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Abstract
We prove that every finite family of convex sets in the plane satisfying the (4, 3)-
property can be pierced by nine points. This improves the bound of 13 proved by
Kleitman et al. (Combinatorica 21(2), 221–232 (2001)).
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1 Introduction

For positive integers p ≥ q, a family of sets C is said to satisfy the (p, q)-property
if for every p sets, some q have a point in common. We say that C can be pierced by
m points if there exists a set of size at most m intersecting every element in C . The
piercing number τ(C ) of C is the minimum m so that C can be pierced by m points.

In 1957 Hadwiger and Debrunner [2] conjectured that for every given positive
integers p ≥ q > d, there exists a (smallest) constant HDd(p, q) such that every finite
family C of convex sets in Rd satisfying the (p, q)-property has τ(C ) ≤ HDd(p, q).
This conjecture was proved by Alon and Kleitman in 1992 [1].

In general, the bounds on HDd(p, q) given by Alon and Kleitman’s proof are far
from optimal. The first case where HDd(p, q) is not known is when d = 2, p = 4, and
q = 3. In this case, the bound in HDd(p, q) given by the Alon–Kleitman proof is 343,
while there is no known example of a family of convex sets in the plane that satisfy
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the (4, 3)-property and cannot be pierced by three points. We note that improvements
on general upper bounds for HDd(p, q) were made in [4].

In 2001, Gyárfás et al. [5] proved that HD2(4, 3) ≤ 13, and since then this bound
has seen no improvement. In this paper we prove that HD2(4, 3) ≤ 9:

Theorem 1.1 If C is a finite family of convex sets in R
2 such that for any four sets,

three have a point in common, then τ(C ) ≤ 9.

Themain tools in the proof are the following two theorems, and a geometrical analysis.
Let Δn−1 ⊂ R

n denote the n − 1-dimensional simplex with vertex set e1, . . . , en (the
standard basis vectors inRn). The following version of the KKMTheoremwas proven
in [7].

Theorem 1.2 Let A1, . . . , An be open sets such that for every I ⊆ {1, . . . , n},⋃
I Ai ⊇ conv {ei | i ∈ I }. Then ⋂n

i=1 Ai �= ∅.
We note that Theorem 1.2 stated for closed sets A1, . . . , An is the original KKM
Theorem, which was proven in [6].

A matching in a family of sets F is a subset of pairwise disjoint sets in F . The
matching number ν(F ) is the maximum size of a matching inF . Let L1, L2 be two
homeomorphic copies of the real line. A 2-interval is a union I1 ∪ I2, where Ii is an
interval on Li .

Theorem 1.3 (Tardos [8]) IfF is a family of 2-intervals then τ(F ) ≤ 2ν(F ).

2 Using the KKM Theorem

Let C be a finite family of convex sets satisfying the (4, 3)-property. We may assume
that the sets are compact by considering a set S containing a point in each intersection
of sets in C , and replacing every set C ∈ C by conv {s ∈ S | s ∈ C}. Furthermore,
we may assume that each set in C has a non-empty interior. To see this, let Bε be the
closed ball of radius ε with the center at the origin, and let Cε = {C + Bε | C ∈ C }.
Then Cε also satisfies the (4, 3)-property. It follows from the compactness of the sets
in C that if Cε can be pierced by nine points for all ε > 0, then C can be pierced
by nine points. Therefore, we may assume each set in C has a non-empty interior. In
particular, C contains neither points nor line segments.

We may clearly assume |C | ≥ 4. We scale the plane so that all the sets in C are
contained in the open unit disk, which we denote by D. Let f be a parameterization
of the unit circle defined by

f (t) = (cos 2π t, sin 2π t)

for t ∈ [0, 1]. For two points a, b in the plane, let ab be the line through a and b and
let [a, b] be the line segment with a and b as endpoints.

Let Δ = Δ3 = conv {e1, e2, e3, e4} ⊂ R
4 be the standard 3-dimensional simplex,

and let x = (x1, x2, x3, x4) ∈ Δ. Note that xi ∈ [0, 1] and
∑4

i=1 xi = 1. For
1 ≤ i ≤ 4, define Ri

x to be the interior of the region bounded by the arc along the

123



862 Discrete & Computational Geometry (2022) 68:860–880

f (x1)

f (x1 + x2)

f (x1 + x2 + x3)

(1, 0)

R1
xR2

x

R3
x

R4
x

Fig. 1 A point x ∈ Δ3 corresponds to four regions Rix

circle from f
(∑i−1

j=1 x j
)
to f

(∑i
j=1 x j

)
(an empty sum is understood to be 0) and

by the line segments [(1, 0), f (x1 + x2)] and [ f (x1), f (x1 + x2 + x3)] (see Fig. 1).
Notice that if xi = 0, then Ri

x = ∅.
For every 1 ≤ i ≤ 4 define a subset Ai of Δ as follows: x ∈ Δ3 is in Ai if and only

if there exist three setsC1,C2,C3 ∈ C such thatC1∩C2∩C3 �= ∅ andC j ∩Ck ⊂ Ri
x

for all 1 ≤ j < k ≤ 3 (see Fig. 2). Observe that Ai is open. For every x ∈ Δ and
C ∈ C let IC be the (possibly empty) 2-interval

(C ∩ [(1, 0), f (x1 + x2)]) ∪ (C ∩ [ f (x1), f (x1 + x2 + x3)]).

Lemma 2.1 Suppose there exists x ∈ Δ \ ⋃4
i=1 Ai . Then there exist two points a, b

such that if a, b /∈ C then IC �= ∅.
Proof Assume that x ∈ Δ\⋃4

i=1 Ai . Note that sinceC does not contain three pairwise
non-intersecting sets, at most two of the regions Ri

x can contain a set in C .
We claim for every i ≤ 4, the region Ri

x contains at most two sets in C . Indeed,
assume to the contrary that Ri

x contains three setsC1,C2,C3 ∈ C . ThenC1∩C2∩C3 =
∅ since x /∈ Ai . Applying the (4, 3) property to C1,C2,C3 and some additional set
F ∈ C , we obtain that C j ∩ Ck ∩ F �= ∅ for some 1 ≤ j < k ≤ 3, and all pairwise
intersections of C j ,Ck, F are contained in Ri

x , contradicting x /∈ Ai .
If there is only one region Ri

x containing sets in C , then since there are at most
two such sets, there are two points that pierce them. If there are two regions Ri

x and

R j
x containing sets in C , then if there are two sets contained in Ri

x (or R
j
x ), they must

intersect. Otherwise these two sets together with a set in R j
x (or Ri

x , respectively) will
be three pairwise non-intersecting sets, a contradiction sinceC has the (4, 3)-property.
Therefore, there is a point piercing the sets contained in Ri

x and a point piercing the

sets in R j
x and we are done. �
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Fig. 2 Three sets C1,C2,C3 ∈ C with C1 ∩ C2 ∩ C3 �= ∅ and C j ∩ Ck ⊂ R1
x for all 1 ≤ j < k ≤ 3,

implying x = (x1, x2, x3, x4) ∈ A1

Theorem 2.2 If there exists x ∈ Δ \ ⋃4
i=1 Ai , then τ(C ) ≤ 8.

Proof Let D = {C ∈ C | IC �= ∅}. We will show that τ(D) ≤ 6. Together with
Lemma 2.1 this will imply the theorem.

Let I = {IC |C ∈ D}. Let C1,C2,C3,C4 ∈ D be four sets. Some three, say
C1,C2,C3, intersect by the (4, 3)-property. Since x /∈ ⋃4

i=1 Ai , the intersection of
two of these three sets, say C1 ∩ C2, must intersect either [(1, 0), f (x1 + x2)] or
[ f (x1), f (x1 + x2 + x3)]. In other words, IC1 ∩ IC2 �= ∅. This shows that I has no
four pairwise disjoint elements, implying ν(I ) ≤ 3. Thus, by Theorem 1.3, τ(D) ≤
τ(I ) ≤ 6. �

By Theorem 2.2 we may assume that Δ ⊂ ⋃4

i=1 Ai . We claim that in this case the
sets A1, . . . , A4 satisfy the conditions of Theorem 1.2. Indeed, let I ⊂ [4], and let
y ∈ conv {ei | i ∈ I }. Then for all j ∈ [4] \ I , we have R j

y = ∅, implying y /∈ A j .
Since y ∈ ⋃4

i=1 Ai , we have that y ∈ ⋃
i∈I Ai . Thus, by Theorem 1.2 we have:

Theorem 2.3 If Δ ⊂ ⋃4
i=1 Ai , then there exists x ∈ ⋂4

i=1 Ai .

For the rest of the paper we fix x ∈ ⋂4
i=1 Ai . Let Ri

x = Ri , and let f1 = (1, 0),
f2 = f (x1), f3 = f (x1 + x2), and f4 = f (x1 + x2 + x3). Let c be the intersection
point of [ f1, f2] and [ f2, f4], and let C ∗ = {C ∈ C | c /∈ C}. Note that ⋂4

i=1 Ai is
an open set, so we may shift x slightly to ensure that c does not lie on the boundary
of any set in C and neither of the segments [ f1, f3] or [ f2, f4] meets the boundary of
any set in C and contains the set in one of its closed halfspaces. We use Ri to denote
the topological closure of Ri .

Proposition 2.4 If C ∈ C ∗, then there exists some i for which C ∩ Ri = ∅.
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Proof Assume C has a point pi in each Ri . Then since C is convex, it contains the
points q1 = [p1, p2] ∩ [ f2, f4] and q2 = [p3, p4] ∩ [ f2, f4]. Since q1 and q2 lie in
two different hyperplanes defined by the line f1 f3, C must contain c, a contradiction.

�

Let Ci denote the family of sets in C ∗ that are disjoint from Ri . By Proposition 2.4,
we have C ∗ = ⋃4

i=1 Ci . In the remainder of the paper we prove the following:

Theorem 2.5 For every i ≤ 4, τ(Ci ) ≤ 2.

This will imply that C can be pierced by nine points: two points for each Ci and the
point c.

3 Piercing Ci by Two Points

In this section we prove Theorem 2.5.Without loss of generality we prove the theorem
for C1.

3.1 Preliminary Definitions and Observations

Let C1,C2,C3 ∈ C be the three sets witnessing the fact that x ∈ A1; so C1 ∩C2 ∩C3
�= ∅ and C j ∩ Ck ⊂ R1 for all 1 ≤ j < k ≤ 3.

If there are two sets F1, F2 ∈ C1 that do not intersect, then F1, F2,C1,C2 do
not satisfy the (4, 3)-property. Thus every two sets in C1 intersect. Also, if for some
1 ≤ i ≤ 3 we have Ci ⊂ R1, then again by the (4, 3)-property every three sets in
C1 have a common point. This implies by Helly’s theorem [3] that τ(C1) = 1. So we
may assume that no Ci is contained in R1.

Let L1 be the line f1 f3 and let L2 be the line f2 f4 (see Fig. 3).
By our assumption Ci is not contained in R1 for 1 ≤ i ≤ 3, and thus Ci \ R1 has at

least one non-empty connected component. The next proposition shows that Ci \ R1

has at most two connected components.

Proposition 3.1 For every 1 ≤ i ≤ 3, the set Ci \ R1 has at most two connected
components. Moreover, if Ci \ R1 has two components, then the components are
Ci ∩ R2 and Ci ∩ R4 and hence are convex.

Proof IfCi contains c, thenCi \ R1 has one component because the line segment from
any point in R

2 \ R1 to c is contained in R
2 \ R1. So assume Ci does not contain c.

Then it must have a point in either R2 or R4, without loss of generality, in R2.
Suppose Ci contains a point in R3. Since Ci does not contain c but contains points

in the three regions R1, R2, R3, then by Proposition 2.4 it cannot contain a point in R4.
Thus Ci \ R1 = Ci ∩ (R2 ∪ R3). This means that Ci \ R1 is an intersection of two
convex sets, hence it is convex and has only one component.

Thus, if Ci \ R1 has more than one component, then Ci does not have a point in R3.
In this case the components of Ci \ R1 are Ci ∩ R2 and Ci ∩ R4 both of which are
convex. �
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Fig. 3 The lines L1 (in red) and L2 (in blue)

Let Z = [ f1, c] ∪ [c, f2]. We think of Z as starting at f1 and ending at f2. Thus a
point a ∈ Z comes before a point b ∈ Z if the distance along Z from a to f1 on Z is
smaller than the distance from b to f1 on Z .

Let I 1i = Ci ∩ [ f1, c], I 2i = Ci ∩ [c, f2], and Ii = Ci ∩ Z . Because each Ci has a
non-empty interior and our choice of c, none of I 1i , I

2
i , or Ii consists of a single point,

or has c as one of its endpoints. It is possible, however, that one of I 1i or I 2i are empty.
For any interval (i.e., connected set) I on Z , let r(I ) be the endpoint of I that comes

first on Z , and let �(I ) be the other endpoint. Given a convex setC and a point p on the
boundary of C , a supporting line for C at p is a line L passing through p that contains
C in one of the closed halfspaces defined by L . For 1 ≤ i ≤ 3, let C ′

i = Ci \ R1.

Definition 3.2 Let X be a connected component of C ′
i , and let I = X ∩ Z (so I is an

interval on Z ). Define Sri (I ) and S�
i (I ) to be some supporting line for Ci at the point

r(I ) and �(I ), respectively (see Fig. 4).

Because we chose x ∈ ⋂
i Ai so that neither L1 nor L2 meet the boundary of any set

in C and contains the set in one its halfspaces, Sri (I ) and S�
i (I ) are not equal to L1 or

L2 for all i .

Definition 3.3 Assume C ′
i has two components X1 = C ′

i ∩ R4 and X2 = C ′
i ∩ R2.

We define S′
i to be a piece-wise linear curve as follows (see Fig. 5):

S′
i = (S�

i (I
1
i ) ∩ R4) ∪ [�(I 1i ), r(I 2i )] ∪ (Sri (I

2
i ) ∩ R2).

Note that S′
i lies in the closed halfspace defined by the line between the points r(I 1i )

and �(I 2i ) containing f1 and f2.

123



866 Discrete & Computational Geometry (2022) 68:860–880
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Fig. 4 Definition 3.2: the lines S�
i (Ii ) (in blue) and Sri (Ii ) (in red)

f2

f3

f4

f1

Ci

r(I1i )(I1i )

r(I2i )

(I2i )

Si

Fig. 5 Definition 3.3: The piece-wise linear curve S′
i (in red)

3.2 Five Lemmas

For two intervals I and J of Z , we say that I comes before J on Z if the point �(I )
comes before r(J ) on Z . Recall that D is the open unit disc.

Lemma 3.4 Let 1 ≤ i �= j ≤ 3. Let X be a component of C ′
i and I = X ∩ Z. Let Y

be a component of C ′
j and J = Y ∩ Z. Suppose that F ⊂ D such that F ∩ R1 = ∅,

F ∩ X �= ∅ and F ∩ Y �= ∅. If I comes before J on Z, then F ∩ S�
i (I ) �= ∅ and

F ∩ Srj (J ) �= ∅ (see Fig. 6).
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Fig. 6 Lemma 3.4

Proof We will show that F ∩ S�
i (I ) �= ∅. The fact that F ∩ Srj (J ) �= ∅ will follow

similarly.
Let p ∈ Ci ∩ C j . Let a ∈ F ∩ X and b ∈ F ∩ Y . Note that the segment [a, p] lies

in Ci and hence the point of intersection, ia , of [a, p] with Z does not come after �(I )
on Z . Similarly, the point of intersection, ib, of [b, p] with Z does not come before
�(J ) on Z . Since [a, b] ⊂ F ⊂ D \ R1, the triangle with the vertices a, b, and p
(a, b, and p cannot lie on a line becauseCi ∩C j ⊂ R1) contains the interval [ia, ib] on
Z . Since S�

i (I ) passes through �(I ), either S�
i (Ii ) intersects the interior of the triangle

or it contains the segment [a, p]. If S�
i (I ) intersects the interior of the triangle, then it

cannot intersect [a, p] since S�
i (I ) is a supporting line for Ci . Therefore, S�

i (I ) must
intersect [a, b] which is contained in F . If S�

i (I ) contains the segment [a, p], then
S�
i (I ) contains a, which is in F . This concludes the proof. �

Similar arguments can be applied to prove the following lemma.

Lemma 3.5 Let 1 ≤ i �= j ≤ 3. Assume that C ′
i has two components X1 = C ′

i ∩ R4

and X2 = C ′
i ∩ R2. Let Y be a component of C ′

j and J = Y ∩ Z. Suppose F ⊂ D is

a convex set such that F ∩ R1 = ∅ and F ∩ Y �= ∅. If F ∩ X1 �= ∅ and J comes after
I 1i on Z, or if F ∩ X2 �= ∅ and I 2i comes after J on Z, then F ∩ S′

i �= ∅ (see Fig. 7).

Proof Assume that F intersects X1 and J comes after I 1i on Z . By Lemma 3.4,

F intersects S�
i (I

1
i ). However, if F intersects S�

i (I
1
i ) ∩ R2, then by convexity, F

intersects R1, a contradiction. Therefore, F intersects S�
i (I

1
i ) ∩ R4 ⊂ S′

i . Similarly, if

F intersects X2 and I 2i comes after J on Z , then F intersects Sri (I
2
i ) ∩ R2 ⊂ S′

i . �

Let C ′

i have two components. We say that a set F ⊂ D lies above S�
i (I

1
i ) in R2 if

F is contained in the open halfspace defined by S�
i (I

1
i ) containing Ci and F ⊂ R2

(see Fig. 8).
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Fig. 7 Lemma 3.5

f2
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f4
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1
i )

F

(I1i )

Fig. 8 The set F (in green) lies above S�
i (I 1i ) (in red) in R2

Similarly, we say that a set F ⊂ D lies above Sri (I
2
i ) in R4 if F is contained in the

open halfspace defined by Sri (I
2
i ) containing C j and F ⊂ R4 (see Fig. 10).

Lemma 3.6 Assume that for 1 ≤ i �= j ≤ 3, C ′
i and C ′

j both have two components:

X1 = C ′
i ∩ R4, X2 = C ′

i ∩ R2, Y1 = C ′
j ∩ R4, and Y2 = C ′

j ∩ R2. Assume that

I 1i comes before I 1j on Z and I 2i comes before I 2j on Z. Then one of the following
statements hold (see Fig. 9):

– For every two distinct sets F1, F2 ∈ C1, if F1 ∩ F2 intersects C ′
i and C

′
j or F1 ∩ F2

intersects Y2, then (F1 ∩ F2) ∩ S�
i (I

1
i ) �= ∅.
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f2
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Fig. 9 Lemma 3.6. The relevant lines for the first and second statement in Lemma 3.6 (in red and blue
respectively)

f2

f3

f4

f1

Ci

Sri (I
2
i )

F

r(I2i )

Fig. 10 The set F (in green) lies above Sri (I 2i ) (in red) in R4

– For every two distinct sets F1, F2 ∈ C1, if F1 ∩ F2 intersects C ′
i and C

′
j or F1 ∩ F2

intersects X1, then (F1 ∩ F2) ∩ Srj (I
2
j ) �= ∅.

Proof First note that X1 lies above Srj (I
2
j ) in R4 and Y2 lies above S�

i (I
1
i ) in R2.

For instance, if X1 contains a point p in the closed halfspace defined by Srj (I
2
j ) not

containingC j , then the segment [p, r(I 2i )] intersects [c, f1] at a point that comes after
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r(I 1j ) on Z , contradicting the fact that I 1i comes before I 1j on Z . A similar argument
applies to the corresponding statement for Y2.

We will show that either there is no pair of sets in C1 whose intersection intersects
Y2 and lies above S�

i (I
1
i ) in R2, or there is no pair of sets in C1 whose intersection

intersects X1 and lies above Srj (I
2
j ) in R4. This will imply the lemma as shown in the

last two paragraphs of this proof.
Assume for contradiction that there exist two distinct sets F1, F2 ∈ C1 such that

F1 ∩ F2 lies above Srj (I
2
j ) in R4 and X1 ∩ (F1 ∩ F2) �= ∅, and two distinct sets

F3, F4 ∈ C1 such that F3 ∩ F4 lies above S�
i (I

1
i ) in R2 and Y2 ∩ (F3 ∩ F4) �= ∅.

Note that neither F3 nor F4 can be equal to F1 or F2. For instance, if F3 = F1, then
F1 contains a point p above Srj (I

2
j ) in R4, and a point q in Y2. Since q ∈ R2 and lies in

the same halfspace defined by Srj (I
2
j ) as p, the segment [p, q] intersects R1. However,

this is a contradiction to the fact that F1 ∈ C1. Therefore, the sets F1, F2, F3, F4 are
pairwise distinct.

By the (4, 3)-property, three sets out of F1, F2, F3, F4 have a common point. If
F1, F2, F3 intersect, then F3 intersects Y2 and has a point above Srj (I

2
j ) in R4, which

implies that F3 has a point in R1, a contradiction. Similarly, F1, F2, F4 cannot intersect.
An analogous argument show that neither F1, F3, F4 nor F2, F3, F4 can intersect.
Therefore, there is no pair of sets in C1 whose intersection intersects Y2 and lies above
S�
i (I

1
i ) in R2, or there is no pair of sets in C1 whose intersection intersects X1 and lies

above Srj (I
2
j ) in R4.

Assume that there is no pair of sets in C1 whose intersection lies above S�
i (I

1
i ) in

R2 and intersects Y2, and take L = S�
i (I

1
i ). Let F be the intersection of any pair of

sets in C1. If F intersects Y2, then by the above F does not lie above L in R2. This
implies that F intersects L since Y2 lies above L in R2. If F intersects Y1 and X1, then
F intersects L by Lemma 3.4. If F intersects Y1 and X2, then F intersects L since Y1
lies in the halfspace defined by L that does not contain Ci .

If there is no pair of sets in C1 whose intersection lies above Srj (I
2
j ) in R4 and

intersects X1, then a similar argument shows that the corresponding statements follow
for Srj (I

2
j ). �


Lemma 3.7 If F ∈ C1 and C ′
i has two components, then F ∩ S′

i is an interval.

Proof Clearly, F ∩ (S′
i ∩ R2), F ∩ (S′

i ∩ R4) are intervals, and F ∩ S′
i =

(S′
i ∩ R2) ∪ (S′

i ∩ R4), so it suffices to show that F cannot intersect both S′
i ∩ R2

and S′
i ∩ R4. Suppose it does. Let T be the line passing through �(I 1i ) and r(I 2i ). By

the definition of S′
i , both S′

i ∩ R2 and S′
i ∩ R4 lie on the closed halfspace defined by

T containing f1 and f2. Since F is convex, this implies that F has a point in R1, a
contradiction. �

Lemma 3.8 Let F1, F2 ∈ C1, then F1 ∩ F2 intersects at least two of C1,C2,C3.

Proof Suppose F1∩F2 does not intersectC1. SinceC1∩C2 ⊂ R1 and F∩R1 = ∅, by
the (4, 3)-property for the setsC1,C2, F1, F2, we have thatC2 must intersect F1∩ F2.
Similarly, C3 intersects F1 ∩ F2. �
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f2

f3

f4

f1

T1 = S1(I1)

T2 = S2(I2)

C1
C2

C3

Fig. 11 Case 1: each C ′
i has one component

3.3 Proof of Theorem 2.5

Wewish to show that τ(C1) ≤ 2.We split into four cases. In each case and subcase, we
find two homeomorphic copies of the real line T1 and T2, and show that the family of
2-intervalsI = {(F ∩T1)∪(F ∩T2) | F ∈ C1} satisfies ν(I ) = 1. By Theorem 1.3,
this implies τ(I ) ≤ 2. The curves T1, T2 will be of the form S�

i (I ) or S
r
i (I ) for some

interval I on Z , or S′
i , and Lemma 3.7 ensures thatI is indeed a family of 2-intervals.

Recall that I 1i = Ci ∩ [ f1, c], I 2i = Ci ∩ [c, f2], and Ii = Ci ∩ Z .
Also, if C ′

i and C ′
j have two components, i �= j , I 1i comes before I 1j on Z , and

I 2i comes before I 2j on Z , then one of the two statements in Lemma 3.6 holds. If the
first statement holds, the curve obtained by applying Lemma 3.6 to Ci and C j will be
understood to be S�

i (I
1
i ). Otherwise, the curve obtained by applying Lemma 3.6 to Ci

and C j will be understood to be Srj (I
2
j ).

Throughout, F1, F2 ∈ C1 are two arbitrary, distinct sets, and F = F1∩F2. Because
of Lemma 3.8, we assume that F intersects two of theCi ’s throughout. Recall in order
to show that ν(I ) = 1, we must show that F intersects T1 ∪ T2 or, in other words,
that F intersects T1 or T2.

Case 1:C ′
i has one component for each i (see Fig. 11). Notice in this case each Ii is an

interval on Z . Assume without loss of generality that I1 comes before I2 and I2 comes
before I3 on Z . Set T1 = S�

1(I1) and T2 = S�
2(I2). By Lemma 3.4, F intersects T1

or T2 (recall we assume that F intersects two of theCi ’s). It follows that our collection
of 2-intervals, I , has matching number 1.
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f2

f3

f4

f1

C1

C2

C3

T1 = S1(I1)

T2 = S2(I2)

Fig. 12 Subcase 2.1

Case 2:One of theC ′
i ’s has two components.We can assumewithout loss of generality

that C ′
3 has two components, and that I1 comes before I2 on Z .

Subcase 2.1. If the order of the intervals on Z is I1, I2, I 13 , I 23 , then set T1 = S�
1(I1)

and T2 = S�
2(I2) (see Fig. 12). Similarly to Case 1, it follows from

Lemma 3.4 that I has matching number 1.
Subcase 2.2. If the order of the intervals is I1, I 13 , I2, I 23 , then set T1 = S�

1(I1) and
T2 = S′

3 (see Fig. 13). If F intersects C1 and C2, then F intersects
T1 by Lemma 3.4. If F intersects C1 and C3, then F intersects T1 by
Lemma3.4. If F intersectC2 andC3, then F intersects T2 byLemma3.5.

Subcase 2.3. If the order of the intervals is I1, I 13 , I 23 , I2, then set T1 = S�
1(I1) and

T2 = Sr2(I2) (see Fig. 14). Similarly to Case 1, it follows from Lemma
3.4 that I has matching number 1.

Subcase 2.4. If the order of the intervals is I 13 , I1, I2, I 23 , then set T1 = S�
1(I1) and

T2 = S′
3 (see Fig. 15). If F intersects C1 and C2, then F intersects T1

by Lemma 3.4. If F intersect C3 and C1 or C2, then F intersects T2 by
Lemma 3.5. Therefore, I has matching number 1.

The remaining subcases of Case 2 are symmetrical. For instance, the case where the
order of the intervals is I 13 , I 23 , I1, I2 follows similarly to the case where the order of
the intervals is I1, I2, I 13 , I 23 .

Case 3: Two of the C ′
i ’s have two components. Without loss of generality, assume C ′

2
and C ′

3 have two components.

Subcase 3.1. Assume the order of the intervals is I1, I 12 , I 13 , I 23 , I 22 , then set T1 =
S�
1(I1) and T2 = S′

2 (see Fig. 16). If F intersectsC1 and one ofC2 orC3,
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f2

f3

f4

f1

T1 = S1(I1)

T2 = S3

C1

C3

C2

Fig. 13 Subcase 2.2

f2

f3

f4

f1

T1 = S1(I1)

T2 = Sr2(I2)

C1

C3

C2

Fig. 14 Subcase 2.3

then F intersects T1 by Lemma 3.4. If F intersects C2 and C3, then F
intersects T2 by Lemma 3.5. Therefore, I has matching number 1.

Subcase 3.2. If the order of the intervals is I1, I 12 , I 13 , I 22 , I 23 , then set T1 = S�
1(I1)

and T2 to be the line obtained by applying Lemma 3.6 to C2 and C3
(see Fig. 17). If F intersects C1 and one of C2 or C3, then F intersects
T1 by Lemma 3.4. If F intersects C2 and C3, then F intersects T2 by
Lemma 3.6. Therefore, I has matching number 1.
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f2

f3

f4

f1

C1

C2

C3

S3S1(I1)

Fig. 15 Subcase 2.4

f2

f3

f4

f1

C1

C2
C3

T1 = S1(I1)

T2 = S2

Fig. 16 Subcase 3.1

Subcase 3.3. If the order of the intervals is I 12 , I1, I 13 , I 23 , I 22 , then set T1 = S�
1(I1) and

T2 = S′
2 (see Fig. 18). If F intersects C1 and C3, then F intersects T1

by Lemma 3.4. If F intersect C2 and one of C1 or C3, then F intersects
T2 by Lemma 3.5. Therefore, I has matching number 1.

Subcase 3.4. If the order of the intervals is I 12 , I1, I 13 , I 22 , I 23 , then set T1 = S�
1(I1)

and T2 to be the line obtained by applying Lemma 3.6 to C2 and C3 (see
Fig. 19). If F intersects C2 and C3, then F intersects T2 by Lemma 3.6.
If F intersects C1 and C3 or C1 and C ′

2 ∩ R2, then F intersects T1 by

Lemma 3.4. If T2 = S�
2(I

1
2 ) and F intersects C1 and C ′

2 ∩ R4, then F
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f2

f3

f4

f1

C1

C3C2

T1 = S1(I1)

T2

Fig. 17 Subcase 3.2. Here, the curve in blue is one of the two possibilities for T2

f2

f3

f4

f1

C1

C2C3

T1 = S1(I1)

T2 = S2

Fig. 18 Subcase 3.3

intersects T2 by Lemma 3.4. If T2 = Sr3(I
2
3 ) and F intersects C1 and

C ′
2∩R4, then F intersects T2 by Lemma 3.6. Therefore,I hasmatching

number 1.
Subcase 3.5. If the order of the intervals is I 12 , I 13 , I1, I 23 , I 22 , then set T1 = S′

2 and
T2 = S′

3 (see Fig. 20). If F intersects C2 and one of C1 or C3, then F
intersects T1 by Lemma 3.5. If F intersects C1 and C3, then F intersects
T2 by Lemma 3.5. Therefore, I has matching number 1.

Subcase 3.6. If the order of the intervals is I 12 , I 13 , I1, I 22 , I 23 , then set T1 = S′
2 and

T2 = S′
3 (see Fig. 21). If F intersects C1 and one of C2 or C3, then F
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f2

f3

f4

f1

C1

C2

C3

T1 = S1(I1)

T2

Fig. 19 Subcase 3.4. Here, the blue curve is one of two possibilities for T2

f2

f3

f4

f1C1

C3

C2

T1 = S2

T2 = S3

Fig. 20 Subcase 3.5

intersects T1 or T2, respectively, by Lemma 3.5. If F intersects C ′
2 ∩ R2

and C3, then F intersects T2 by Lemma 3.5. If F intersects C2 and
C ′
3 ∩ R4, then F intersects T1 by Lemma 3.5. Finally, F cannot intersect

C ′
2 ∩ R4 and C ′

3 ∩ R2, otherwise, since C ′
3 ∩ R2 lies above S�

2(I
1
2 ) in R2

(this fact was mentioned in the proof of Lemma 3.5), F has a point in
R1 by convexity. Therefore, I has matching number 1.

The remaining subcases are symmetrical to one of the above cases.
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f3

f4

f1C1

C2
C3

T1 = S2

T2 = S3

Fig. 21 Subcase 3.6

f2

f3

f4

f1

C3
C2

C1

T1 = S1

T2 = S2

Fig. 22 Subcase 4.1
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f2

f3

f4

f1

C3
C2

C1

T1 = S1

T2 = S2

Fig. 23 Subcase 4.2

f2

f3

f4

f1

C3 C2

C1

T1 = S2

T2

Fig. 24 Subcase 4.3. Here, the blue curve is one of two possibilities for T2

Case 4: Each C ′
i has two components.

Subcase 4.1. If the order of the intervals is I 11 , I 12 , I 13 , I 23 , I 22 , I 21 , then set T1 = S′
1 and

T2 = S′
2 (see Fig. 22). If F intersects C1 and one of C2 or C3, then F

intersects T1 by Lemma 3.5. If F intersectsC2 and C3, then F intersects
T2 by Lemma 3.5. Therefore, I has matching number 1.

Subcase 4.2. If the order of the intervals is I 11 , I 12 , I 13 , I 23 , I 21 , I 22 , then set T1 = S′
1 and

T2 = S′
2 (see Fig. 23). Similarly to Subcase 3.6 (where C1,C2,C3 here
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f2

f3

f4

f1

C3 C2

C1

T1 = S1

T2

Fig. 25 Subcase 4.4. Here, the blue curve is one of two possibilities for T2

f2

f3

f4

f1

C3 C2

C1

T1 = S1

T2

Fig. 26 Subcase 4.5. The curve in blue is one of two possibilities for T2

are analogous to C2,C3,C1 from Subcase 3.6, respectively), it follows
from Lemma 3.5 that I has matching number 1.

Subcase 4.3. If the order of the intervals is I 11 , I 12 , I 13 , I 21 , I 22 , I 23 , then set T1 = S′
2

and T2 to be the line obtained by applying Lemma 3.6 to C1 and C3 (see
Fig. 24). If F intersects C1 and C3, then F intersects T2 by Lemma 3.6.
If F intersectsC2 and one ofC ′

1∩R2 orC ′
3∩R4, then F intersects T1 by

Lemma 3.5. If T2 = S�
1(I

1
1 ) and F intersects C ′

3 ∩ R2, then F intersects

T2 by Lemma 3.6. If F intersectsC ′
2∩ R4 andC ′

1∩ R4, then F intersects

T2 by Lemma 3.4. If T2 = Sr3(I
2
3 ) and F intersects C ′

1 ∩ R2, then F
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intersects T2 by Lemma 3.6. If F intersects C ′
2 ∩ R2 and C ′

3 ∩ R2, then
F intersects T2 by Lemma 3.4. Similary to the reasoning in Subcase 3.6,
F does not intersect C ′

2 ∩ R2 and C ′
1 ∩ R4, and F does not intersect

C ′
2 ∩ R4 and C ′

3 ∩ R2. Therefore, I has matching number 1.
Subcase 4.4. If the order of the intervals is I 11 , I 12 , I 13 , I 22 , I 23 , I 21 , then set T1 = S′

1
and T2 to be the line obtained by applying Lemma 3.6 to C2 and C3
(see Fig. 25). If F intersects C1 and one of C2 or C3, then F intersects
T1 by Lemma 3.5. If F intersects C2 and C3, then F intersects T2 by
Lemma 3.6. Therefore, I has matching number 1.

Subcase 4.5. If the order of the intervals is I 11 , I 12 , I 13 , I 22 , I 21 , I 23 , then set T1 = S′
1

and T2 to be the line obtained by applying Lemma 3.6 to C2 and C3 (see
Fig. 26). If F intersects C1 and C2, then F intersects T1 by Lemma 3.5.
If F intersects C2 and C3, then F intersects T2 by Lemma 3.6. If F
intersects C1 and C ′

3 ∩ R4, then F intersects T1 by Lemma 3.5. If T2 =
S�
2(I

1
2 ), then if F intersects C ′

3 ∩ R2, F intersects T2 by Lemma 3.6. If

T2 = Sr3(I
2
3 ), then if F intersects C ′

1 ∩ R2 and C ′
3 ∩ R2, F intersects

T2 by Lemma 3.4. Similarly to the reasoning in Subcase 3.6, F cannot
intersect C ′

3 ∩ R2 and C ′
1 ∩ R4. Therefore, I has matching number 1.

Again, the remaining possible subcases are symmetrical to one of the above subcases.
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