
Discrete & Computational Geometry (2024) 71:945–959
https://doi.org/10.1007/s00454-022-00464-y

A Sparse Colorful Polytopal KKM Theorem

Daniel McGinnis1 · Shira Zerbib1

Received: 4 January 2022 / Revised: 4 September 2022 / Accepted: 3 November 2022 /
Published online: 13 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recently Soberón (Proc. Am. Math. Soc. Ser. B 9, 404–414 (2022)) proved a far-
reaching generalization of the colorful KKM Theorem due to Gale (Int. J. Game
Theory 13(1), 61–64 (1984)): let n ≥ k, and assume that a family of closed sets
(Ai

j | i ∈ [n], j ∈ [k]) has the property that for every I ∈ ( [n]
n−k+1

)
, the family

(⋃
i∈I Ai

1, . . . ,
⋃

i∈I Ai
k

)
is a KKM cover of the (k − 1)-dimensional simplex �k−1;

then there is an injection π : [k] → [n] such that
⋂k

j=1 A
π( j)
j �= ∅. We prove a

polytopal generalization of this result, answering a question of Soberón in the same
note. We also discuss applications of our theorem to fair division of multiple cakes,
d-interval piercing, and a generalization of the colorful Carathéodory theorem.

1 Introduction

TheKKM theorem due to Knaster, Kuratowski, andMazurkiewicz [9] is a set covering
version of Sperner’s lemma [17] and Brouwer’s fixed point theorem.

KKM Theorem 1.1 [9] If a family of closed subsets (A1, . . . , Ak) of the (k − 1)-
dimensional simplex �k−1 = conv {v1, . . . , vk} satisfies σ ⊆ ⋃

vi∈σ Ai for every

face σ of �k−1 (including for σ = �k−1), then
⋂k

i=1 Ai �= ∅.
A family of sets (A1, . . . , Ak) satisfying the conditions of the KKM theorem is called
a KKM cover of �k−1. The KKM theorem has numerous applications in all areas
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of mathematics (as do its equivalents—Sperner’s lemma and Brouwer’s fixed point
theorem). It has many known generalizations that are widely applied as well (see
e.g., [4] and the references therein). In this paper we prove a new generalization of the
KKM theorem and use it to prove results in discrete geometry and in fair division.

One important extension of the KKM theorem is the colorful KKM theorem by
Gale [6]:

Colorful KKM Theorem 1.2 Given k KKM covers (Ai
1, . . . , A

i
k) for 1 ≤ i ≤ k, there

exists a permutation π : [k] → [k] such that
⋂k

i=1 A
π(i)
i �= ∅.

We think of each KKM cover as associated with a distinct color; the theorem gives a
non-empty intersection of a “colorful" selection of sets, where each set is taken from
a distinct KKM cover. Gale’s theorem specializes to the KKM theorem when all the
KKM covers are the same cover.

Another well-known generalization of the KKM theorem is the KKMS theorem,
due to Shapley [13], which applies to more general covers of the simplex. Komiya
proved a polytopal generalization of the KKMS theorem:

Theorem 1.3 [10] Let P be a (k − 1)-dimensional polytope. Suppose that for every
non-empty face τ of P we are given a closed subset Aτ of P and a point yτ ∈ τ .
If σ ⊆ ⋃

τ⊆σ Aτ for every face σ of P (including P itself), then there exist faces

τ1, . . . , τk of P such that p ∈ conv {yτ1 , . . . , yτk } and
⋂k

i=1 Aτi �= ∅.
A family of sets (Aτ | τ a face of P) satisfying the condition of Theorem 1.3 is

called a Komiya cover of P . If P = �k−1, yp is a point in the interior of P , and
Aτ = ∅ for every face τ of dimension greater than 0, then we recover the KKM
theorem. The KKMS theorem is the case where P is the (k − 1)-simplex and yτ is the
barycenter of τ for every face τ . A colorful generalization of Komiya’s theorem was
proved by Frick and Zerbib.

Theorem 1.4 [4] Let P be a (k − 1)-dimensional polytope with p ∈ P. Suppose for
every non-empty proper face τ of P we are given k closed subsets A1

τ , . . . , A
k
τ of

P and k points y1τ , . . . , ykτ ∈ τ . If for every i ∈ [k] and every face σ of P, we have
σ ⊂ ⋃

τ⊂σ Ai
τ , then there exist faces τ1, . . . , τk of P such that p ∈ conv {y1τ1 , . . . , ykτk }

and
⋂k

i=1 A
i
τi

�= ∅.
Note that Theorem1.4 is true also if all the sets Aσ are open in P . Indeed, given an open
cover {Aσ | σ a nonempty face of P} of P as in Theorem 1.4, we can find closed sets
Bσ ⊂ Aσ that have the same nerve as Aσ (namely, any collection of sets {Bσi | i ∈ I }
intersects if and only if the corresponding collection {Aσi | i ∈ I } intersects) and still
satisfy σ ⊂ ⋃

τ⊂σ Bτ for every face σ of P . This implies that the KKM theorem and
all its generalization mentioned above are true also when all the sets in the given cover
are open.

Recently, Soberón [16] proved a beautiful generalization of the colorful KKM
theorem that we call here the sparse colorful KKM theorem. Let n ≥ k. A family of
all closed (or all open) sets (Ai

1, . . . , A
i
k | i ∈ [n]) forms a k-weakly KKM cover of

�k−1 if for every I ∈ ( [n]
n−k+1

)
, the sets

(⋃
i∈I Ai

1, . . . ,
⋃

i∈I Ai
k

)
form a KKM cover
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of �k−1. The notion of a k-weakly KKM cover was defined by Soberón [16], where
he proved

Theorem 1.5 Let n ≥ k be positive integers. Assume the family (Ai
1, . . . , A

i
k | i ∈ [n])

forms a k-weakly KKM cover of �k−1. Then there is an injection π : [k] → [n] such
that

⋂k
j=1 A

π( j)
j �= ∅.

In the same note, Soberón asked whether Theorem 1.5 can be extended to coverings
of general polytopes, in the same way that Theorem 1.4 generalizes the colorful KKM
theorem. In this paper we positively answer this question. We first give a definition
of k-weakly Komiya cover for a general polytope P . Given a polytope P , let F(P)

denote the set of non-empty, proper faces of P .

Definition 1.6 (k-weakly Komiya cover) Let n ≥ k be positive integers, and let P be
a (k − 1)-dimensional polytope. A family of closed sets (Ai

σ | i ∈ [n], σ ∈ F(P)), is
called a k-weakly Komiya cover of P if for every I ∈ ( [n]

n−k+1

)
, the family

(⋃
i∈I Ai

σ |
σ ∈ F(P)

)
is a Komiya cover of P .

Our main theorem is the following.

Theorem 1.7 Let n ≥ k ≥ 2 be integers. Let P be a (k−1)-dimensional polytope with
p ∈ P. Assume that for every τ ∈ F(P), we are given n points y1τ , . . . , ynτ ∈ τ . If the
family (Ai

τ | i ∈ [n], τ ∈ F(P)) forms a k-weakly Komiya cover of P, then there exists

an injection π : [k] → [n] and faces τ1, . . . , τk such that p ∈ conv {yπ(1)
τ1 , . . . , yπ(k)

τk }
and

⋂k
i=1 A

π(i)
τi �= ∅.

As in the case of the previous theorems, Theorem 1.7 is true also if all the sets Ai
τ are

open. Note also that when k = 1, P is just a point, and the theorem is trivial.

Let us discuss applications of Theorem 1.7. The first is a sparse colorful piercing
theorem for hypergraphs of d-intervals. A d-interval is a union of d compact intervals
in R. A separated d-interval is a d-interval consisting d disjoint interval components
h1, . . . , hd such that hi+1 ⊂ (i, i +1) for 0 ≤ i ≤ d−1. A hypergraph of (separated)
d-intervals is a hypergraph H whose vertex set is R and whose edge set is a finite
family of (separated) d-intervals.

A matching in a hypergraph H is a set of pairwise disjoint edges. The matching
number of H , which we denote as ν(H), is the maximum size of a matching. A cover
of H is a set of vertices that intersects each edge of H , and the covering number (or
piercing number) of H , τ(H), is the minimum size of a cover.

Tardos [19] and Kaiser [8] proved the following result on the ratio between the
covering and matching numbers in hypergraphs of d-intervals.

Theorem 1.8 In anyhypergraphof d-intervals H wehave τ(H) ≤ (d2 − d + 1)ν(H).
If H is a hypergraph of separated d-intervals, then τ(H) ≤ (d2 − d)ν(H).

Matoušek [11] constructed examples of hypergraphs of d-intervals H such that
τ(H) = �(d2ν(H)/log d), showing that the bounds from Theorem 1.8 are not far
from optimal. Aharoni et al. [2] gave an alternative proof of Theorem 1.8 using the
KKMS theorem and Theorem 1.3. Frick and Zerbib [4] applied Theorem 1.4 in a

123



948 Discrete & Computational Geometry (2024) 71:945–959

similar way to prove a colorful generalization of Theorem 1.8. In the following, a
colorful matchingM in a collection of families of edges (F1, . . . ,Fk) in a hypergraph
H is a matching in H in which |M ∩ Fi | ≤ 1 for every i ∈ [k].
Theorem 1.9 (Frick–Zerbib [4]) Let k, d be positive integers.

• For i ∈ [k], let Fi be a hypergraph of d-intervals. If τ(Fi ) ≥ k for every i ∈ [k],
then there exists a colorful matching M of (F1, . . . ,Fk) of size |M| ≥ k/(d2 −
d + 1).

• Let d ≥ 2. For i ∈ [(k−1)d+1], letFi be a hypergraph of separated d-intervals.
If τ(Fi ) ≥ (k − 1)d + 1 for every i ∈ [k], then there exists a colorful matching
M of (F1, . . . ,F(k−1)d+1) of size |M| ≥ k/(d − 1).

Here we use Theorem 1.7 to obtain a “sparse colorful” generalization of Theo-
rem 1.9.

Theorem 1.10 Let n, k,m, d be positive integers.

• Let n ≥ k, and for every i ∈ [n], let Fi be a hypergraph of d-intervals. If
τ
(⋃

i∈I Fi
) ≥ k for every I ∈ ( [n]

n−k+1

)
, then there exists a colorful matching

M of (F1, . . . ,Fn) of size |M| ≥ k/(d2 − d + 1).
• Let n ≥ (m − 1)d + 1, d ≥ 2, and for every i ∈ [n], let Fi be a hypergraph
of separated d-intervals. Suppose τ

(⋃
i∈I Fi

) ≥ (m − 1)d + 1 for every I ∈
( [n]
n−(m−1)d

)
. Then there exists a colorful matching M of (F1, . . . ,Fn) of size

|M| ≥ m/(d − 1).

Another application of Theorem 1.7 is to fair division of multiple cakes. Suppose
that there are n participants (players) at a party where d cakes (which we identify with
d copies of the [0, 1] interval) are served. Given any partition of cakes into m interval
pieces each, every player can choose one of their favorite d-tuple of pieces (a d-tuple
of pieces contains one piece from each cake). It is possible that there are multiple
d-tuples of pieces that a player will prefer as their favorite, i.e., they like these pieces
equally. The goal is to find such a partition and a distribution of the resulting pieces
to the players so that every member in a large subset of players receives one of their
favorite d-tuple of pieces.

The only condition on the preferences of the players that we require is the follow-
ing (m, d)-hungry condition. We say that the set of players are (m, d)-hungry if the
following two conditions hold:

1. Given any partition of the d cakes intom interval pieces each, and given any set I of
n−d (m−1) players, there is a player in I that prefers some d-tuple of non-empty
pieces as their favorite.

2. The preference sets of the players are closed: if a player prefers some d-tuple of
pieces in a converging sequence of partitions, they prefer the same d-tuple also in
the limit partition.

Soberón [16] used Theorem 1.5 to prove the following generalization of the classical
fair division theorem due to Stromquist [18] and Woodall [20].

Theorem 1.11 (Soberón [16]) Let n ≥ k, and assume that n players are (k, 1) hungry.
Then there exists a partition of a single cake into k interval pieces where k players get
their favorite piece.
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Here we give an extension of this theorem to fair division of multiple cakes. Our
theorem is also a generalization of Theorem 2.1 in [12].

Theorem 1.12 Let n,m, d be positive integers such that n ≥ d(m−1)+1 and d ≥ 2.
Assume that n players are (m, d)-hungry. Then, there exists a partition of the d cakes
into m interval pieces each, and an allocation of d-tuples of pieces to a subset P of
players of size at least m/(d − 1), such that each player in P receives one of their
favorite d-tuple of pieces.

A third application of Theorem 1.7 concerns a generalization of the colorful
Carathéodory theorem [3]. The following sparse colorful version of the colorful
Carathéodory theorem was proven in a stronger form in [7] and [15].

Theorem 1.13 (Holmsen [7], Soberón [15]) Let k be a positive integer and n ≥ k. If
X1, . . . , Xn are finite subsets of Rk−1 and for each I ∈ ( [n]

n−k+1

)
, 0 ∈ conv

(⋃
i∈I Xi

)
,

then there exist indices i1, . . . , ik and points x j ∈ Xi j such that 0 ∈ conv {x1, . . . , xk}.
In [4], Theorem 1.4 was used to give a new proof of the colorful Carathéodory

theorem. Using a similar approach, Theorem 1.7 can be used to give another proof of
Theorem 1.13. The proof is essentially the same as the proof in [4], so we omit it.

The paper is organized as follows. Section 2 contains some preliminaries. In Sect. 3
we prove a theorem concerning the existence of certain triangulations that are needed
for the proof of Theorem 1.7, and then in Sect. 4 we prove Theorem 1.7. Finally, in
Sect. 5 we prove Theorems 1.10 and 1.12.

2 Preliminaries

All the triangulations considered in this paper are convex, that is, every face is the
convex hull of its vertices. In order to prove Theorem 1.7, we first need a vertex
labelling version of Theorem 1.3. Let P be a polytope and T a triangulation of P . For
v ∈ P denote by supp(v) the support of v, that is, the minimal face of P containing v.
A Sperner–Shapley labelling of T is an assignment λ : V (T ) → F(P) such that
λ(v) ⊂ supp(v) for every v ∈ V (T ).

The following was essentially proved in [4], and we give the proof here for com-
pleteness.

Theorem 2.1 Let P ⊂ R
d be a polytope with p ∈ P, and let T be a triangulation

of P. Let λ : V (T ) → F(P) be a Sperner–Shapley labeling of T . Suppose that for
every v ∈ V (T ), a point y(v) ∈ λ(v) is assigned. Then there is a face τ of T such that
p ∈ conv {y(v) | v ∈ V (τ )}.
Proof By the Sperner–Shapley labeling condition we have y(v) ∈ λ(v) ⊂ supp(v).
Extending y linearly onto faces of T defines a continuous map Y : P → P , so that
Y (σ ) ⊂ σ for every face σ of P . This implies that Y is homotopic to the identity
on ∂P , and thus Y |∂P has degree one. Then Y is surjective and we can find a point
x ∈ P such that Y (x) = p. Let τ be a face of T containing x . By the definition of Y ,
we have p ∈ Y (τ ) = conv {y(v) | v ∈ V (τ )}. ��
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We will use the following simple lemma frequently.

Lemma 2.2 Let n ≥ k ≥ 2 be integers, and let P be a (k − 1)-dimensional polytope.
Suppose the family (Ai

τ | i ∈ [n], τ ∈ F(P)) is a k-weakly Komiya cover of P. Let
v ∈ P and I ⊂ [n]. If |I | ≥ n − k + 1 then there exists i ∈ I and τ ⊂ supp(v) such
that v ∈ Ai

τ .

Proof Let J be a subset of I of size n − k + 1. Since the sets Ai
σ form a k-weakly

Komiya cover of P , the family
(⋃

j∈J A j
σ | σ ∈ F(P)

)
forms a Komiya cover of P .

Therefore, v ∈ supp(v) ⊂ ⋃
τ⊂supp(v)

⋃
i∈J Ai

τ . Hence there is some τ ⊂ supp(v)

and i ∈ J such that v ∈ Ai
τ . ��

3 Refining a Triangulation

Let X be a triangulation of P . Denote by E(X) the one-dimensional faces (or edges)
of X . For an edge v1v2 ∈ E(X), let b(v1, v2) denote the barycenter of v1v2. Form ≥ 2
we define b(v1, . . . , vm+1) recursively by

b(v1, . . . , vm+1) = b(b(v1, . . . , vm), vm+1).

Denote by X(v1, v2) the triangulation refining X , so that

V (X(v1, v2)) = V (X) ∪ {b(v1, v2)},

and X(v1, v2) is obtained by replacing every face of the form conv {v1, v2, . . . , v j }
in X that contains the edge v1v2 with two faces conv {b(v1, v2), v2, . . . , v j } and
conv {b(v1, v2), v1, v3, . . . , v j }. Given a map f : V (X) → [n], an edge uv ∈ E(X)

will be called bad if f (u) = f (v). Let B(X) denote the set of bad edges of X , and
for a vertex v ∈ V (X) define

B(X; v) = {u ∈ V (X) | uv ∈ B(X)}.

In this section we prove that given the conditions of Theorem 1.7, and given any
triangulation T of P , there exists a triangulation T ′ refining T and satisfying certain
nice properties. A question that might be of interest is to find an effective bound on
the number of steps in the algorithm described in the proof of Theorem 3.1.

Theorem 3.1 Let n ≥ k ≥ 2 be integers. Let P be a (k−1)-dimensional polytope with
p ∈ P. Assume that for every τ ∈ F(P), we are given n points y1τ , . . . , ynτ ∈ τ , and the
family (Ai

τ | i ∈ [n], τ ∈ F(P)) is a k-weakly Komiya cover of P. Let T be a convex
triangulation of P. Then there exists a refinement T ′ of T and maps λ : V (T ′) →
F(P), f : V (T ′) → [n], and y : V (T ′) → P with the following properties:

(P1) v ∈ A f (v)

λ(v) for every v ∈ V (T ′),
(P2) y(v) = y f (v)

λ(v) ∈ λ(v) ⊂ supp(v) for every v ∈ V (T ′), and
(P3) for every face τ of T ′, the indices f (v), v ∈ τ , are pairwise distinct.
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Proof Let v ∈ V (T ). By Lemma 2.2 we may choose an index i ∈ [n] and a face
τ ⊂ supp(v) such that v ∈ Ai

τ . Let λ(v) = τ , f (v) = i , and y(v) = yiτ .
Let N = |B(T )| be the number of bad edges in T . Note that if N = 0, then

properties (P1)–(P3) hold for T with the defined maps λ, f , y, and we are done. So
assume N ≥ 1 and let v1v2 ∈ B(T ).

We will now describe an algorithm that receives T , λ, f , y and terminates with a
refinement T ′ of T and assignments λ(v) ∈ F(P), f (v) ∈ [n], y(v) ∈ Y for every
v ∈ V (T ′) \ V (T ), with the following properties:

(i) properties (P1) and (P2) hold for T ′, λ, f , y,
(ii) B(T ′) ⊂ B(T ), and
(iii) v1v2 /∈ E(T ′).

Note that (ii) and (iii) imply that B(T ′) < B(T ), and thus the triangulation T ′ has at
most N − 1 bad edges. This suffices to prove the theorem.

Throughout the algorithm, Tc is being updated with finer and finer triangulations.
The notation Tc = Tc(b(v1, . . . , v j+1), v j+2) in step 3. below means that we replace
the current Tc with the new refined triangulation Tc(b(v1, . . . , v j+1), v j+2), that we
now call Tc. In the algorithm, we will construct sequences of points v1, . . . , v j+2 and
sets Q j+1 = B(Tc; b(v1, . . . , v j+2)), which record the bad edges thatwere introduced
in the current triangulation. The goal of the algorithm is to terminate at a triangulation
in which Q j = ∅ for all j .

The Algorithm

Setup: Set Tc = T (v1, v2). Since |[n] \ { f (v2)}| ≥ n − k + 1 (recall we take k ≥ 2),
by Lemma 2.2 there exists i ∈ [n] \ { f (v2)} and τ ∈ supp(b(v1, v2)) such that
b(v1, v2) ∈ Ai

τ . Set λ(b(v1, v2)) = τ , f (b(v1, v2)) = i , and y(b(v1, v2)) = yiτ .
Since yiτ ∈ τ ⊂ supp(v), properties (P1) and (P2) hold for v = b(v1, v2). Set
Q1 = B(Tc; b(v1, v2)) and Q j = ∅ for all j ≥ 2.

Apply the following procedure:

1. If Q j = ∅ for all j ≥ 1, stop and return Tc, λ, f , y. Otherwise,
2. let j be the largest index for which Q j �= ∅, and choose a vertex v ∈ Q j . Set

v j+2 = v, Tc = Tc(b(v1, . . . , v j+1), v j+2). Remove v j+2 from Q j .
3. Choose i ∈ [n] \ { f (v2), f (v3), . . . , f (v j+2)} and τ ⊂ supp(b(v1, . . . , v j+2))

such that b(v1, . . . , v j+2) ∈ Ai
τ (we will show that such a choice exists). Set

λ(b(v1, . . . , v j+2)) = τ , f (b(v1, . . . , v j+2)) = i , y(b(v1, . . . , v j+2)) = yiτ .
Like before, properties (P1) and (P2) hold for v = b(v1, . . . , v j+2).

4. Set Q j+1 = B(Tc; b(v1, . . . , v j+2)).

5. Return to step 1.

The idea of the algorithm is as follows. We want to eliminate the bad edge v1v2 of T
by subdividing it using the new vertex b(v1, v2) and refining T to obtain T (v1, v2).
However, after assigning f (b(v1, v2)), the current triangulation T (v1, v2)may contain
bad edges that did not appear in T . Every such a bad edge must contain the vertex
b(v1, v2). So we let Q1 record the vertices v for which vb(v1, v2) is a bad edge;
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these are precisely the bad edges of T (v1, v2) that are not bad in T . More generally,
throughout the algorithm Q j records the vertices v of the current triangulation Tc such
that vb(v1, . . . , v j+1) is a bad edge of Tc. At every iteration of the algorithm, every bad
edge of Tc that is not bad in T is of the form vb(v1, . . . , v j+1), for some j ≥ 1. Thus,
if the algorithm terminates, i.e., Q j = ∅ for all j , then the returning triangulation Tc
contains only bad edges that were already bad in T . Moreover, Tc does not contain the
edge v1v2, which was bad in T . Thus, Tc contains at least one less bad edge than T .

The algorithm works in a depth-first manner. We find the largest index j such
that Q j �= ∅ and we reduce the size of Q j by subdividing an edge of the form
vb(v1, . . . , v j+1). By doing this we may have Q j+1 �= ∅ in step 5. The algorithm
continues to run until Q j+1 = ∅ (we will show that this always happens), and then we
reduce the size of Q j by subdividing another edge of the form vb(v1, . . . , v j+1). Sim-
ilarly, we continue until Q j = ∅, and then we reduce the size of Q j−1 by subdividing
an edge of the form vb(v1, . . . , v j ) (see Example 3.10).

Our goal now is to show that: (a) the choice in step 4. of the algorithm is possible as
long as the algorithm runs, (b) the algorithm stops after finitely many steps, and (c) the
returning triangulation satisfies properties (i)–(iii). This will imply the theorem.

Claim 3.2 For every 2 ≤ j ≤ k, each maximal simplex of Tc containing the vertex
b(v1, . . . , v j ) is of the form

conv {b(v1, . . . , v j ), w2, . . . , w j , u j+1, . . . , uk},

where

• w2 ∈ {v1, v2},
• wi ∈ {vi , b(v1, . . . , vi−1)} for every 3 ≤ i ≤ j , and
• u j+1, . . . , uk are some vertices in V (Tc).

Proof We proceed by induction on j . For j = 2 the claim is true. Indeed, in the
triangulation T (v1, v2) each maximal simplex containing b(v1, v2) contains v1 or v2.
Since f (b(v1, v2)) �= f (v1), f (v2), the edges v1b(v1, v2) or v2b(v1, v2) are never
subdivided at any iteration in the algorithm, so in each triangulation obtained at any
iteration of the algorithm, any maximal simplex containing b(v1, v2) will still contain
v1 or v2. Let 3 ≤ j ≤ k, and assume the claim is true for j − 1.

We first claim that v j is not one of the vertices v1, . . . , v j−1 or b(v1, . . . , vi )
for 2 ≤ i ≤ j − 1. This is true because at some iteration in the algorithm,
v j ∈ B(b(v1, . . . , v j−1)) and thus v j b(v1, . . . , v j−1) is a bad edge (and in particular
v j �= b(v1, . . . , v j−1)), and ub(v1, . . . , v j−1) is not a bad edge if u is one of the ver-
tices v1, . . . , v j−1 or b(v1, . . . , vi ) for 2 ≤ i ≤ j − 2; indeed, we have that f (v1) =
f (v2) and f (vi+1) = f (b(v1, . . . , vi )) for 2 ≤ i ≤ j − 2, and by the choice of
f (b(v1, . . . , vi ))made in step 4., f (b(v1, . . . , vi )) ∈ [n]\{ f (v2), f (v3), . . . , f (vi )}.
By the inductive hypothesis, the maximal simplices of Tc containing the edge

v j b(v1, . . . , v j−1) are of the form

conv {b(v1, . . . , v j−1), w2, . . . , w j−1, v j , u j+1, . . . , uk},
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wherew2 ∈ {v1, v2} and for 3 ≤ i ≤ j ,wi is equal to vi or b(v1, . . . , vi−1). Therefore,
the maximal simplices of Tc containing b(v1, . . . , v j ) are of the form

conv {b(v1, . . . , v j ), w2, . . . , w j , u j+1, . . . , uk},

where w2 ∈ {v1, v2} and for 3 ≤ i ≤ j , wi is equal to vi or b(v1, . . . , vi−1). This
completes the proof of the claim. ��

Applying the claim for j = k we get

Claim 3.3 Assume that at some iteration of the algorithm, at step 3. we have Qk−2 �= ∅
and k−2 is the largest index j for which Q j �= ∅. Then in the current triangulation Tc,
the vertex b(v1, . . . , vk) is connected by an edge only to the vertices v1, . . . , vk and
b(v1, . . . , vi−1) for 3 ≤ i ≤ k.

Claim 3.4 At any iteration of the algorithm, Q j = ∅ for every j ≥ k − 1. In other
words, the index j from step 3. is always at most k − 2.

Proof Wefirst prove that Qk−1 = ∅ at every iteration. Assume that vk has been defined
in some iteration of the algorithm in step 3., and let Tc be the resulting triangulation
defined in the same step. By Claim 3.3, b(v1, . . . , vk) is connected by an edge only to
the vertices v1, . . . , vk and b(v1, . . . , v j ) for 2 ≤ j ≤ k − 1 in Tc. By the choice of
f (b(v1, . . . , vk)) from step 4., we have

f (b(v1, . . . , vk)) ∈ [n] \ { f (v2), f (v3), . . . , f (vk)}.

Moreover, f (v1) = f (v2) and by the setup in step 3., f (b(v1, . . . , vi )) = f (vi+1)

for every 2 ≤ i ≤ k − 1. Therefore, f (b(v1, . . . , vk)) �= f (v) for every vertex v that
is connected to b(v1, . . . , vk) by an edge in Tc. It follows that Qk−1 = ∅. Now, since
Q j+1 is being changed in step 5. only if Q j �= ∅ at step 3. in some iteration of the
algorithm, it follows that Q j = ∅ for every j ≥ k as well. ��
Claim 3.5 The choice of i, τ in step 4. of the algorithm is possible as long as the
algorithm runs.

Proof By Claim 3.4, at any iteration of the algorithm j ≤ k − 2, and thus the set
I = [n] \ { f (v2), f (v3), . . . , f (v j+2)} is of size at least n − k + 1. Therefore, by
Lemma 2.2 there exists a choice of i ∈ I and τ ∈ supp(b(v1 . . . , v j+2)) such that
b(v1 . . . , v j+2) ∈ Ai

τ , as needed in step 4. ��
Claim 3.6 For any j ≥ 1, at any iteration of the algorithm, either Q j = ∅ or there
is a later iteration in the algorithm for which Q j = ∅ and the size of Qi for each
1 ≤ i ≤ j − 1 is the same in both iterations.

Proof We proceed by induction on k − 1 − j . If k − 1 − j ≤ 0, then the statement
is true by Claim 3.4. Let 1 ≤ j ≤ k − 2. Assume that in the i1-th iteration in the
algorithm, we have Q j �= ∅. It suffices to show that there is some later iteration for
which the size of Q j is decreased by 1 and the size of Qi for 1 ≤ i ≤ j − 1 remains
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unchanged. By the induction hypothesis, there exists i2 ≥ i1 such that in the i2-th
iteration of the algorithm, Q j+1 = ∅ and the size of Qi for each 1 ≤ i ≤ j is the same
as in the i1-th iteration. Similarly, we may find i3 ≥ i2 such that in the i3-th iteration
of the algorithm, Q j+2 = ∅ and the size of Qi , for every 1 ≤ i ≤ j + 1, is the same
as in the i2-th iteration (and in particular, Q j+1 = ∅). Continuing in this way, we find
some ik−1− j ≥ i1 such that in the ik−1− j -th iteration of the algorithm, Qi = ∅ for all
j +1 ≤ i ≤ k−2 and the size of Qi for 1 ≤ i ≤ j is the same as in the i1-th iteration.
It follows by Claim 3.4 that j is the largest index for which Q j �= ∅. Therefore, in
step 3. of the ik−1− j +1-th iteration, we choose some v ∈ Q j and set Q j = Q j \ {v},
so the size of Q j decreases by 1, and the size of Qi for 1 ≤ i ≤ j −1 is unchanged. ��
Claim 3.7 If at some iteration of the algorithm Qi = ∅ for every 1 ≤ i ≤ j , then
Q j = ∅ in every later iteration of the algorithm.

Proof If Qi = ∅ for every 1 ≤ i ≤ j , then at the next iteration of the algorithm, the
index chosen in step 3. is at least j + 1. Therefore, it is still the case that Qi = ∅ for
each 1 ≤ i ≤ j in the next iteration. ��
Claim 3.8 At any iteration of the algorithm, every edge of B(Tc) \ B(T ) is of the
form vb(v1, . . . , v j ), where v ∈ Q j−1 and v j has been defined in some iteration of
algorithm.

Proof We proceed by induction on the number of iterations. The claim is true in the
0-iteration, when Tc = T (v1, v2) in the setup. Let T ′ be the triangulation Tc obtained
at the i-th iteration of the algorithm for some i , and assume the statement holds for T ′.
Let T ′′ be the triangulation obtained in the (i + 1)-th iteration. Let j be the index in
step 3. of the (i + 1)-th iteration. Then every bad edge of E(T ′′) \ E(T ′) is of the
form vb(v1, . . . , v j+2), for v ∈ Q j+1. This, combined with the fact that the claim
held for T ′, implies that the claim holds for T ′′. ��
Claim 3.9 The algorithm terminates after finitely many steps. The returning triangu-
lation T ′ satisfies properties (i), (ii), and (iii).

Proof Applying Claim 3.6 for j = 1, we have that there is some iteration for which
Q1 = ∅. Therefore, by Claim 3.7, we have that Q1 = ∅ at any later iteration of the
algorithm. Now, by Claim 3.6, there is a later iteration in the algorithm for which
Q1 = Q2 = ∅. Applying Claim 3.7 again, we have that Q2 = ∅ for every later
iteration. Continuing this way, we get that there is an iteration where Q j = ∅ for
every j ≥ 1, and therefore the algorithm terminates.

By Claim 3.8, every edge in B(T ′) \ B(T ) is of the form vb(v1, . . . , v j+1) where
v ∈ Q j . When the algorithm terminates, we have that Q j = ∅ for all j ≥ 1, so T ′
has no such bad edges. Since T ′ no longer has the edge v1v2, it follows that T ′ has at
most N − 1 bad edges. Finally, (i) holds by the the definition of λ, f , y throughout
the algorithm. ��
Claim 3.9 completes the proof of Theorem 3.1. ��
Example 3.10 Let P be a 2-dimensional simplex and n = 4. Assume we have closed
sets (Ai

σ | i ∈ [4], σ ∈ F(P)) satisfying the conditions of Theorem 1.7. Let T be the
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u3, 2 u4, 2

u1, 1

u2, 1

(A)
values. The edges u1u2 and u3u4

are bad.

u3, 2 u4 , 2

u1, 1

u2, 1

b(u1, u2), 2

(B) The current triangula-
tion and f values after the
setup of the algorithm.

u3, 2 u4, 2

u1, 1

u2, 1

b(u1, u2), 2

b(u1, u2, u4), 3

(C) The current triangula-
tion and f values after the
first iteration of the algo-
rithm.

u3, 2 u4, 2

u1, 1

u2, 1

b(u1, u2), 2

b(u1, u2, u4), 3b(u1, u2, u3), 4

(D) The current triangula-
tion and f values after the
second and final iteration
of the algorithm. u3u4 is
the only bad edge.

The given triangulation and f

Fig. 1 The algorithm applied to a triangulation of a 2-simplex in Example 3.10

triangulation of P depicted in Fig. 1A. Suppose that a map f : V (T ) → [4] is defined.
Every vertex v ∈ V (T ) in the figure is labeled by v, f (v). Then u1u2 is a bad edge.

We now apply the algorithmwith v1 = u1 and v2 = u2. In the setup of the algorithm
we obtain Tc = T (u1, u2), and assign f (b(v1, v2)) ∈ [4] \ {1}. Say f (b(v1, v2)) = 2.
We then obtain the triangulation in Fig. 1B.

Proceeding to step 2. in the algorithm, we find that Q1 = {u3, u4} is non-empty,
and in step 3., the largest index j such that Q j �= ∅ is j = 1. We choose v3 = u4,
Tc = Tc(b(v1, v2), v3), and remove v3 from Q1, so now Q1 = {u3}. Proceeding now
to step 4., we find some i ∈ [4]\{ f (v2) = 1, f (v3) = 2} and σ ⊂ supp(b(v1, v2, v3))

such that b(v1, v2, v3) ∈ Ai
σ , and set f (b(v1, v2, v3)) = i . Say i = 3. We obtain the

triangulation in Fig. 1C. In step 5. we find Q2 = B(Tc, b(u1, u2, u4)) = ∅.
We go back to step 2. and begin the second iteration of the algorithm. Since Q1 �= ∅,

we move to step 3. Here j = 1 is again the largest index for which Q j �= ∅. We
set v3 = u3, Tc = Tc(b(v1, v2), v3), and Q1 = Q1 \ {v3} = ∅. In step 4., we
find some i ∈ [4] \ { f (v2) = 1, f (v3) = 2} and σ ⊂ supp(b(v1, v2, v3)) such
that b(v1, v2, v3) ∈ Ai

σ . We set f (b(v1, v2, v3)) = i . Say i = 4. We obtain the
triangulation Tc in Fig. 1D. In step 5., Q2 = ∅.

Now we go back to step 2.. The algorithm terminates since Q j = ∅ for all j . In
the returning triangulation T ′ every bad edge was bad already in the triangulation T
we started with. Moreover, the edge u1u2 that was bad in T , is not an edge anymore
in T ′.
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4 Proof of Theorem 1.7

The proof follows from Theorem 3.1 using an argument similar to the one used to
prove [4, Thm. 2.1]. By Theorem 3.1, for every ε > 0 there exists a triangulation Tε of
P with diameter at most ε and assignments λ(v), f (v), y(v), such that the following
properties hold:

(i) for every v ∈ V (Tε) we have v ∈ A f (v)

λ(v) and y(v) = y f (v)

λ(v) ,
(ii) λ(v) ⊂ supp(v), and
(iii) for every face τ of Tε , the indices ( f (u) | u ∈ V (τ )) are pairwise distinct.

By Theorem 2.1 there is a face σ = conv {u1, . . . , uk} in Tε (of dimension k − 1,
without loss of generality) such that p ∈ conv {y(u) | u ∈ V (σ )}. This implies that
for τi = λ(ui ) and ji = f (ui ), we have p ∈ conv {y ji

τi | 1 ≤ i ≤ k}. Moreover, since

ui ∈ A ji
τi and the diameter of σ is at most ε, the ε-neighborhoods of A j1

τ1 , . . . , A
jk
τk

intersect. Let πε(i) : [k] → [n] be the function i �→ ji . The function πε(i) is indeed
an injection as Theorem 1.7 ensures that the values f (ui ) = ji are pairwise distinct
since the ui are the vertices of a face in Tε . Now, taking ε to 0 and using the compactness
of P and the fact that the sets Ai

τ are closed, we conclude the theorem.

5 Applications: Proofs of Theorems 1.10 and 1.12

The proof of Theorem 1.10 is very similar to the proof of Theorem 1.9, where the role
of Theorem 1.4 is replaced by Theorem 1.7.

A fractional matching in a hypergraph H = (V , E) is a function f : E → R≥0
satisfying

∑
e:e�v f (e) ≤ 1 for all v ∈ V . The fractional matching number ν∗(H) is

themaximum of
∑

e∈E f (e) over all fractional matchings f of H . A perfect fractional
matching in H is a fractional matching f in which

∑
e:v∈e f (e) = 1 for every v ∈

V . The rank of a hypergraph H = (V , E) is the maximal size of an edge in H .
A hypergraph H is d-partite if there exists a partition V1, . . . , Vd of V such that
|e ∩ Vi | = 1 for every e ∈ E and i ∈ [d].

For the proof of Theorem 1.10 we will use a theorem by Füredi [5].

Theorem 5.1 If H is a hypergraph of rank d ≥ 2, then

ν(H) ≥ ν∗(H)

d − 1 + 1/d
.

If H is d-partite, then ν(H) ≥ ν∗(H)/(d − 1).

We will also need the following simple lemma (see e.g. [4]).

Lemma 5.2 If a hypergraph H = (V , E) of rank d has a perfect fractional matching,
then ν∗(H) ≥ |V |/d.
Proof of Theorem 1.10 Since F = ⋃n

i=1 Fi is finite, by rescaling R we may assume
that eachmember ofF is a subset of (0, 1). Wewill use the points of�k−1 to represent
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k−1 points on the interval [0, 1]. Then we will define an appropriate family of subsets
of �k−1 that satisfy the hypothesis of Theorem 1.7, and the conclusion of the theorem
will provide our result.

For a point x = (x1, . . . , xk) ∈ �k−1, let px ( j) = ∑ j
i=1 xi ∈ [0, 1]. Every face of

�k−1 is of the form �T = conv {e j | j ∈ T } for some T ⊂ [k], where e j is the vertex
of �k−1 having 1 at the j-component and 0 otherwise.

For every T ⊂ [k], let Ai
T be the set consisting of all x ∈ �k−1 for which there

exists a d-interval f ∈ Fi satisfying

• f ⊂ ⋃
j∈T (px ( j − 1), px ( j)), and

• f ∩ (px ( j − 1), px ( j)) �= ∅ for each j ∈ T .

Note that Ai
T = ∅ whenever |T | > d, and that the sets Ai

T are open.
Let I ∈ ( [n]

n−k+1

)
. The assumption τ

(⋃
i∈I Fi

) ≥ k implies that for every x =
(x1, . . . , xk) ∈ �k−1, the set P(x) = {px ( j) : j ∈ [k − 1]} is not a cover of ⋃

i∈I Fi ,
meaning that there exists i ∈ I and f ∈ Fi not containing any px ( j). This, in turn,
means that x ∈ Ai

T for some T ⊂ [k]. Thus the sets (Ai
T | i ∈ I , T ⊂ [k]) form

a cover of �k−1. We will show that
(⋃

i∈I Ai
T | T ⊂ [k]) is a Komiya cover, and

since I ∈ ( [n]
n−k+1

)
was chosen arbitrarily, this will imply that (Ai

T | i ∈ [n], T ⊂ [k])
is a k-weakly Komiya cover. Let �S be a face of �k−1 for some S ⊂ [k]. If x ∈
�S then (px ( j − 1), px ( j)) = ∅ for j /∈ S, and hence it is impossible to have
f ∩ (px ( j − 1), px ( j)) �= ∅. Thus x ∈ Ai

T for some T ⊆ S. This proves that �S ⊆⋃
T⊆S

⋃
i∈I Ai

T , and thus
(⋃

i∈I Ai
T | T ⊂ [k]) is a Komiya cover, for every I ∈

( [n]
n−k+1

)
.

By Theorem 1.7 there is an injection π : [k] → [n] and faces �T1 , . . . ,�Tk of
�k−1 such that

(i) b(�k−1) ∈ conv {b(�T1), . . . , b(�Tk )}, and
(ii)

⋂k
i=1 A

π(i)
Ti

�= ∅.
(Here we are using b(P)with P a polytope to denote the barycenter of P .) Note that (i)
implies that the hypergraph H = ([k], {T1, . . . , Tk}) has a perfect fractional matching,
and (ii) implies that |Ti | ≤ d for all i ∈ [k]. Then by Lemma 5.2, ν∗(H) ≥ k/d.
Therefore, by Theorem 5.1,

ν(H) ≥ ν∗(H)

d − 1 + 1/d
≥ k

d2 − d + 1
.

Let M be a matching in H of size m ≥ k/(d2 − d + 1). Let x ∈ ⋂k
i=1 A

π(i)
Ti

. For

every i ∈ [k] let fi be the d-interval of Fπ(i) witnessing the fact that x ∈ Aπ(i)
Ti

. Then
the setM = { fi | Ti ∈ M} is a colorful matching of size m in F . This proves the first
assertion of the theorem.

Now suppose that Fi is a hypergraph of separated d-intervals for all i ∈ [n]. For
f ∈ F let f t ⊂ (t −1, t) be the t-th interval component of f . We can assume without
loss of generality that f t is nonempty. Let P = (�m−1)d . Then dim P = (m − 1)d.
For a d-tuple T = ( ji , . . . , jd) ∈ [m]d (note that T corresponds to the vertex vT =
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e j1 × e j2 ×· · ·× e jd of P) let A
i
T consist of all x = x1 ×· · ·× xd ∈ P for which there

exists f ∈ Fi satisfying f t ⊂ (t − 1 + pxt ( jt − 1), t − 1 + pxt ( jt )) for all t ∈ [d].
Let I ∈ ( [n]

n−d(m−1)

)
. Since τ

(⋃
i∈I Fi

) ≥ d(m − 1) + 1, the set of points

{t − 1 + pxt ( j) | t ∈ [d], j ∈ [m − 1]}

does not form a cover of
⋃

i∈I Fi . Therefore, by the same argument as before, the sets
(Ai

T | i ∈ [n], T ∈ [m]d) are open and form a (d(m − 1) + 1)-weakly Komiya cover
of P . Applying Theorem 1.7 with k = d(m − 1)+ 1, we conclude that there exists an
injection π : [d(m − 1) + 1] → [n] and d-tuples T1, . . . , Td(m−1)+1 in [m]d such that
(i) b(P) = conv {vT1 , . . . , vTk }, and
(ii)

⋂
i∈[(m−1)d+1] A

π(i)
Ti

�= ∅.
Observe that (i) implies that the d-partite hypergraph

([m] × [d], {T1, . . . , Td(m−1)+1})

(where an edge Ti contains a vertex (i, j) if Ti has i as its j-th entry) has a perfect
fractional matching. Hence by Lemma 5.2 we have ν∗(H) ≥ md/d = m. By The-
orem 5.1, this implies ν(H) ≥ ν∗(H)/(d − 1) ≥ m/(d − 1). Now, by the same
argument as before, by taking x ∈ ⋂

i∈[(m−1)d+1] A
π(i)
Ti

we obtain a colorful matching
in F of the same size, concluding the proof of the theorem. ��
Proof of Theorem 1.12 Given d cakes, the set of all possible partitions of the cakes in
m interval pieces is modeled by the polytope P = (�m−1)d of dimension (m − 1)d
(see e.g. [1, 12]). For a d-tuple T = ( ji , . . . , jd) ∈ [m]d define

Ai
T = {x = x1 × · · · × xd ∈ P | player i prefers the d -tuple of pieces T }.

The fact that the players are (m, d) hungry implies that the sets (Ai
T | i ∈ [n], T ∈

[m]d) form a (d(m−1)+1)-weakly Komiya cover of P . Applying Theorem 1.7 with
k = d(m − 1) + 1 as in the previous proof, we conclude that there exists an injection
π : [d(m − 1) + 1] → [n] and d-tuples T1, . . . , Td(m−1)+1 in [m]d such that

(i) b(P) = conv {vT1 , . . . , vTk }, and
(ii)

⋂
i∈[(m−1)d+1] A

π(i)
Ti

�= ∅.
Like before, (i) implies that the d-partite hypergraph

H = ([m] × [d], {T1, . . . , Td(m−1)+1})

has a perfect fractional matching. Hence by Lemma 5.2we have ν∗(H) ≥ md/d = m.
By Theorem 5.1, this implies ν(H) ≥ ν∗(H)/(d − 1) ≥ m/(d − 1).

Let M be a matching of size at least m/(d − 1) in H . Consider the partition
x ∈ ⋂

i∈[(m−1)d+1] A
π(i)
Ti

. Then players {π(i) | Ti ∈ M} prefer in the partition x
pairwise disjoint d-tuples of pieces, as needed. ��
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