0 denote the convex hull of all points
(x, y, z) ∈ R

3 such that {|x |, |y|, |z|} = {0, 1, 2}; see Fig. 5. A truncated octahedron
is any polyhedron embedded inR3 that is geometrically similar to Q0. At each corner
of a truncated octahedron three faces meet: one square and two regular hexagons. Let
Q0 + (x, y, z) be the translation of Q0 by a vector (x, y, z).

Let T∞ be the family of translations of Q0 defined as

T∞ = {Q0 + (4x, 4y, 4z) | x, y, z ∈ Z}
∪ {Q0 + (4x + 2, 4y + 2, 4z + 2) | x, y, z ∈ Z}.
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Fig. 6 The graphs J� and J�

T∞ is a 3-dimensional tessellation; that is, a family of interior-disjoint polyhedra
whose union is R3. A corner of T∞ is any corner of a truncated octahedron from T∞;
edges and faces of T∞ are defined similarly. Every (hexagonal or square) face of T∞
is shared by two truncated octahedra in T∞. At each edge of T∞ a square face and two
hexagonal faces meet, and at each corner of T∞ two square and four hexagonal faces
meet.

We construct an infinite graph G∞ whose vertices are points in R
3 and edges are

line segments between their endpoints. G∞ is the union of copies of the plane graphs
J� and J� (depicted in Fig. 6), where the copies of J� are placed at the square faces
of T∞ and the copies of J� are placed at the hexagonal faces of T∞. Each copy of J�
or J� is contained within its corresponding face so that the exterior cycle coincides
with the union of the edges contained in that face, black vertices are at the corners of
the face, and each edge of the face is split into equal segments by 10 vertices from the
exterior face. A vertex of G∞ is called a corner vertex if it coincides with a corner
of T∞, an edge vertex if it lies on an edge of T∞ and is not a corner vertex, or a face
vertex if it is neither a corner vertex nor an edge vertex.

Lemma 6.2 The maximum degree of G∞ is 7.

Proof Let v ∈ V (G∞). We proceed by case analysis. If v is a face vertex, then its
degree is at most 7 because J� and J� have maximum degree 7.

Now suppose v is a corner vertex. Since v belongs to four edges of T∞, it is adjacent
to four edge vertices in G∞. Furthermore, v is adjacent to a face vertex in each of the
two copies of J� containing v and is not adjacent to any face vertex in a copy of J�.
Therefore, v has degree 6.

It remains to consider the case when v is an edge vertex. Let ε be the edge of the
tessellation T∞ that contains v. Let v0 . . . v11 be the path induced by the vertices of
G∞ which lie on ε, so that v0 and v11 are corner vertices and v1, . . . , v10 are edge
vertices (and one of them is v). The vertices v1, . . . , v10 and all their neighbours lie
in one copy of J� and two copies of J�. The degrees of the vertices v1, . . . , v10 in
the copy of J� containing them are 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, respectively, and their
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Fig. 7 The set Xa
i for n = 4, a = 3, i = 2. The truncated octahedra are of the form Q0 + (4i + 2,

4 j + 2, 4k − 2) for ( j, k) ∈ {0, . . . , n}2

degrees in each copy of J� containing them are 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, respectively.
Since 3+ 2 · 4 = 5+ 2 · 3 = 11, for each i ∈ {1, . . . , 10}, the total sum of degrees of
vi in the copy of J� and the two copies of J� is 11. However, we counted the vertices
vi−1 and vi+1 thrice, so the degree of vi in G∞ is 11 − 4 = 7, as required. �
Let [a, b] denote the closed interval {x ∈ R | a ≤ x ≤ b}. Observe that for every
(i, j, k) ∈ Z

3, the cube [4i −2, 4i +2]× [4 j −2, 4 j +2]× [4k−2, 4k+2] contains
the same finite number of vertices of G∞. For every n ∈ N, let Fn be the set of all
faces of T∞ contained in [4, 4n + 2]3 and let Gn be the subgraph of G∞ induced by
the vertices lying on the faces in Fn . Then |V (Gn)| ∈ �(n3). Furthermore, (Gn)n∈N
has cubic growth as the distance between any pair of adjacent vertices in Gn is O(1).
By Corollary 2.6 and Lemma 6.2, (Gn)n∈N has bounded queue-number andmaximum
degree 7. Thus Theorem 6.1 follows from the next lemma.

Lemma 6.3 sn(Gn) ∈ �(n1/3).

Proof J� and J� are plane graphs in which every internal face is a triangle. Therefore,
every subgraph induced by a face of T∞ has a triangle complex homeomorphic to that
face (and to a closed disk). Furthermore, since faces intersect only at their edges and
corners, every subgraph of Gn induced by a union of faces from Fn has a triangle
complex homeomorphic to that union.

For a ∈ {1, 2, 3} and i ∈ {1, . . . , n}, let Xa
i be the union of all faces F ∈ Fn such

that 4i ≤ xa ≤ 4i + 2 for all (x1, x2, x3) ∈ F . Each set Xa
i is homeomorphic to a

closed disk (see Fig. 7). Let La
i denote the subgraph of Gn induced by Xa

i ∩ V (G∞).
As observed earlier, Xa

i as a union of faces from Fn is homeomorphic to Tr(La
i ).

Hence we identify Xa
i with Tr(La

i ).
Observe that there are (2n− 1)3 hexagonal faces in Fn , each of which is contained

in a different cube of the form [2x + 2, 2x + 4] × [2y + 2, 2y + 4] × [2z + 2, 2z + 4]
with (x, y, z) ∈ {1, . . . , 2n − 1}3. Furthermore, each square face has its centre in a
corner of one of these cubes (but not every corner is a centre of a square face). Hence,
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for (i, j) ∈ {1, . . . , n}2, the intersection X1
i ∩ X2

j is the union of the 2n−1 hexagonal
faces from Fn contained in [4i, 4i + 2] × [4 j, 4 j + 2] × R. These hexagons form a
sequence such that any pair of consecutive hexagons share an edge. The intersection
X1
i ∩ X2

j is thus path-connected. Symmetric arguments show that

Xa
i ∩ Xb

j is path-connected for (i, j) ∈ {1, . . . , n}2 and (a, b) ∈ {1, 2, 3}2, a �=b.

(6.1)

Furthermore, for (i, j, k) ∈ {1, . . . , n}3, the intersection X1
i ∩X2

j∩X3
k is the hexagonal

face contained in [4i, 4i + 2] × [4 j, 4 j + 2] × [4k, 4k + 2], so in particular

X1
i ∩ X2

j ∩ X3
k is path-connected (and non-empty) for (i, j, k) ∈ {1, . . . , n}3.

(6.2)

LetB = {B(i, j, k)}(i, j,k)∈{1,...,n}3 where B(i, j, k) = X1
i ∪X2

j ∪X3
k . We claim thatB

is a bramble over Tr(Gn). We proceed by verifying the preconditions of Corollary 3.5.
Let (i, j, k) ∈ {1, . . . , n}3. We first show that B(i, j, k) is simply connected. We

have B(i, j, k) = X1
i ∪ X2

j ∪ X3
k , and each of X1

i , X
2
j and X3

k is homeomorphic

to a closed disk and is thus simply connected. By (6.1) and (6.2), the sets X1
i ∩ X2

j

and X1
i ∩ X2

j ∩ X3
k are path-connected. Hence, by Lemma 3.4, B(i, j, k) is simply

connected.
Now, let (i1, i2, i3), ( j1, j2, j3) ∈ {1, . . . , n}3, and let B1 = B(i1, i2, i3) and B2 =

B( j1, j2, j3). We now show that B1 ∩ B2 is path-connected. We have

B1 ∩ B2 = (X1
i1 ∪ X2

i2 ∪ X3
i3) ∩ (X1

j1 ∪ X2
j2 ∪ X3

j3) =
3⋃

a=1

3⋃
b=1

(
Xa
ia ∩ Xb

jb

)
.

By (6.1), Xa
ia

∩Xb
jb
is path-connectedwhena �= b. Furthermore, if {a, b, c} = {1, 2, 3},

then, by (6.2), Xa
ia

∩ Xb
jb
intersects Xa

ia
∩ Xc

jc
and Xc

ic
∩ Xb

jb
. Hence, the union of all

Xa
ia

∩ Xb
jb
with a �= b is path-connected. Furthermore, for each a ∈ {1, 2, 3}, the

intersection Xa
ia

∩ Xa
ja
is Xa

ia
if ia = ja , or an empty set if ia �= ja . In the former

case, Xa
ia

∩ Xa
ja
intersects Xa

ia
∩ Xb

jb
for b ∈ {1, 2, 3} \ {a}. Hence, B1 ∩ B2 is indeed

path-connected.
Finally, for any (i1, j1, k1), (i2, j2, k2), (i3, j3, k3) ∈ {1, . . . , n}3, the intersection

B(i1, j1, k1)∩B(i2, j2, k2)∩B(i3, j3, k3) contains X1
i1

∩X2
j2
∩X3

k3
which is non-empty

by (6.2). Hence, by Corollary 3.5, B is a bramble.
By definition, |B| = n3. Moreover, for every p ∈ Tr(Gn) and every a ∈ {1, 2, 3}

there exists at most one i ∈ {1, . . . , n} such that p ∈ Tr(La
i ). Thus cong(B) ≤ 3n2.

By Lemma 3.3,

overlap(Tr(Gn),R
2) ≥ β |B|

cong(B)
= βn3

3n2
= βn

3
.
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Since the maximum degree of Gn is 7, each vertex is contained in at most
(7
2

) = 21
triangles. Therefore, by Lemma 1.5,

sn(Gn) ≥
(
overlap(Tr(Gn),R

2)

63

)1/3
≥

(
βn

189

)1/3
. �

We now prove the lower bound for �0 (defined at the start of the section).

Theorem 6.4 Every graph class with maximum degree 5 and bounded queue-number
has bounded stack-number.

The proof of Theorem 6.4 depends on the following definitions. For k, c ∈ N, a
graph G is k-colourable with clustering c if each vertex of G can be assigned one
of k colours such that each monochromatic component has at most c vertices. Here
a monochromatic component is a maximal monochromatic connected subgraph. The
clustered chromatic number of a graph class G is the minimum k ∈ N such that for
some c ∈ N every graph in G is k-colourable with clustering c. See [61] for a survey
on clustered graph colouring. Haxell et al. [40] proved that the class of graphs with
maximum degree at most 5 has clustered chromatic number 2 (which is best possible,
since (Pn � Pn)n∈N has maximum degree 6 and clustered chromatic number 3 by
the Hex Lemma). Thus, Theorem 6.4 is an immediate consequence of the following
result.

Theorem 6.5 Every graph class G with bounded queue-number and clustered chro-
matic number at most 2 has bounded stack-number.

The proof of Theorem 6.5 depends on the following lemmas.

Lemma 6.6 [25, 53] For every bipartite graph G,

sn(G) ≤ 2 qn(G).

Lemma 6.7 For every graph G and t ∈ N,

sn(G � Kt ) ≤ 3t sn(G) +
⌈
t

2

⌉
.

Proof We may assume that G is connected and V (Kt ) = {1, . . . , t}. If |V (G)| = 1
then the claim holds since sn(G) = 0 and sn(G � Kt ) = sn(Kt ) ≤ 
t/2�; see
[10]. Now assume that |V (G)| ≥ 2 and thus E(G) �= ∅. Let s = sn(G) ≥ 1. Let
(v1, . . . , vn) together withψ : E(G) → {1, . . . , s} be an s-stack layout ofG. For each
k ∈ {1, . . . , s}, let Gk be the spanning subgraph of G with E(Gk) = ψ−1(k). Thus
Gk admits a 1-stack layout and is therefore outerplanar. Hakimi et al. [37] proved
that every outerplanar graph has an edge-partition into three star forests. For each
k ∈ {1, . . . , s}, let Gk,1,Gk,2,Gk,3 be an edge-partition of Gk into three star forests.

Consider the vertex-ordering

(
(v1, 1), . . . , (v1, t); (v2, 1), . . . , (v2, t); . . . ; (vn, 1), . . . , (vn, t)

)
.
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We now define the stack assignment. An edge (u, i)(v, j) ∈ E(G�Kt ) is an intra-Kt

edge if u = v, otherwise uv ∈ E(G) and it is a cross-Kt edge. We use separate
stacks for the intra-Kt edges and the cross-Kt edges. Since the intra-Kt edges induce
copies of Kt that are disjoint with respect to the vertex-ordering, we may partition
them into sn(Kt ) = 
t/2� stacks. Now for some k ∈ {1, . . . , s} and j ∈ {1, 2, 3},
consider the spanning subgraph G̃k, j of Gk, j � Kt that contains only the cross-Kt

edges. By the construction of Gk,t , edges from different components in G̃k, j do not
cross with respect to the above vertex-ordering. Moreover, as each component of G̃k,t

that contains an edge is obtained from a star by blowing-up each vertex with t non-
adjacent vertices and replacing each edge with a copy of Kt,t , it is thus isomorphic to
a bipartite graph of the form Kt,r for some multiple r of t . As such, we may partition
the edges of G̃k, j into t stacks. Therefore, we may partition the cross-Kt edges into
3st stacks, as required. �

Proof of Theorem 6.5 Byassumption, there exist c, � ∈ N such that for every graphG ∈
G, we have qn(G) ≤ c and G is 2-colourable with each monochromatic component
having at most � vertices. Contracting each monochromatic component to a single
vertex gives a bipartite �-small minor H of G. Lemma 2.4 implies qn(H) ≤ 2�(2c)2�.
Lemma 6.6 implies sn(H) ≤ 4�(2c)2�. By construction,G is isomorphic to a subgraph
of H � K�. Thus sn(G) ≤ sn(H � K�), which is at most 3� sn(H) + 
�/2� ≤
12�2(2c)2� + 
�/2� by Lemma 6.7. Hence G has bounded stack-number. �

7 Open Problems

We finish with some open problems:

• Does there exist a graph class with bounded stack-number and unbounded queue-
number? This is equivalent to the question of whether graphs with stack-number
3 have bounded queue-number [28].

• Do graphs with queue-number 2 (or 3) have bounded stack-number [22]?
• Do graph classes with quadratic (or linear) growth have bounded stack-number?
• Does there exist a graph family with unbounded stack-number, bounded queue-
number and maximum degree 6?

• The best known lower bound on the maximum stack-number of n-vertex graphs
with fixed maximum degree � is �(n1/2−1/�), proved by Malitz [48] using a
probabilistic argument. Is there a constructive proof of this bound?

• The best upper bound on the stack-number of n-vertex graphs with fixedmaximum
degree � is O(n1/2), also due to Malitz [48]. Closing the gap between the lower
and upper bounds is an interesting open problem. For example, the best bounds
for graphs of maximum degree 3 are �(n1/6) and O(n1/2).
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29. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discrete Comput.
Geom. 37(4), 641–670 (2007)
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