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Abstract
We prove the following sparse approximation result for polytopes. Assume that Q is
a polytope in John’s position. Then there exist at most 2d vertices of Q whose convex
hull Q′ satisfies Q ⊆ −2d2 Q′. As a consequence, we retrieve the best bound for the
quantitative Helly-type result for the volume, achieved by Brazitikos, and improve on
the strongest bound for the quantitative Helly-type theorem for the diameter, shown by
Ivanov and Naszódi:We prove that given a finite familyF of convex bodies inRd with
intersection K , we may select at most 2d members of F such that their intersection
has volume at most (cd)3d/2 vol K , and it has diameter at most 2d2 diam K , for some
absolute constant c > 0.
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1 History and Results

Helly’s theorem, dated from 1923 [13], is a cornerstone result in convex geometry. Its
finitary version states that the intersection of a finite family of convex sets is empty if
and only if there exists a subfamily of d + 1 sets such that its intersection is empty.
In 1982, Bárány et al. [4] introduced the following quantitative versions of Helly’s
theorem: there exist positive constants v(d), δ(d) such that for a finite family F of
convex bodies (that is, compact convex sets with non-empty interior) in Rd , one may
select 2d members such that their intersection has volume at most v(d) vol(

⋂F), or
has diameter at most δ(d) diam(

⋂F).
The problem of finding the optimal values of δ(d) and v(d) has enjoyed special

interest in recent years (see e.g. the excellent survey article [3]). In [4] (see also [5])
the authors proved that v(d) ≤ d2d

2
and δ(d) ≤ d2d , and they conjectured that

v(d) ≈ dc1d and δ(d) ≈ c2d1/2 for some positive constants c1, c2 > 0.
For the volume problem, in a breakthrough paper, Naszódi [17] proved that v(d) ≤

ed+1d2d+1/2, while v(d) ≥ dd/2 must hold. Improving upon his ideas, Brazitikos [6]
found the current best upper bound for volume: v(d) ≤ (cd)3d/2 for a constant c > 0.

For the diameter question, Brazitikos [8] proved the first polynomial bound on δ(d)

by showing that δ(d) ≤ cd11/2 for some c > 0. In 2021, Ivanov and Naszódi [14]
found the best known upper bound, δ(d) ≤ (2d)3, and also proved that δ(d) ≥ cd1/2.
Thus, the value conjectured in [4] for δ(d) would be asymptotically sharp.

In the present note, we show that given a finite family F of closed convex sets,
one can select at most 2d members such that their intersection sits inside a scaled
version of

⋂F for a suitable location of the origin. Clearly, it suffices to prove this
statement for the special case when F consists of closed halfspaces intersecting in a
convex body. As an application, we obtain an improvement on the diameter bound,
δ(d) ≤ 2d2, and retrieve the best known bound for v(d). The crux of the argument is
the following sparse approximation result for polytopes, which is a strengthening of
[14, Thm. 2].

Theorem 1.1 Let λ > 0 and Q ⊂ R
d be a convex polytope such that Q ⊆ −λQ. Then

there exist at most 2d vertices of Q whose convex hull Q′ satisfies

Q ⊆ −(λ + 2)d Q′.

We immediately obtain the following corollary.

Corollary 1.2 Assume that Q = −Q is a symmetric convex polytope in R
d . Then we

may select a set of at most 2d vertices of Q with convex hull Q′ such that

Q ⊆ 3d Q′.
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As usual, let Bd denote the unit ball of Rd and let Sd−1 be the unit sphere of Rd . A
standard consequence of Fritz John’s theorem [16] states that if K ⊂ R

d is a convex
body in John’s position, that is, the largest volume ellipsoid inscribed in K is Bd , then
Bd ⊆ K ⊆ dBd ⊆ −dK (see e.g. [2]). Thus, we derive

Corollary 1.3 Assume that Q ⊂ R
d is a convex polytope in John’s position. Then there

exists a subset of at most 2d vertices of Q whose convex hull Q′ satisfies

Q ⊆ −2d2 Q′.

For n ∈ N
+, we will use the notation [n] = {1, . . . , n}. For a family of sets

{K1, . . . , Kn} ⊂ R
d and for a subset σ ⊂ [n], let

Kσ =
⋂

i∈σ

Ki ,

as in [14]. Also, let
([n]
≤k

)
stand for the set of all subsets of [n]with cardinality at most k.

Using this terminology, we are ready to state our quantitative Helly-type result.

Theorem 1.4 Let {K1, . . . , Kn} be a family of closed convex sets in R
d with d ≥ 2

such that their intersection K = K1 ∩ · · · ∩ Kn is a convex body. Then there exists a
σ ∈ ( [n]

≤2d

)
such that

vold Kσ ≤ (cd)3d/2 vold K and diam Kσ ≤ 2d2 diam K

for some constant c > 0.

To conclude the section we formulate the following conjecture, which was essentially
stated already in [4]. This would imply the asymptotically sharp bound for v(d), see
the remark after the proof of Theorem 1.4.

Conjecture 1.5 Assume that {u1, . . . , un} ⊂ Sd−1 is a set of unit vectors satisfying the
conditions of Fritz John’s theorem. That is, there exist positive numbers α1, . . . , αn

for which
∑n

i=1 αi ui = 0 and
∑n

i=1 αi ui ⊗ ui = Id , the identity operator on R
d .

Then there exists a subset σ ⊂ [n] with cardinality at most 2d so that

Bd ⊂ cd conv {ui : i ∈ σ }

with an absolute constant c > 0.

That the above estimate would be asymptotically sharp is shown by taking n = d + 1
and letting {u1, . . . , un} to be the set of vertices of a regular simplex inscribed in Sd−1.

Note that we study quantitative Helly-type questions that require selecting at most
2d sets, which is the smallest cardinality for which such estimates may hold. Versions
obtained by relaxing this cardinality bound have been studied e.g. by Brazitikos [7],
Dillon and Soberón [9], and Ivanov and Naszódi [14]. In particular, an estimate which
matches Theorem 1.1 asymptotically was given in [14] when selecting 2d+1 vertices
of the polytope, and an asymptotically sharp estimate for the quantitative Helly-type
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theorem for the diameter was proved in [9] for sufficiently large sub-families. Further
quantitative Helly-type results have been studied in [15] (for log-concave functions)
and [11] (continuous versions).

2 Proofs

Proof of Theorem 1.1 The condition Q ⊆ −λQ ensures that 0 ∈ int Q. Among all
simplices with d vertices from the set of vertices of Q and one vertex at the origin,
consider a simplex S = conv {0, v1, . . . , vd} with maximal volume. We write S in the
form

S =
{

x ∈ R
d : x = α1v1 + · · · + αdvd for αi ≥ 0 and

d∑

i=1

αi ≤ 1

}

. (1)

For every i ∈ [d], let Hi be the hyperplane spanned by {0, v1, . . . , vd} \ {vi }, and
let Li be the closed strip between the hyperplanes vi + Hi and −vi + Hi . Define
P = ⋂

i∈[d] Li (see Fig. 1). Note that

P = {x ∈ R
d : vold(conv({0, x, v1, . . . , vd} \ {vi })) ≤ vold(S) for all i ∈ [d]}.(2)

This follows from the volume formula

vold(conv {0, w1, . . . , wd}) = 1

d! |det(w1 w2 . . . wd)|

for arbitrary w1, . . . , wd ∈ R
d , which implies that for all x ∈ R

d of the form x =
cvi + w with w ∈ Hi , i ∈ [d],

vold(conv({0, x, v1, . . . , vd} \ {vi })) = |c| vold(S).

Next, we show that

P = {x ∈ R
d : x = β1v1 + · · · + βdvd for βi ∈ [−1, 1]}. (3)

Indeed, since v1, . . . , vd are linearly independent, we may consider the linear trans-
formation A with A(vi ) = ei for i ∈ [d]. Note that

A(P) =
⋂

i∈[d]
A(Li ) = {x ∈ R

d : x = β1e1 + · · · + βded for βi ∈ [−1, 1]}.

Thus, (3) holds. Since S is chosen maximally, (2) shows that for any vertex w of Q,
w ∈ P . By convexity,

Q ⊆ P. (4)
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Fig. 1 Positions of the convex body Q, the simplex S of maximal volume, its homothetic copy S′, and the
parallelotope P

Let S′ = −2d S + (v1 + · · · + vd). By (1),

S′ =
{

x ∈ R
d : x = γ1v1 + · · · + γdvd for γi ≤ 1 and

d∑

i=1

γi ≥ −d

}

. (5)

Then, from (3) and (5),

P ⊆ S′. (6)

Let u = (1/d)(v1 + · · · + vd) be the centroid of the facet conv {v1, . . . , vd} of S.
Let y be the intersection of the ray from 0 through −u and the boundary of Q. By
Carathéodory’s theorem, we can choose k ≤ d vertices {v′

1, . . . , v
′
k} of Q such that

y ∈ conv {v′
1, . . . , v

′
k}. Set Q′ = conv {v1, . . . , vd , v′

1, . . . , v
′
k}.

Note that [y, u] ⊆ Q′, which implies 0 ∈ Q′. Thus,

S ⊆ Q′. (7)

Since Q ⊆ −λQ, we have that −u ∈ λQ. Since λy is on the boundary of λQ, we
also have that −u ∈ [0, λy]. We know that 0, λy ∈ λQ′, so

u ∈ −λQ′. (8)

Combining (4), (6), (7), and (8):

Q ⊆ P ⊆ S′ = −2d S + du ⊆ −2d Q′ − λd Q′ = −(λ + 2)d Q′. (9)
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Proof of Theorem 1.4 As shown in [4], we may assume that the family {K1, . . . , Kn}
consists of closed halfspaces such that K = ⋂

Ki is a d-dimensional polytope. Let T
be the affine transformation sending K to John’s position. Let K̃i = T Ki for i ∈ [n],
K̃ = T K , and for some σ ⊂ [n], let K̃σ = ⋂

i∈σ K̃i . We claim that there exists
σ ∈ ( [n]

≤2d

)
such that the following two properties hold:

K̃σ ⊆ −2d2 K̃ , (10)

vold K̃σ ≤ (cd)3d/2 vold K̃ (11)

for some constant c > 0. Estimates (10) and (11) are affine invariant, so this will
suffice to prove Theorem 1.4.

Recall that since K̃ is in John’s position, Bd ⊆ K̃ ⊆ dBd (see [2] or [12, Thm.
5.1]). Setting Q = (K̃ )◦, this yields that (1/d)Bd ⊆ Q ⊆ Bd (here and later on, K ◦
stands for the polar set: K ◦ = {x ∈ R

d : 〈x, y〉 ≤ 1 for all y ∈ K }.) In particular,
Q ⊆ −d Q. Hence, we may apply Theorem 1.1 to Q with λ = d, we obtain a subset
of at most 2d vertices of Q such that their convex hull Q′ satisfies

Q ⊆ −(d + 2)d Q′ ⊆ −2d2 Q′. (12)

The family of closed halfspaces supporting the facets of (Q′)◦ is a subset of
{K̃1, . . . , K̃n} with at most 2d elements. Thus, we can choose σ ∈ ( [n]

≤2d

)
such that

K̃σ = (Q′)◦. Taking the polar of (12), we obtain

K̃σ ⊆ −(d + 2)d K̃ ⊆ −2d2 K̃ ,

which shows (10).
Let P be the parallelotope enclosing Q from the proof of Theorem 1.1 and set

P ′ = −(1/(2d2))P . Statement (9) implies

Q′ ⊇ P ′.

Since S is chosen maximally, the volume of S is at least the volume of the simplex
obtained from the Dvoretzky–Rogers lemma [10] (see also [17, Lem. 1.4]):

vold(S) ≥ 1√
d! dd/2

. (13)

Using (13),

vold(P
′) = (2d2)−d vold(P) = (2d2)−d · 2dd! vold(S) ≥ d−5d/2(d!)1/2. (14)
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Note that P ′ is centrally symmetric, so we can use the Blaschke–Santaló inequality
(see [1, Thm. 1.5.10]) for P ′:

vold(P
′) · vold((P ′)◦) ≤ vold(B

d
2 )2. (15)

Using the inclusions K̃ ⊇ Bd
2 and K̃σ = (Q′)◦ ⊆ (P ′)◦, as well as (14) and (15):

vold K̃σ

vold K̃
≤ vold((P ′)◦)

vold(Bd
2 )

≤ vold(Bd
2 )

vold(P ′)
≤ πd/2d5d/2(d!)−1/2

	((d/2) + 1)
≤ (cd)3d/2 (16)

for some absolute constant c > 0. This shows (11) and concludes the proof. ��

Remark We briefly explain how Conjecture 1.5 would imply the asymptotically opti-
mal bound on v(d). First note that the estimate (12) would hold with the factor cd
instead of 2d2. Then, in the rest of the proof of Theorem 1.4, we could replace all
instances of the factor 2d2 with cd. In particular, one would get the linear upper bound
δ(d) ≤ cd from the improvement of (10), while the rest of the calculations would
show that the final quotient in (16) is at most (c′d)d/2 for some absolute constant
c′ > 0.

Acknowledgements This research was done under the auspices of the Budapest Semesters in Mathematics
program. We are grateful to the anonymous referees for their valuable comments on the article.

References

1. Artstein-Avidan, Sh., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. Math-
ematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

2. Ball, K.: An elementary introduction to modern convex geometry. In: Flavors of Geometry. Math. Sci.
Res. Inst. Publ., vol. 31, pp. 1–58. Cambridge University Press, Cambridge (1997)

3. Bárány, I., Kalai, G.: Helly-type problems. Bull. Am. Math. Soc. 59(4), 471–502 (2022)
4. Bárány, I., Katchalski, M., Pach, J.: Quantitative Helly-type theorems. Proc. Am. Math. Soc. 86(1),

109–114 (1982)
5. Bárány, I., Katchalski,M., Pach, J.: Helly’s theoremwith volumes. Am.Math.Monthly 91(6), 362–365

(1984)
6. Brazitikos, S.: Brascamp–Lieb inequality and quantitative versions of Helly’s theorem. Mathematika

63(1), 272–291 (2017)
7. Brazitikos, S.: Quantitative Helly-type theorem for the diameter of convex sets. Discrete Comput.

Geom. 57(2), 494–505 (2017)
8. Brazitikos, S.: Polynomial estimates towards a sharp Helly-type theorem for the diameter of convex

sets. Bull. Hellenic Math. Soc. 62, 19–25 (2018)
9. Dillon, T., Soberón, P.: A mélange of diameter Helly-type theorems. SIAM J. Discrete Math. 35(3),

1615–1627 (2021)
10. Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed linear spaces. Proc.

Nat. Acad. Sci. USA 36, 192–197 (1950)
11. Fernandez Vidal, T., Galicer, D., Merzbacher, M.: Continuous quantitative Helly-type results. Proc.

Am. Math. Soc. 150(5), 2181–2193 (2022)
12. Gordon, Y., Litvak, A.E., Meyer, M., Pajor, A.: John’s decomposition in the general case and applica-

tions. J. Differ. Geom. 68(1), 99–119 (2004)
13. Helly, E.: Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatsh.

Math. Phys. 37(1), 281–302 (1930)

123



1714 Discrete & Computational Geometry (2023) 70:1707–1714

14. Ivanov, G., Naszódi, M.: A quantitative Helly-type theorem: containment in a homothet. SIAM J.
Discrete Math. 36(2), 951–957 (2022)

15. Ivanov, G., Naszódi, M.: Functional John ellipsoids. J. Funct. Anal. 282(11), # 109441 (2022)
16. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Pre-

sented to R. Courant on his 60th Birthday, pp. 187–204. Interscience, New York (1948)
17. Naszódi, M.: Proof of a conjecture of Bárány, Katchalski and Pach. Discrete Comput. Geom. 55(1),

243–248 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Quantitative Helly-Type Theorems via Sparse Approximation
	Abstract
	1 History and Results
	2 Proofs
	Acknowledgements
	References




