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Abstract
Given a set S of n points in the Euclidean plane, the two-center problem is to find
two congruent disks of smallest radius whose union covers all points of S. Previously,
Eppstein (SODA’97) gave a randomized algorithm of O (n log2n) expected time and
Chan (CGTA’99) presented a deterministic algorithm of O (n log2n log2 log n) time.
In this paper, we propose an O (n log2n) time deterministic algorithm, which improves
Chan’s deterministic algorithm and matches the randomized bound of Eppstein. If S
is in convex position, then we solve the problem in O (n log n log log n) deterministic
time. Our results rely on new techniques for dynamically maintaining circular hulls
under point insertions and deletions, which are of independent interest.

Keywords Two centers · Disk coverage · Circular hulls · Dynamic data structures

Mathematics Subject Classification 68Q25 · 68W40 · 68U05

1 Introduction

In this paper, we consider the planar 2-center problem. Given a set S of n points in the
Euclidean plane, we wish to find two congruent disks of smallest radius whose union
covers all points of S.

The classical 1-center problem for a set of points is to find the smallest disk covering
all points, and the problem can be solved in linear time in any fixed dimensional

Editor in Charge: Kenneth Clarkson

A preliminary version of this paper appeared in Proceedings of the 36th International Symposium on
Computational Geometry (SoCG 2020).
This research was supported in part by NSF under Grant CCF-2005323.

Haitao Wang
haitao.wang@usu.edu

1 Department of Computer Science, Utah State University, Logan, UT 84322, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-021-00358-5&domain=pdf
http://orcid.org/0000-0001-8134-7409


1176 Discrete & Computational Geometry (2022) 68:1175–1226

space [9,13,24]. As a natural generalization, the 2-center problem has attracted much
attention. Hershberger and Suri [19] first solved the decision version of the problem in
O (n2 log n) time, which was later improved to O(n2) time [18]. Using this result and
parametric search [23], Agarwal and Sharir [2] gave an O (n2 log3n) time algorithm
for the 2-center problem. Katz and Sharir [21] achieved the same running time by
using expanders instead of parametric search. Eppstein [15] presented a randomized
algorithm of O (n2 log2n log log n) expected time. Later, Jaromczyk andKowaluk [20]
proposed an O (n2 log n) time algorithm. A breakthrough was achieved by Sharir [28],
who proposed the first subquadratic algorithm for the problem, and the running time is
O (n log9n). Afterwards, following Sharir’s algorithmic scheme, Eppstein [16] derived
a randomized algorithm of O (n log2n) expected time, and then Chan [6] developed
an O (n log2n log2 log n) time deterministic algorithm and a randomized algorithm
of O (n log2n) time with high probability. Recently, Tan and Jiang [29] proposed a
simple algorithm of O (n log2n) time based on binary search, but unfortunately, the
algorithm is not correct (see the appendix for details). The problem has an Ω(n log n)

time lower bound in the algebraic decision tree model [16], by a reduction from the
max-gap problem.

In this paper, we present a new deterministic algorithm of O (n log2n) time, which
improves the O (n log2n log2 log n) time deterministic algorithm by Chan [6] and
matches the randomized bound of O (n log2n) [6,16]. This is the first progress on
the problem since Chan’s work [6] was published twenty years ago. Further, if S is
in convex position (i.e., every point of S is a vertex of the convex hull of S), then our
technique can solve the 2-center problem on S in O (n log n log log n) time. Previously,
Kim and Shin [22] announced an O (n log2n) time algorithm for this convex position
case, but Tan and Jiang [29] found errors in their time analysis.

Some variations of the 2-center problem have also been considered in the literature.
Agarwal et al. [3] studied the discrete 2-center problem where the centers of the two
disks must be in S, and they solved the problem in O (n4/3 log5n) time. Agarwal and
Phillips [1] considered an outlier version of the (continuous) problemwhere k points of
S are allowed to be outside the two disks, and they presented a randomized algorithm
of O (nk7 log3n) expected time. In addition to the set S, the problem of Halperin et al.
[17] also involves a set of pairwise disjoint simple polygons, and the centers of the two
disks are required to lie outside all polygons. Both exact and approximation algorithms
are given in [17]. Arkin et al. [4] studied a bichromatic 2-center problem for a set of
n pairs of points in the plane, and the goal is to assign a red color to a point and a
blue color to the other point for every pair, such that max {r1, r2} is minimized, where
r1 (resp., r2) is the radius of the smallest disk covering all red (resp., blue) points.
Arkin et al. [4] gave an O (n3 log2n) time algorithm, which was recently improved
to O (n2 log2n) time by Wang and Xue [30]. The more general k-center problem is
NP-hard if k is part of the input [25].

1.1 Our Techniques

Let D∗
1 and D∗

2 be two congruent disks in an optimal solution such that the distance of
their centers is minimized. Let r∗ be their radius and δ∗ the distance of their centers.
If δ∗ ≥ r∗, we call it the distant case; otherwise, it is the nearby case.
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Eppstein [16] already solved the distant case inO (n log2n)deterministic time. Solv-
ing the nearby case turns out to be the bottleneck in all previous three sub-quadratic
time algorithms [6,16,28]. Specifically, Sharir [28] first solved it in O (n log9n) deter-
ministic time. Eppstein [16] gave a randomized algorithm of O (n log n log log n)

expected time. Chan [16] proposed a randomized algorithm of O (n log n) time with
high probability and another deterministic algorithm of O (n log2n log2 log n) time.
Our contribution is an O (n log n log log n) time deterministic algorithm for the nearby
case, which improves Chan’s algorithm by a factor of log n log log n. Combining with
the O (n log2n) time deterministic algorithm of Eppstein [16] for the distant case, the
2-center problem can now be solved in O (n log2n) deterministic time. Interestingly,
solving the distant case now becomes the bottleneck of the problem.

Our algorithm (for the nearby case) is based on the framework of Chan [6]. Our
improvement is twofold. First, Chan [6] derived an O (n log n) time algorithm for the
decision problem, i.e., given r , decide whether r∗ ≤ r . We improve the algorithm to
O(n) time, after O (n log n) time preprocessing. Second, Chan [6] solved the opti-
mization problem (i.e., the original 2-center problem) by parametric search. To this
end, Chan developed a parallel algorithm for the decision problem and the algorithm
runs in O (log n log2 log n) parallel steps using O (n log n) processors. By applying
Cole’s parametric search [10] and using his O (n log n) time decision algorithm, Chan
solved the optimization problem in O (n log2n log2 log n) time. We first notice that
simply replacing Chan’s O (n log n) time decision algorithm with our new O(n) time
algorithm does not lead to any improvement. Indeed, in Chan’s parallel algorithm,
the number of processors times the number of parallel steps is O (n log2n log2 log n).
We further design another parallel algorithm for the decision problem, which runs in
O (log n log log n) parallel steps using O(n) processors. Consequently, by applying
Cole’s parametric search with our O(n) time decision algorithm, we solve the opti-
mization problem in O (n log n log log n) time. Note that although Cole’s parametric
search is used, our algorithm mainly involves independent binary searches and no
sorting networks are needed.

In addition, we show that our algorithm can be easily applied to solving the convex
position case in O (n log n log log n) time.

Circular hulls. To obtain our algorithm for the decision problem, we develop new
techniques for circular hulls [19] (also known as α-hulls with α = 1 [14]). A circular
hull of radius r for a set Q of points is the common intersection of all disks of radius r
containingQ (to see howcircular hulls are related to the two-center problem, notice that
there exists a disk of radius r covering all points of Q if and only if the circular hull of
Q of radius r exists). Although circular hulls have been studied before, our result needs
more efficient algorithms for certain operations. For example, two algorithms [14,19]
were known for constructing the circular hull for a set of n points; both algorithms run
in O (n log n) time, even if the points are given sorted.We instead present a linear-time
algorithm once the points are sorted. Also, Hershberger and Suri [19] gave a linear-
time algorithm to find the common tangents of two circular hulls separated by a line,
and we design a new algorithm of O(log n) time. We also need to maintain a dynamic
circular hull for a set of points under point insertions and deletions. Hershberger and
Suri [19] gave a semi-dynamic data structure that can support deletions in O(log n)
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amortized time each. In our problem, we need to handle both insertions and deletions
but with the following special properties: the point in each insertion must be to the
right of all points of Q and the point in each deletion must be the leftmost point of Q.
Our data structure can handle each update in O(1) amortized time (which leads to
the linear time decision algorithm for the 2-center problem1). We believe that these
results on circular hulls are interesting in their own right and undoubtedly have other
applications.

Outline. The rest of the paper is organized as follows. We introduce notation and
review some previous work in Sect. 2. In Sect. 3, we present our decision algorithm,
and the algorithm needs a data structure to maintain circular hulls dynamically, which
is given in Sect. 6. Section 4 solves the optimization problem. Section 5 is concerned
with the convex position case. Section 7 is devoted to proving a lemma that is used in
Sect. 4.

2 Preliminaries

We begin with some notation, some of which is borrowed from [6]. It suffices to solve
the nearby case. Thus, we assume that δ∗ < r∗ in the rest of the paper. In the nearby
case, it is possible to find in O(n) time a constant number of points such that at least
one of them, denoted by o, is in D∗

1 ∩ D∗
2 [16]. We assume that o is the origin of the

plane. We make a general position assumption: no two points of S are collinear with
o and no two points of S have the same x-coordinate. This assumption does not affect
the running time of the algorithm, but simplifies the presentation.

For any set P of points in the plane, let τ(P) denote the radius of the smallest
enclosing disk of P . For a connected region B in the plane, let ∂B denote the boundary
of B.

The boundaries of the two disks D∗
1 and D∗

2 have exactly two intersections, and
let ρ1 and ρ2 be the two rays through these intersections emanating from o (e.g., see
Fig. 1). As argued in [6], one of the two coordinate axes must separate ρ1 and ρ2 since
the angle between the two rays lies in [π/2, 3π/2], and without loss of generality, we
assume it is the x-axis.

Let S+ denote the subset of points of S above the x-axis, and S− = S \ S+. For
notational simplicity, let |S+| = |S−| = n. Let p1, p2, . . . , pn be the sorted list of
S+ counterclockwise around o, and q1, q2, . . . , qn the sorted list of S− also counter-
clockwise around o (e.g., see Fig. 2). For each i = 0, 1, . . . , n and j = 0, 1, . . . , n,
define Li j = {pi+1 . . . , pn, q1, . . . , q j } and Ri j = {q j+1, . . . , qn, p1, . . . , pi }. Note
that if i = n, then Li j = {q1, . . . , q j }, and if j = n, then Ri j = {p1, . . . , pi }. In
words, if we consider a ray emanating from o and between pi and pi+1, and another
ray emanating from o and between q j and q j+1, then Li j (resp., Ri j ) consist of all
points to the left (resp., right) of the two rays (e.g., see Fig. 2).

Note that the partition of S by the two rays ρ1∪ρ2 is {Li j , Ri j } for some i and j , and
thus r∗ = max {τ(Li j ), τ (Ri j )}. Define A[i, j] = τ(Li j ) and B[i, j] = τ(Ri j ), for all

1 Aswill be clear later, the points processed in our dynamic circular hull problem are actually sorted radially
around a point; we can extend the result for the left-right sorted case to the radically sorted case.
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Fig. 1 Illustrating the nearby case
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Fig. 2 Illustrating the points of S+ and S−

0 ≤ i, j ≤ n. Then, r∗ = min0≤i, j≤n max {A[i, j], B[i, j]}. If we consider A and B
as (n+1)×(n+1)matrices, then each row of A (resp., B) is monotonically increasing
(resp., decreasing) and each column of A (resp., B) is monotonically decreasing (resp.,
increasing). For each i ∈ [0, n], define r∗

i = min0≤ j≤n max {A[i, j], B[i, j]}. Thus,
r∗ = min0≤i≤n r∗

i .

2.1 Circular Hulls

For any point c in the plane and a value r , we use Dr (c) to denote the disk centered at
c with radius r . For a set Q of points in the plane, define Ir (Q) = ⋂

c∈Q Dr (c), i.e.,
the common intersection of the disks Dr (c) for all points c ∈ Q. Note that Ir (Q) is
convex. A dual concept of Ir (Q) is the circular hull [19] (also known as α-hull with
α = 1 [14]; e.g., see Fig. 3), denoted by αr (Q), which is the common intersection of
all disks of radius r containing Q. The circular hull αr (Q) is convex and unique. The
vertices of αr (Q) is a subset of Q and the edges are arcs of circles of radius r . Note
that Ir (Q) and αr (Q) are dual to each other: Every arc of αr (Q) is on the circle of
radius r centered at a vertex of Ir (Q) and every arc of Ir (Q) is on the circle of radius
r centered at a vertex of αr (Q). Also, αr (Q) exists if and only if Ir (Q) �= ∅, which
is true if and only if τ(Q) ≤ r . For brevity, we often drop the subscript r from Ir (Q)

and αr (Q) if it is clear from the context.
Circular hulls will play a very important role in our algorithm. As discussed in [19],

circular hulls have many properties similar to convex hulls. However, circular hulls
also have special properties that convex hulls do not possess. For example, the circular
hull for a set of points may not exist. Also, the leftmost point of a set Q of points must
be a vertex of the convex hull of Q, but this may not be the case for the circular hull.
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Fig. 3 Illustrating the circular hull of a set of points

p q

cw(p, q)

ccw(p, q)

Fig. 4 Illustrating two minor arcs of p and q

Due to these special properties, extending algorithms on convex hulls to circular hulls
sometimes is not trivial, as will be seen later. In the following, we introduce some
concepts on circular hulls that will be needed later.

We assume that r = 1 and thus a disk of radius r is a unit disk (whose boundary is
a unit circle). We use α(Q) to refer to αr (Q). We assume that α(Q) exists.

For any arc of a circle, the circle is called the supporting circle of the arc, and the
disk enclosed in the circle is called the supporting disk of the arc. If a disk D contains
all points of a set P , then we say that D covers P . We say that a set P of points in the
plane is unit disk coverable if there is a unit disk that contains all points of P , which
is true if and only if α(P) exists.

Consider two points p and q that are unit disk coverable. There must be a unit circle
with p and q on it, and we call the arc of the circle subtending an angle of at most
180◦ a minor arc [19]. Note that there are two minor arcs connecting p and q; we use
cw(p, q) to refer to the one clockwise around the center of the supporting circle of
the arc from p to q, and use ccw(p, q) to refer to the other one (e.g., see Fig. 4). Note
that cw(p, q) = ccw(q, p) and ccw(p, q) = cw(q, p). For any minor arc w, we use
D(w) to denote the supporting disk of w, i.e., the disk whose boundary contains w.
Note that all arcs of α(Q) are minor arcs. We make a general position assumption that
no point of Q is on a minor arc of two other points of Q. The following observation
has already been discovered previously [14,19].

Observation 2.1 [14,19]

(i) A point p of Q is a vertex of α(Q) iff there is a unit disk covering Q and with p
on the boundary.

(ii) A minor arc connecting two points of Q is an arc of α(Q) iff its supporting disk
covers Q.

123



Discrete & Computational Geometry (2022) 68:1175–1226 1181

(iii) α(Q) is the common intersection of the supporting disks of all arcs of α(Q).
(iv) A unit disk covers Q iff it contains α(Q).
(v) For any subset Q′ of Q, α(Q′) ⊆ α(Q).

For any vertex v of α(Q), we refer to the clockwise neighboring vertex of v on α(Q)

the clockwise neighbor of v, and the counterclockwise neighbor is defined analogously.
We use cw(v) and ccw(v) to denote v’s clockwise and counterclockwise neighbors,
respectively.

Tangents.Consider a vertex v in the circular hullα(Q). Consider the arc cw(ccw(v), v)

of α(Q). Let D be the disk D(cw(ccw(v), v)). By Observation 2.1, (ii) and (iv), D
contains α(Q). Observe that if we rotate D around v clockwise until ∂D contains the
arc cw(v, cw(v)), D always contains α(Q), and in fact, this continuum of disks D are
the only unit disks that contain α(Q) and have v on the boundaries. For each of such
disk D, we say that D (and any part of ∂D containing v) is tangent to α(Q) at v. We
have the following observation.

Observation 2.2 A unit disk D that contains a vertex v of α(Q) on its boundary is
tangent to α(Q) at v if and only if D contains both cw(v) and ccw(v).

Let p be a point outside α(Q). If there is a vertex a on α(Q) such that D(cw(a, p))
is tangent to α(Q) at a, then the arc cw(a, p) is an upper tangent from p to α(Q); e.g.,
see Fig. 5. If there is a vertex b on α(Q) such that D(ccw(b, p)) is tangent to α(Q)

at b, then the arc ccw(b, p) is a lower tangent from p to α(Q). By replacing the arcs of
α(Q) clockwise from a to b with the two tangents from p, we obtain α(Q∪{p}). This
also shows that p has tangents to α(Q) if and only if Q∪{p} is unit disk coverable and
p is outside α(Q). Note that a = b is possible, in which case α(Q∪{p}) = α({a, p}).

p

a

b

Fig. 5 Illustrating the two tangents from p to α(Q): cw(a, p) and ccw(b, p)

α (Q1)
α (Q2)

a1
a2

b1

b2

Fig. 6 Illustrating the upper common tangent cw(a1, a2) and the lower common tangent ccw(b1, b2) of
α(Q1) and α(Q2)
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Common tangents of two circular hulls. Let Q1 and Q2 be two sets of points in the
plane such that all points of Q1 (resp., Q2) are to the left (resp., right) of a vertical
line 	. Let Q = Q1 ∪ Q2. A unit disk D that is tangent to α(Q1), say at a vertex a,
and is also tangent to α(Q2), say at a vertex b, is said to be commonly tangent to
α(Q1) and α(Q2). The minor arc of D connecting a and b is called a common tangent
of the two circular hulls. It is an upper (resp, lower) tangent if it is clockwise (resp.,
counterclockwise) from a to b along the minor arc (e.g., see Fig. 6). The common
tangents of α(Q1) and α(Q2) may not exist. Indeed, if α(Q) does not exist, then the
common tangents do not exist. Otherwise the common tangents do not exist either
if all points of Q2 are contained in α(Q1), which happens only if Q2 is covered by
D(w) for the rightmost arcw of α(Q1) and we call it the Q1-dominating case, or if all
points of Q1 are contained in α(Q2), which happens only if Q1 is covered by D(w′)
for the leftmost arc w′ of α(Q2) and we call it the Q2-dominating case. If none of the
above cases happens, then there are exactly two common tangents between the two
hulls. Each tangent intersects the vertical line 	, which separates Q1 and Q2, and the
upper tangent intersects 	 higher than the lower tangent does.

Suppose L is a sequence of points and p and q are two points of L. We will adhere
to the convention that a subsequence of L from p to q includes both p and q, but a
subsequence of L strictly from p to q does not include either one. In many cases, L
is a cyclic sequence of points, e.g., vertices on a circular hull, and we often say points
of L clockwise/counterclockwise (strictly) from p to q.

3 The Decision Problem

This section is concerned with the decision problem: Given a value r , decide whether
r∗ ≤ r . Previously, Chan [6] solved the problem in O (n log n) time (Chan actually
considered a slightly different problem: decide whether r∗ < r , but the idea is similar).
We present an O(n) time algorithm, after O (n log n) time preprocessing to sort all
points of S+ and S− to obtain the sorted lists p1, . . . , pn and q1, . . . , qn .

Given r , we use the following algorithmic framework in Algorithm 1 from [6] (see
Theorem 3.3 there), which can decide whether r∗ ≤ r , and if yes, report all indices i
with r∗

i ≤ r .

Algorithm 1: The decision algorithm of Chan [6]
1 j ← −1;
2 for i ← 0 to n do
3 while A[i, j + 1] ≤ r do j + +
4 end
5 if B[i, j] ≤ r then report i

The algorithm is simple, but the technical crux is in how to decide if A[i, j+1] ≤ r
and if B[i, j] ≤ r . Chan [6] built a data structure in O (n log n) time so that each of
these two steps can be done in O(log n) time, which leads to an overall O (n log n)

time for his decision algorithm. Our innovation is a new data structure that can perform
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each of the two steps in O(1) amortized time, resulting in an O(n) time algorithm.
Our idea is motivated by the following observation.

Observation 3.1 All such elements A[i, j +1] that are checked in the algorithms (i.e.,
line 3) are in a path of the matrix A from A[0, 0] to an element in the bottom row and
the path only goes rightwards or downwards. The same holds for the elements of B
that are checked in the algorithms (i.e., line 4).

We call such a path in A as specified in the observation a monotone path, which
contains at most 2(n + 1) elements of A. We show that we can determine in O(n)

time whether A[i, j] ≤ r for all elements A[i, j] in a monotone path of A. The same
algorithm works for B as well.

Let π be a monotone path of A, starting from A[0, 0]. Consider any element A[i, j]
onπ . Recall that A[i, j] = τ(Li j ). The next value ofπ after A[i, j] is either A[i, j+1]
or A[i+1, j], i.e., either τ(Li, j+1) or τ(Li+1, j ). Note that Li, j+1 can be obtained from
Li j by inserting q j+1 and Li+1, j can be obtained from Li j by deleting pi+1. Because
the points p1, p2, . . . , pn, q1, q2 . . . , qn are ordered around o counterclockwise, our
problem becomes the following. Maintain a sublist Q of the above sorted list of S,
with Q = S+ initially, to determine whether τ(Q) ≤ r (or equivalently whether
αr (Q) exists) under deletions and insertions, such that a deletion operation deletes
the first point of Q and an insertion operation inserts the point of S following the last
point of Q. Further, deletions only happen to points of S+ (i.e., once pn is deleted
from Q, no deletions will happen). We refer to the problem as the dynamic circular
hull problem. We will show in Sect. 6 that the problem can be solved in O(n) time,
i.e., each update takes O(1) amortized time. This leads to the following result.

Theorem 3.2 Assume that points of S are sorted cyclically around o. Given any r,
whether r∗ ≤ r can be decided in O(n) time.

Remark For the nearby case, Chan proposed (in [16, Thm. 3.4]) a randomized algo-
rithm of O (n log n) time with high probability (i.e., 1 − 2−Ω(n/log12n)) by using his
O (n log n) time decision algorithm. Applying our linear time decision algorithm and
following Chan’s algorithm (specifically, settingm to �n/log7n� instead of �n/log6n�
in the algorithmof [16, Thm. 3.4]),we can obtain the following result: After O (n log n)

deterministic time preprocessing, we can compute r∗ for the nearby case in O(n) time
with high probability (i.e., 1 − 2−Ω(n/log14 n)).

4 The Optimization Problem

WithTheorem3.2,we solve the optimization problembyparametric search [10,23].As
Chan’s algorithm [6], because our decision algorithm is inherently sequential, we need
to design a parallel decision algorithm. Chan [6] gave a parallel decision algorithm that
runs in O (log n log2 log n) parallel steps using O (n log n) processors. Consequently,
by using his O (n log n) time decision algorithm and applying Cole’s parametric
search [10], Chan [6] solved the optimization problem in O (n log2n log2 log n) time.
By following Chan’s algorithmic scheme, we develop a new parallel decision algo-
rithm that runs in O (log n log log n) parallel steps using O(n) processors. Then, with
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the serial decision algorithm in Theorem 3.2 and applying Cole’s parametric search
[10] on our new parallel decision algorithm, we solve the optimization problem in
O (n log n log log n) time.

Our algorithm relies on the following lemma, whose proof is quite independent of
the remainder of this section and will be given in Sect. 7. Note that Hershberger and
Suri [19] gave a linear-time algorithm to achieve the same result as Lemma 4.1, which
suffices for their purpose.

Lemma 4.1 Given the circular hull (with respect to a radius r) of a set L of points
and the circular hull of another set R of points such that the points of L and R are
separated by a line, one can do the following in O (log(|L|+|R|)) time (assuming that
the vertices of each circular hull are stored in a data structure that supports binary
search): determine whether the circular hull of L ∪ R(with respect to r) exists; if yes,
either determine which dominating case happens (i.e., all points of a set are contained
in the circular hull of the other set) or compute the two common tangents between the
circular hulls of L and R.

For any i, j , 0 ≤ i ≤ j ≤ n, let S+[i, j] = {pi , pi+1, . . . , p j } and S−[i, j] =
{qi , qi+1, . . . , q j }. By using Lemma 4.1, we have the following lemma.

Lemma 4.2 We can preprocess S and compute an interval (r1, r2] containing r∗ in
O (n log n) time so that given any r ∈ (r1, r2) and any pair (i, j) with 1 ≤ i ≤
j ≤ n, we can determine whether αr (S+[i, j]) (resp., αr (S−[i, j])) exists, and if
yes, return the root of a balanced binary search tree representing the circular hull, in
O (log k log log k) parallel steps using O(log k) processors, or in O(log2k) time using
one processor, where k = j − i + 1.

Proof As in [6,16], we use the following geometric transformation. For any point
p = (a, b), let h(p) denote the halfspace {(x, y, z) : z ≥ a2 + b2 − 2ax − aby}.
Then, for any set P of points in the plane, (τ (P))2 is the minimum of x2 + y2 + z
over all points (x, y, z) in the polyhedron H(P) = ⋂

p∈P h(p).

Preprocessing. We build a complete binary search tree T+ on the set S+ =
{p1, p2, . . . , pn} such that the leaves of T+ from left to right storing the points of
S+ in their index order. Each internal node v of T+ stores a hierarchical representa-
tion [11] of the polyhedronH(P), where P is the set of points stored in the leaves of
the subtree rooted at v (P is called a canonical subset). Computing the polyhedra of
all internal nodes of T+ can be done in O (n log n) time in a bottom-up manner using
linear time polyhedra intersection algorithms [7,8]. Similarly, we build a tree T− on
the set S− = {q1, q2, . . . , qn}.

Consider a vertex v = (x, y, z) of H(P) for a canonical subset P of T+. Define
r(v) = √

x2 + y2 + z. Let C be the set of the values r(v) of all vertices v of H(P)

for all canonical subsets P of T+. Note that |C | = O (n log n). We find the smallest
value r(v) ∈ C such that r∗ ≤ r(v), and let r2 denote such r(v). The value r2 can be
found in O (n log n) using our linear time decision algorithm and doing binary search
on C using the linear time selection algorithm [5]. Next, we find the largest value in
C that is smaller than r2, and let r1 denote that value. By definition, r∗ ∈ (r1, r2] and
(r1, r2) does not contain any element of C .
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Consider a canonical subset P of T+ and any r ∈ (r1, r2). We construct Ir (P) for
each canonical subset P of T+ by intersecting the facets ofH(P) with the paraboloid
W (r) = {(x, y, z) : x2 + y2 + z = r2} and projecting them vertically to the xy-plane.
By the definitions of r1 and r2, the paraboloid W (r) intersects the same set of edges
of H(P) for all r ∈ (r1, r2); this implies that Ir (P) is combinatorially the same for
all r ∈ (r1, r2). Hence, we can consider αr (P), which is the dual of Ir (P), as a
parameterized circular hull of P . We store the (parameterized) vertices of αr (P) in
a balanced binary search tree. Since H(P) is convex, we can obtain Ir (P) and thus
the balanced binary search tree for αr (P) in O(|P|) time; we associate the tree at the
node of T+ for P . Because the total size ofH(P) for all canonical subsets P in T+ is
O (n log n), we can obtain the balanced binary search trees for αr (P) of all canonical
subsets P in T+ in O (n log n) time.

We do the same for T− as above. The processing on T− will obtain two values
r ′
1 and r ′

2 correspondingly as the above r1 and r2. We update r1 = max {r1, r ′
1} and

r2 = min {r2, r ′
2}; so r∗ ∈ (r1, r2] still holds. This finishes our processing on S, which

takes O (n log n) time and is independent of r .

Queries. Given any r ∈ (r1, r2) and any pair (i, j) with i < j , we determine whether
αr (S+[i, j]) exists, and if yes, return the root of a balanced binary search tree rep-
resenting it, as follows (the case for S−[i, j] is similar). Let k = j − i + 1 and let
P = S+[i, j].

By the standard method, we first find O(log k) canonical subsets of T+ whose
union is exactly S+[i, j]. Our following computation procedure can be described
as a complete binary tree T where the leaves corresponding to the above O(log k)
canonical subsets. So T has O(log k) leaves, and its height is O (log log k). For each
leave of T , its circular hull is already available due to the preprocessing. For each
internal node v that is the parent of two leaves, we compute the circular hull of the
union of the two subsets P1 and P2 of the two leaves. As the points of S+ are ordered
radially by o, the two subsets are separated by a line through o. Hence, we can find
the common tangents (if exist) using Lemma 4.1 in O(log k) time because the size of
each subset is no more than k. Recall that the circular hull of each canonical subset is
represented by a balanced binary search tree. After having the common tangents, we
split andmerge the two balanced binary search trees to obtain a balanced binary search
tree for αr (P1 ∪ P2). In addition, we keep unaltered the two original trees for αr (P1)
and αr (P2) respectively, and this can be done by using persistent data structures (e.g.,
using the copy-path technique [12,27]) in O(log k) time. In this way, the original trees
for αr (P1) and αr (P2) can be used in parallel for other computations. If the algorithm
detects that αr (P1 ∪ P2) does not exist, then we simply halt the algorithm and report
that αr (S+[i, j]) does not exist. Also, if the algorithm finds that a dominating case
happens, e.g., the P1-dominating case, then αr (P1∪ P2) = αr (P1) and thus we simply
return the root of the tree for αr (P1).

We do this for all internal nodes in the second level of T (i.e., the level above
the leaves) in parallel by assigning a processor for each node. In this way, as T has
O(log k) leaves, we can compute the circular hulls for the second level in O(log k)
parallel steps using O(log k) processors. Then, we proceed on the third level in the
same way. At the root of T , we will have the root of a balanced binary search tree for
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αr (P). Using O(log k) processors, this takes O (log k log log k) parallel steps because
each level needs O(log k) parallel steps and the height of T is O (log log k).

Alternatively, if we only use one processor, then since T has O(log k) nodes and
we spend O(log k) time on each node, the total time is O(log2k). ��
ArmedwithLemma4.2, to determinewhether r∗ ≤ r , we use the algorithm framework
inTheorem4.2 ofChan [6], butweprovide amore efficient implementation, as follows.

Recall the definitions of the matrices A and B in Sect. 2, and in particular, each
row of A (resp., B) is monotonically increasing while each column of A (resp., B)
is monotonically decreasing. For convenience, let A[i,−1] = 0 and A[i, n + 1] =
B[i,−1] = ∞ for all 0 ≤ i ≤ n. Let m = �n/log6n�. Let jt = t · �n/m� for
t = 1, 2, . . . ,m − 1. Set j0 = −1 and jm = n. For each t ∈ [0,m], find the largest
it ∈ [0, n] with A[it , jt ] ≥ B[it , jt ] (set it = −1 if no such index exists; note that
i0 = −1). Observe that i0 ≤ i1 ≤ . . . ≤ im . Each it can be found in O(log7n) time
by binary search using Lemma 4.3. Hence, computing all it ’s takes O (n log n) time.
This is part of our preprocessing, independent of r .

Lemma 4.3 [6,16] After O (n log n) time preprocessing, A[i, j] and B[i, j] can be
computed in O(log6n) time for any given pair (i, j).

Given r > 0, our goal is to decide whether r∗ ≤ r . Let (r1, r2] be the interval obtained
by the preprocessing of Lemma 4.2. Since r∗ ∈ (r1, r2], if r ≤ r1, then r∗ > r ; if
r ≥ r2, then r∗ ≤ r . It remains to resolve the case r ∈ (r1, r2), as follows. In this case
the result of Lemma 4.2 applies.

We will decide whether r∗
i ≤ r for all i = 0, 1, . . . , n (recall that r∗ ≤ r iff some

r∗
i ≤ r ), as follows. Let t ∈ [0,m − 1] such that it < i ≤ it+1. If A[i, jt ] > r ,
then return r∗

i > r . Otherwise, find (by binary search) the largest j ∈ [ jt , jt+1] with
A[i, j] ≤ r , and return r∗

i ≤ r if and only if B[i, j] ≤ r . Algorithm 2 gives the
pseudocode. See [6, Thm. 4.2] for the algorithm correctness.

Algorithm 2: The decision algorithm by Chan [6, Thm. 4.2]
1 Let t ∈ [0,m − 1] such that it < i ≤ it+1;
2 if A[i, jt ] > r then return r∗

i > r ;
3 find the largest j ∈ [ jt , jt+1] with A[i, j] ≤ r ;
4 return r∗

i ≤ r iff B[i, j] ≤ r ;

Chan [6] implemented the algorithm in O (log n log2 log n) parallel steps using
O (n log n) processors. Inwhat follows,with the help of Lemma4.2,we provide amore
efficient implementation of O (log n log log n) parallel steps using O(n) processors.
Line 1 can be done in O(n) time as part of the preprocessing, independent of r . We
first discuss how to implement line 3 for all indices i , and we will show later that lines
2 and 4 can be implemented in a similar (and faster) way.

For each t = 0, 1, . . . ,m − 1, if it+1 − it ≤ log6n, then we form a group of at
most log6n indices: it +1, it +2, . . . , it+1. Otherwise, starting from it +1, we form a
group for every consecutive log6n indices until it+1, so every group has exactly log6n
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indices except that the last group may have less than log6n indices. In this way, we
have at most 2m groups, each of which consists of at most log6n consecutive indices
in (it , it+1] for some t ∈ [0,m − 1].

Consider a group G = {a, a + 1, . . . , a + b} of indices in (it , it+1]. Note that
b < log6n. For each i ∈ [a, a + b] such that A[i, jt ] ≤ r , we need to perform binary
search on [ jt , jt+1] to find the largest index j with A[i, j] ≤ r . To this end, we do the
following. We compute the two circular hulls α(S+[a + b, n]) and α(S−[1, jt ]), in
O (log n log log n) parallel steps using O(log n) processors by Lemma 4.2. Note that
by “compute the two circular hulls”, we mean that the two circular hulls are computed
implicitly in the sense that each of them is represented by a balanced binary search
tree and we have the access of its root. If α(S+[a + b, n]) (resp., α(S−[1, jt ])) does
not exist, then we set it to null. We do this for all 2m groups in parallel, which takes
O (log n log log n) parallel steps using O (m log n) ∈ O(n) processors.

Consider the group G defined above again. For each i ∈ [a, a + b], we need
to do binary search on [ jt , jt+1] for O (log( jt+1 − jt )) = O (log log n) iterations.
In each iteration, the goal is to determine whether A[i, j] ≤ r for an index j ∈
[ jt , jt+1]. To this end, it suffices to determine whether α(Ui j ) exists. Notice that
Ui j = S+[i+1, a+b−1]∪ S+[a+b, n]∪ S−[1, jt ]∪ S−[ jt +1, j]. α(S+[a+b, n])
and α(S−[1, jt ]) are already computed above. If one of them does not exist, then
α(Ui j ) does not exist and thus A[i, j] > r . Otherwise, we compute the circular
hull α(S+[i + 1, a + b − 1]), which can be done in O (log2 log n) time using one
processor by Lemma 4.2 because a + b − 1 − i ≤ b − 1 ≤ log6n. We also compute
α(S−[ jt + 1, j]) in O (log2 log n) time using one processor. Then, we compute the
common tangents of α(S+[i + 1, a + b − 1]) and α(S+[a + b, n]) by Lemma 4.1
(note that S+[i + 1, a + b − 1] and S+[a + b, n] are separated by a line through o),
in O(log n) time using one processor. Then, we merge the two hulls with the two
common tangents to obtain a balanced binary search tree for α(S+[i +1, n]). Because
we want to keep the tree for α(S+[a + b, n]) unaltered so that it can participate
in other computations in parallel, we use a persistent tree to represent it. Similarly,
we obtain a tree for α(S−[1, j]), in O(log n) time using one processor. If one of
α(S+[i + 1, n]) and α(S−[1, j]) does not exist, then we return A[i, j] > r . Note that
S+[a + b, n] and S−[1, j] are separated by 	 and Ui j = S+[a + b, n] ∪ S−[1, j]. By
applying Lemma 4.1, we can determine whether α(Ui j ) exists in O(log n) time using
one processor and consequently determine whether A[i, j] ≤ r . Therefore, the above
algorithm determines whether A[i, j] ≤ r in O(log n) time using one processor.

If we do the above for all i’s in parallel, then we can determine whether A[i, j] ≤ r
in O(log n) time using n + 1 processors, for each iteration of the binary search.
As there are O(log log n) iterations, the binary search procedure (i.e., line 3) for all
i = 0, 1, . . . , n runs in O (log n log log n) parallel steps using n + 1 processors.

For implementing line 2, we can use the same approach as above by grouping the
indices i into 2m groups. The difference is that now each i has a specific index j , i.e.,
j = jt , for deciding whether A[i, j] ≤ r , and thus we do not have to do binary search.
Hence, using n + 1 processors, we can implement line 2 for all i = 0, 1, . . . , n in
O(log n) parallel steps. We can do the same for line 4.

As a summary, we have the following theorem.
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Theorem 4.4 After O (n log n) time preprocessing on S, given any r, we can decide
whether r∗ ≤ r in O (log n log log n) parallel steps using O(n) processors.

With the serial decision algorithm in Theorem 3.2 and applying Cole’s parametric
search [10] on the parallel decision algorithm in Theorem 4.4, the following result
follows.

Theorem 4.5 The value r∗ can be computed in O (n log n log log n) time.

Proof Suppose there is a serial decision algorithm of time TS and another parallel
decision algorithm that runs in Tp parallel steps using P processors. Then, Megiddo’s
parametric search [23] can compute r∗ in O (PTp + TsTp log P) time by simulating
the parallel decision algorithm on r∗ and using the serial decision algorithm to resolve
comparisons with r∗. If the parallel decision algorithm has a “bounded fan-in or
bounded fan-out” property, then Cole’s technique [10] can reduce the time complexity
toO (PTp+Ts(Tp+log P)). LikeChan’s algorithm [6], our algorithmhas this property
because itmainly consists ofO (log log n) rounds of independent binary search (i.e., the
algorithm of Lemma 4.1). In our case, Ts = O(n), Tp = O (log n log log n), and P =
O(n). Thus, applying Cole’s technique, r∗ can be computed in O (n log n log log n)

time. ��
Note that once r∗ is computed, we can apply the serial decision algorithm to obtain in
additional O(n) time a pair of congruent disks of radius r∗ covering S.

Corollary 4.6 The planar two-center problem can be solved in O (n log2n) time.

Proof This follows by combining Theorem 4.5, which is for the nearby case, with the
O (n log2n) time algorithm for the distant case [16]. ��

5 The Convex Position Case

In this section, we consider the case where S is in convex position (i.e., every point
of S is a vertex of the convex hull of S). We show that our above O (n log n log log n)

time algorithm can be applied to solving this case in the same time asymptotically.
We first compute the convex hull CH(S) of S and order all vertices clockwise as

p1, p2, . . . , pn . A key observation [22] is that there is an optimal solution with two
congruent disks D∗

1 and D∗
2 of radius r∗ such that D∗

1 covers the points of S in a
chain of ∂CH(S) and D∗

2 covers the rest of the points. In other words, the cyclic list
of p1, p2, . . . , pn can be cut into two lists such that one list is covered by D∗

1 and the
other list is covered by D∗

2 .
Let o be any point in the interior of CH(S). By the above observation, there exists

a pair of rays ρ1 and ρ2 emanating from o such that D∗
1 covers all points of S on one

side of the two rays and D∗
2 covers the points of S in the other side. In order to apply

our previous algorithm, we need to find a line 	 that separates the two rays. For this,
we propose the following approach.

For any i, j ∈ [1, n], let Scw[i, j] denote the subset of vertices onCH(S) clockwise
from pi to p j , and Scw[i, j] = {pi } if i = j . Due to the above key observation,

r∗ = min
i, j∈[1,n]max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])},
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with indices modulo n. For each i ∈ [1, n], define

r(i) = min
h∈[i,i+n−1]max {τ(Scw[i, h]), τ (Scw[h + 1, i − 1])}.

Notice that as h increases in [1, n − 1], τ(Scw[1, h]) is monotonically increasing
while τ(Scw[h+1, n]) is monotonically decreasing. Define k to be the largest index in
[1, n − 1] such that τ(Scw[1, k]) ≤ τ(Scw[k + 1, n]). We have the following lemma.

Lemma 5.1 r∗ is equal to the minimum of the following four values: r(1), r(k + 1),
r(k + 2), and max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])} for all indices i and j with
i ∈ [1, k] and j ∈ [k + 2, n].
Proof Observe that

r∗ = min
i, j∈[1,n]max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])} = min

1≤h≤n
r(h).

Hence, r∗ is no larger than any of the values specified in the lemma statement. Let
i and j be two indices such that r∗ = max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])} with
1 ≤ i ≤ j ≤ n. We claim that r∗ = r(i). Indeed, since r∗ = min1≤h≤n r(h), we have
r∗ ≤ r(i). On the other hand, as

r(i) ≤ max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])} = r∗,

we obtain r(i) = r∗. By a similar argument, r∗ = r ( j + 1) also holds. Without loss
of generality, we assume that r∗ = τ(Scw[i, j]) ≥ τ(Scw[ j + 1, i − 1]).

If i ∈ [1, k] and j ∈ [k + 2, n], then the lemma follows. Otherwise, one of the
following four cases must hold: i = k + 1, j = k + 1, [i, j] ⊆ [1, k], and [i, j] ⊆
[k+2, n]. If i = k+1, then r∗ = r (k+1). If j = k+1, then r∗ = r (k+2). Belowwe
show that r∗ = r(1) if [i, j] ⊆ [1, k] and we also show that the case [i, j] ⊆ [k+2, n]
cannot happen, which will prove the lemma.

If [i, j] ⊆ [1, k], then τ(Scw[ j +1, i −1]) ≥ τ(Scw[k+1, n]), for Scw[k+1, n] ⊆
Scw[ j + 1, i − 1]. By the definition of k, we have τ(Scw[k + 1, n]) ≥ τ(Scw[1, k]).
Because [i, j] ⊆ [1, k], τ(Scw[1, k]) ≥ τ(Scw[i, j]). Combining the above three
inequalities leads to the following:

τ(Scw[ j + 1, i − 1]) ≥ τ(Scw[k + 1, n]) ≥ τ(Scw[1, k]) ≥ τ(Scw[i, j]).

Because r∗ = τ(Scw[i, j]) ≥ τ(Scw[ j + 1, i − 1]), we obtain

r∗ = τ(Scw[ j + 1, i − 1]) = τ(Scw[k + 1, n]) = τ(Scw[1, k]) = τ(Scw[i, j]).

Notice that r(1) ≤ max {τ(Scw[1, k]), τ (Scw[k + 1, n])}. Thus, we derive r(1) ≤ r∗.
Since r∗ ≤ r(1), we finally have r∗ = r(1).

If [i, j] ⊆ [k+2, n], then τ(Scw[ j+1, i−1]) ≥ τ(Scw[1, k+1]). By the definition
of k, we have τ(Scw[1, k + 1]) > τ(Scw[k + 2, n]). Also, since [i, j] ⊆ [k + 2, n],
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τ(Scw[k + 2, n]) ≥ τ(Scw[i, j]) holds. Therefore, we obtain

τ(Scw[ j + 1, i − 1]) ≥ τ(Scw[1, k + 1]) > τ(Scw[k + 2, n]) ≥ τ(Scw[i, j]),

which incurs contradiction since r∗ = τ(Scw[i, j]) ≥ τ(Scw[ j + 1, i − 1]). Thus, the
case [i, j] ⊆ [k + 2, n] cannot happen. ��
Based on the above lemma, our algorithm works as follows. We first compute r(1)
and the index k. This can be easily done in O (n log n) time. Indeed, as h increases
in [1, n − 1], τ(Scw[1, h]) is monotonically increasing while τ(Scw[h + 1, n]) is
monotonically decreasing. Therefore, r∗

1 and k can be found by binary search on
[1, n − 1]. As both τ(Scw[1, h]) and τ(Scw[h + 1, n]) can be computed in O(n) time,
the binary search takes O (n log n) time. For the same reason, we can compute r (k+1)
and r (k + 2) in O (n log n) time.

If r∗ /∈ {r(1), r (k+1), r (k+2)}, then r∗ = max {τ(Scw[i, j]), τ (Scw[ j + 1, i − 1])}
for two indices i and j with i ∈ [1, k] and j ∈ [k + 2, n]. We can compute it as fol-
lows. Let 	 be a line through vk+1 and intersecting the interior of pn p1. Let o be any
point on 	 in the interior of CH(S). Lemma 5.1 implies 	 and o satisfy the property
discussed above, i.e., 	 separates the two rays ρ1 and ρ2. Consequently, we can apply
our algorithm for Theorem 4.5 to compute r∗ in O (n log n log log n) time.

Theorem 5.2 The planar two-center problem for a set of n points in convex position
can be solved in O (n log n log log n) time.

Remark The randomized result remarked after Theorem 3.2 also applies to the convex
position case, i.e., after O (n log n) deterministic time preprocessing, we can compute
r∗ in O(n) time with high probability (i.e., 1 − 2−Ω(n/log14n)).

6 The Dynamic Circular Hull Problem

In this section, we give an O(n) time algorithm for the dynamic circular hull problem
needed in our decision algorithm in Sect. 3. Recall that the points of S are ordered
around o cyclically. To simplify the exposition, we first work on a slightly different
problem setting in which points are sorted by their x-coordinates; we will show later
that the algorithm can be easily adapted to the original problem setting.

Specifically, let L = {p1, p2, . . . , pn} be a set of n points sorted from left to right
and R = {q1, q2, . . . , qn} be a set of n points sorted from left to right, such that all
points of L are strictly to the left of a vertical line 	 and all points of R are strictly to
the right of 	. The problem is to maintain a sublist Q of the sorted list of L ∪ R, with
Q = L initially, to determine whether αr (Q) exists under deletions and insertions,
such that a deletion operation deletes the leftmost point of Q and an insertion operation
inserts the point of R after the rightmost point of Q. Further, deletion operations only
happen to points of L . In the following, we build a data structure in O(n) time that can
handle each update in O(1) amortized time (i.e., after each update, we know whether
αr (Q) exists). We make a general position assumption that no two points of L ∪ R
have the same x-coordinate.
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Since initially Q = L , we need to compute αr (Q). Hershberger and Suri [19]
gave an O (n log n) time algorithm using divide-and-conquer. The algorithm of Edels-
brunner et al. [14] can also compute αr (Q) in O (n log n) time by first computing the
farthest Delaunay triangulation of Q. Both algorithms still take Θ(n log n) time even
if points of Q are sorted (indeed, the algorithm of [19] spends O(n) time for each
combine/merge step and the algorithm of [14] needs to compute the farthest Delaunay
triangulation first). We instead exhibit an O(n) time incremental algorithm, which can
be considered an extension of Graham’s scan for convex hulls, although the extension
is not straightforward at all. Before we are able to describe the algorithm, we need to
discuss some properties of the circular hulls.

The remainder of this section is organized as follows. In Sect. 6.1, we show some
properties of circular hulls that will be useful for our algorithm. In Sect. 6.2, we present
our linear-time algorithm for constructing the circular hull for a set of sorted points.
In Sect. 6.3, we elaborate on our data structure for maintaining αr (Q) for a dynamic
set Q. Section 6.4 sets up the data structure initially when Q = L (e.g., invokes the
algorithm given in Sect. 6.2). Our algorithms for processing deletions and insertions
will be described in Sects. 6.5 and 6.6, respectively. Finally in Sect. 6.7 we adapt the
algorithm to our original problem setting where points are sorted radially around the
origin o.

6.1 Observations and Properties of Circular Hulls

From now on, we assume r = 1 and thus a disk of radius r is a unit disk (whose
boundary is a unit circle). We use α(Q) to refer to αr (Q). We assume that Q is a
subset of L ∪ R and α(Q) exists.

Recall that every arc ofα(Q) is aminor arc. In the following, unless otherwise stated,
an arc refers to a minor arc and a disk refers to a unit disk. For ease of exposition, we
make a general position assumption that no point of L ∪ R is on a minor arc of two
other points of L ∪ R.

We define the upper hull of α(Q) as the boundary of α(Q) from the leftmost vertex
to the rightmost vertex. The remaining arcs of α(Q) comprise the lower hull. Unlike
convex hulls, the upper hull (resp., the lower hull) of α(Q) may not be x-monotone
due to that the leftmost/rightmost arc may not be x-monotone. If the rightmost point
p of α(Q) is in the interior of an arc, then we refer to the arc as the rightmost arc of
α(Q); otherwise, the rightmost arc is null (and its supporting disk is defined to be ∅).
We define the leftmost arc of α(Q) likewise.

For a minor arc w, recall that D(w) is the supporting disk of w. We further
use D1(w) to denote the region of D(w) bounded by w and the chord of D(w)

connecting the two endpoints of w (e.g., see Fig. 7). Observe that α({p, q}) =
D1(cw(p, q)) ∪ D1(ccw(p, q)) = D(cw(p, q)) ∩ D(ccw(p, q)); e.g., see Fig. 8.
For notational simplicity, we use α(p, q) to refer to α({p, q}). The following obser-
vation, which is due to the convexity of the circular hull, was already shown in [19].

Observation 6.1 [19] Suppose p is a point to the right (resp., left) of all points of
Q and α({p} ∪ Q) exists. Then, p is not a vertex of α({p} ∪ Q) if and only if p is
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p q
D 1(cw(p, q))

Fig. 7 Illustrating D1(cw(p, q))

p

q

α({ p, q})
D (cw(p, q)) D (cw(q, p))

Fig. 8 Illustrating α({p, q})

p

q

α (p, q)

t

Fig. 9 Illustrating Observation 6.2 (i). The dotted circle depicts D(cw(q, t))

in D1(w), where w is the rightmost (reps., leftmost) arc of α(Q). We say that p is
redundant (with respect to α(Q)) if p ∈ D1(w).

Recall that in Graham’s scan for computing convex hulls, the algorithm uses “left
turn” and “right turn”. Here instead we find it more informative to use inner turn and
outer turn, defined as follows. Note that these concepts are new. Suppose two points p
and q are unit disk coverable. Consider the minor arc cw(p, q), and a point t . We say
that cw(p, q) and t form an inner turn if t ∈ D(cw(p, q)) and outer turn otherwise.
The following observation will help prove the correctness of our algorithm.

Observation 6.2 Consider a minor arc cw(p, q) and a point t .

(i) Suppose cw(p, q) and t form an inner turn. If t is not in the interior of α(p, q),
then p is contained in the disk D(cw(q, t)); e.g., see Fig. 9.
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p

q

α (q, t)

t

Fig. 10 Illustrating Observation 6.2 (ii). The dotted circle depicts D(cw(p, t))

(ii) Suppose cw(p, q) and t form an outer turn. If {p, q, t} is unit disk coverable and
p is not in the interior of α(q, t), then q is contained in the disk D(cw(p, t));
e.g., see Fig. 10.

Proof For the first statement, since cw(p, q) and t form an inner turn, t ∈
D(cw(p, q)). As t is not in the interior of α(p, q), one can verify from Fig. 9 that
D(cw(q, t)) must contain p.

We next prove the second statement. Because {p, q, t} is unit disk coverable,
α({p, q, t}) exists. As p is not in the interior of α(q, t), p must be a vertex of
α({p, q, t}). Let a be the clockwise neighbor of p on α({p, q, t}). Hence, cw(p, a)

is an arc of α({p, q, t}) and a is either q or t . Also, D(cw(p, a)) covers {p, q, t} by
Observation 2.1 (ii). If a = q, then D(cw(p, q)) contains t , which contradicts with
that cw(p, q) and t form an outer turn. Thus, a = t , and D(cw(p, t)) contains q. ��
For any two vertices v1 and v2 on α(Q), we use ∂α(Q)[v1, v2] to denote the set of ver-
tices ofα(Q) clockwise from v1 tov2. In particular, if v1 = v2, thenwe let ∂α(Q)[v1, v2]
consist of all vertices of α(Q). Define ∂α(Q)(v1, v2) = ∂α(Q)[v1, v2] \ {v1, v2}. We
use ∂α(Q)[v1, v2] to refer to the subset of vertices of α(Q) not in ∂α(Q)[v1, v2], and
define ∂α(Q)(v1, v2) similarly.

Let p be a point outside α(Q), and cw(a, p) and ccw(b, p) are the upper and lower
tangents from p to α(Q), respectively; e.g., see Fig. 5. Recall that by replacing the
arcs of α(Q) clockwise from a to b with the two tangents, we can obtain α(Q ∪ {p}).
Hence, ∂α(Q)(a, b) consists of exactly those vertices of α(Q) that are not vertices of
α(Q ∪ {p}). We further have the following observation.

Observation 6.3 Suppose cw(a, p) and ccw(b, p) are the upper and lower tangents
from a point p to α(Q), respectively; e.g., see Fig. 5.

(i) For any vertex c in ∂α(Q)(a, b), there is no disk with c on the boundary that
contains Q ∪ {p}.

(ii) For any vertex c in ∂α(Q)[a, b], any disk tangent to α(Q) at c covers Q ∪ {p}.
(iii) If p is strictly to the right of all points of Q, then the rightmost vertex of α(Q)

must be in ∂α(Q)[a, b].
(iv) If there is a line l through a vertex v of α(Q) such that all vertices of Q are on

the same side of l while p is on the other side, then v must be in ∂α(Q)[a, b].
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Proof The first two statements can be easily seen by knowing that α(Q ∪ {p}) can
be obtained by replacing the arcs of α(Q) clockwise from a to b by the two tangents
cw(a, p) and ccw(b, p).

For the third statement, assume to the contrary that v /∈ ∂α(Q)[a, b], where v is
the rightmost vertex of α(Q). Then, v ∈ ∂α(Q)[a, b], and by the second statement,
any disk tangent to α(Q) at v covers Q ∪ {p}. Let v1 = cw(v) and v2 = ccw(v).
Since D(cw(v, v1)) and D(ccw(v, v2)) are both tangent to α(Q) at v, both disks cover
Q∪{p}. Hence, Z = D(cw(v, v1))∩ D(ccw(v, v2)) contains p. Since D(cw(v, v1))

covers Q, it contains v2. Since D(ccw(v, v2)) covers Q, it contains v1. Let lv be
the vertical line through v. We claim that lv must intersect one of cw(v, v1) and
ccw(v, v2) twice. Indeed, since lv contains v, it intersects each of the two arcs at least
once. If lv does not intersect either arc twice, then since D(cw(v, v1)) contains v2 and
D(ccw(v, v2)) contains v1, and both v1 and v2 are to the left of v, Z must be to the left
of lv . As p is strictly to the right of lv , p cannot be in Z , incurring contradiction. Hence,
lv intersects one of cw(v, v1) and ccw(v, v2) twice. Assume without loss of generality
that lv intersects cw(v, v1) twice. This implies that the region of D(cw(v, v1)) to the
right of lv is a subset of D1(cw(v, v1)). Since p is to the right of lv and p is in
D(cw(v, v1)), p must be in the region of D(cw(v, v1)) to the right of lv and thus is
in D1(cw(v, v1)). Because D1(cw(v, v1)) ⊆ α(Q), p is in α(Q). But this means that
there are no tangents from p to α(Q), incurring contradiction.

The fourth statement can be proved in the same way as above by rotating the
coordinate system so that l is vertical and p is on its right side. ��
Let Q1 be the subset of Q to the left of the vertical line 	 and Q2 = Q \ Q1. Let
cw(a1, a2) and ccw(b1, b2) be the upper and lower common tangents of α(Q1) and
α(Q2), respectively, i.e., a1 and b1 are the tangent points on α(Q1) and a2 and b2
are the tangent points on α(Q2); e.g., see Fig. 6. Then, the following arcs constitute
the boundary of α(Q) in clockwise order: arcs of α(Q1) clockwise from b1 to a1,
cw(a1, a2), arcs of α(Q2) clockwise from a2 to b2, and cw(b2, b1). The following
observation generalizes Observation 6.3.

Observation 6.4 Suppose cw(a1, a2) and ccw(b1, b2) are the upper and lower com-
mon tangents of α(Q1) and α(Q2), respectively; e.g., see Fig. 6.

(i) For any vertex c in ∂α(Q1)(a1, b1) ∪ ∂α(Q2)(b2, a2), there is no disk with c on the
boundary that contains Q.

(ii) For any vertex c in ∂α(Q1)[a1, b1], any disk tangent to α(Q1) at c contains Q.
For any vertex c in ∂α(Q2)[b2, a2], any disk tangent to α(Q2) at c contains Q.

(iii) The rightmost vertex of α(Q1) must be in ∂α(Q1)[a1, b1]. The leftmost vertex of
α(Q2) must be in ∂α(Q2)[b2, a2].

Proof The first two statements simply follow from how we can obtain α(Q) from
α(Q1) and α(Q2) using the two common tangents.

For the third statement, we only show the case for the rightmost vertex of α(Q1)

and the other case can be treated likewise. The proof is similar to that for Observa-
tion 6.3 and we briefly discuss it. Let v be the rightmost vertex of α(Q1). Assume
to the contrary that v is not in ∂α(Q1)[a1, b1]. Then, by the second statement, both
D(cw(v, v1)) and D(ccw(v, v2)) cover Q, where v1 = cw(v) and v2 = ccw(v).
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Hence, D(cw(v, v1)) ∩ D(ccw(v, v2)) covers Q. Since Q1 is to the left of 	 while
Q2 is to the right of 	, by the same analysis as that for Observation 6.3 we can show
that 	 must intersect one of cw(v, v1) and ccw(v, v2) twice. Assume without loss of
generality that l intersects cw(v, v1) twice. This implies D1(cw(v, v1)) contains all
points of Q2. Since D1(cw(v, v1)) ⊆ α(Q1), we obtain that α(Q1) contains all points
of Q2. But this means that there are no common tangents between α(Q1) and α(Q2),
incurring contradiction. ��

6.2 The Static Algorithm

In this subsection, we assume that Q = L = {p1, p2, . . . , pn} and we provide an
O(n) time algorithm for computing α(Q). The algorithm incrementally processes the
points from p1 to pn . Hence, one may either consider it as a static algorithm or a semi-
dynamic algorithm for point insertions only. The algorithm will determine whether
α(Q) exists, and if yes, compute and store the vertices of α(Q) in a circular doubly
linked list.

The algorithm is similar in spirit to Graham’s scan for computing convex hulls.
However, unlike the convex hull case, where it is possible to compute the upper and
lower hulls separately, here we need to compute α(Q) as a whole because updating
either the upper or the lower hullmayendupwith updating theother hull.Our algorithm
relies on the following lemma.

Lemma 6.5 Suppose p is a point outside the circular hull α(P) of a point set P. Then,
{p} ∪ P is unit disk coverable if and only if one of the following is true:

(i) p is in the supporting disk of an arc of α(P).
(ii) α(P) has a vertex v such that α(P) is contained in α(v, p). Further, this is true

if and only if both cw(v) and ccw(v) are in α(v, p).

Proof The “if” direction is easy. If p is in the supporting disk D of an arc of α(P),
then since D also covers P , D covers P ∪ {p}. If α(P) has a vertex v such that α(P)

is contained in α(v, p), then D(cw(v, p)) contains α(v, p) and thus contains α(P).
Hence, D(cw(v, p)) covers P∪{p}. In the following, we prove the “only if” direction.

Let D be a disk that contains P ∪{p}. Clearly, it is possible to move D such that D
covers P ∪ {p} and ∂D contains a point v of P . By Observation 2.1 (i), v is a vertex
of α(P). Now we rotate D around v clockwise (so that v is always on ∂D) and keep
D covering P ∪ {p} until ∂D meets another point z ∈ P ∪ {p}. If z ∈ P , then z must
be the clockwise neighbor of v on α(P) and now D = D(cw(v, z)). Since p is in D,
the first lemma statement holds. Below we assume that z /∈ P , i.e., z = p.

Since z = p, D is D(cw(v, p)), and thus D(cw(v, p)) covers P . By Obser-
vation 2.1 (iv), D(cw(v, p)) also contains α(P). Now, we rotate D around v

counterclockwise and keep D containing P ∪ {p} until ∂D meets another point
z′ ∈ P ∪ {p}. Depending on whether z′ ∈ P , there are two cases. If z′ ∈ P ,
then by the same analysis as above, the first lemma statement follows. Otherwise,
as above, we can obtain that D(ccw(v, p)) contains α(P). Because α(v, p) =
D(cw(v, p))∩D(ccw(v, p)) and both D(cw(v, p)) and D(ccw(v, p)) contain α(P),
we obtain that α(v, p) contains α(P). Therefore, the second lemma statement holds.

123



1196 Discrete & Computational Geometry (2022) 68:1175–1226

It remains to show that α(P) ⊆ α(v, p) if and only if both cw(v) and ccw(v)

are in α(v, p). If α(P) is contained in α(v, p), then it is obviously true that both
cw(v) and ccw(v) are in α(v, p). Now assume that both cw(v) and ccw(v) are in
α(v, p). Since α(v, p) = D(cw(v, p)) ∩ D(ccw(v, p)), both cw(v) and ccw(v) are
in D(cw(v, p)) and also in D(ccw(v, p)). By Observation 2.2, both D(cw(v, p)) and
D(ccw(v, p)) are tangent to α(P) at v and thus both disks contain α(P). Therefore,
α(P) ⊆ D(cw(v, p)) ∩ D(ccw(v, p)) = α(v, p). ��
We process the vertices of Q = {p1, p2, . . . , pn} incrementally from p1 to pn . We
use a circular doubly linked list L to maintain the vertices of the current circular hull
that has been computed. Each vertex in the list has a cw pointer and a ccw pointer to
refer to its clockwise and counterclockwise neighbors on the current hull, respectively.
In addition, we maintain the rightmost vertex v∗ of the current hull, which is also the
access we have toL. Initially we directly compute α(q1, q2) and set up the listL, with
v∗ = q2. For each i = 1, . . . , n, let Qi = {p1, p2, . . . , pi }.

Consider a general step for processing a new vertex pi with i ≥ 3, and suppose
L now stores the circular hull of Qi−1. With v∗, we can find the rightmost arc w of
the current hull. If pi is in D1(w), then pi is “redundant” by Observation 6.1, i.e., pi
does not affect the current circular hull, so we do not need to do anything (i.e., no need
to update L). Otherwise, our goal is to find the two tangents from pi to the current
hull, or decide that they do not exist. Starting from v∗, we first run a counterclockwise
scanning procedure to search the upper tangent, as follows (see Algorithm 3 for the
pseudocode). Starting with v = v∗, we check v in the following way. We first check
whether both cw(v) and ccw(v) are in α(v, pi ). If yes, then we stop the procedure and
return cw(v, pi ) as the upper tangent. Otherwise, we check whether cw(ccw(v), v)

and pi form an inner turn. If yes, then we stop the procedure and return cw(v, pi ) as
the upper tangent. Assume that they form an outer turn. Then, if ccw(v) �= v∗, then we
set v = ccw(v) and proceed as above; otherwise, we stop the procedure and conclude
that Qi (and thus Q) is not unit disk coverable.

It is not difficult to see that the algorithmwill eventually stop. The following lemma
proves the correctness of the algorithm.

Lemma 6.6 The counterclockwise scanning procedure will decide whether α(Qi )

exists, and if yes, find the upper tangent from pi to α(Qi−1) unless pi is redundant.

Proof First of all, if pi is redundant, then our algorithm correctly determines it. Below
we assume that pi is not redundant. Suppose the procedure is checking the vertex v.
There are three cases for the procedure to stop: cw(v) and ccw(v) are in α(v, pi );
cw(ccw(v), v) and pi form an inner turn; cw(ccw(v), v) and pi form an outer turn
and v∗ = ccw(v). In the first two cases, we will show that cw(v, pi ) is the upper
tangent. In the third case, we will show that Qi is not unit disk coverable.

If cw(v) and ccw(v) are in α(v, pi ), then by Lemma 6.5 (ii), α(Qi−1) ⊆ α(v, pi ).
Hence, α(v, pi ) = α(Qi ). Since cw(v, pi ) is an arc of α(v, pi ), D(cw(v, pi )) con-
tains α(v, pi ) and thus α(Qi−1). Therefore, cw(v, pi ) is the upper tangent from pi to
α(Qi−1).

If cw(ccw(v), v) and pi form an inner turn, to show that cw(v, pi ) is tangent
to α(Qi−1) at v, by Observation 2.2 it suffices to show that D(cw(v, pi )) contains
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Algorithm 3: The counterclockwise scanning procedure searching the upper tan-
gent
1 v ← v∗;
2 while true do
3 if both cw(v) and ccw(v) are in α(v, pi ) then
4 return cw(v, pi ) as the upper tangent;
5 else
6 if cw(ccw(v), v) and pi form an inner turn then
7 return cw(v, pi ) as the upper tangent;
8 else
9 if ccw(v) �= v∗ then

10 v ← ccw(v);
11 else
12 return null and conclude that α(Qi ) (and thus α(Q)) does not exist;
13 end
14 end
15 end
16 end

both cw(v) and ccw(v). Since pi is not redundant and pi is to the right of both
ccw(v) and v, pi is not in α(ccw(v), v). Because cw(ccw(v), v) and pi form an inner
turn, by Observation 6.2 (i), D(cw(v, pi )) contains ccw(v). Next we prove cw(v) ∈
D(cw(v, pi )). Depending on whether v = v∗, there are two subcases.

– If v �= v∗, then according to our algorithm, cw(v, cw(v)) and pi form an outer turn.
Because cw(ccw(v), v) and pi form an inner turn, pi ∈ D(cw(ccw(v), v)). Since
cw(ccw(v), v) is an arc of α(Qi−1), D(cw(ccw(v), v)) contains Qi−1 and thus
cw(v). Hence, D(cw(ccw(v), v)) contains {v, cw(v), pi }, and thus, {v, cw(v), pi }
is unit disk coverable.
We claim that v is not in the interior ofα(pi , cw(v)). Indeed, assume to the contrary
this is not true. Then, since v is on the boundary of D(cw(ccw(v), v)), one of pi
and cw(v), as two vertices of α(pi , cw(v)) must be outside D(cw(ccw(v), v)).
However, we have proved above that D(cw(ccw(v), v)) contains both pi and
cw(v), incurring contradiction. Since v is not in the interior of α(pi , cw(v)), by
Observation 6.2 (ii), D(cw(v, pi )) contains cw(v).

– Suppose v = v∗, then in the same way as the above case we can show that
D(cw(ccw(v), v)) contains {v, cw(v), pi }, and thus, {v, cw(v), pi } is unit disk
coverable.
We claim that cw(v, cw(v)) and pi form an outer turn. Assume to the contrary that
they form an inner turn. Then, pi ∈ D(cw(v, cw(v))). As pi ∈ D(cw(ccw(v), v)),
we obtain that pi ∈ D(cw(v, cw(v))) ∩ D(cw(ccw(v), v)). Since cw(v) and
ccw(v) are to the left of v and pi is to the right of v, by a similar argument as in the
proof of Observation 6.3 (iii), we can show that pi is inside α(Qi−1), implying that
pi is redundant, which incurs contradiction because pi is not redundant. Further,
using the same analysis as the above subcase v �= v∗, we can show that v is not
in the interior of α(pi , cw(v)). Consequently, by Observation 6.2 (ii), cw(v) is in
D(cw(v, pi )).
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It remains to discuss the third case where cw(ccw(v), v) and pi form an outer turn
and v∗ = ccw(v). According to our algorithm, this case happens only if both of the
followings are true: (1) for each vertex v of α(Qi−1), α(v, pi ) does not contain both
cw(v) and ccw(v); (2) for each arc cw(ccw(v′), v′) of α(Qi−1), it does not form
an inner turn with pi (i.e., pi /∈ D(cw(ccw(v′), v′))), implying that pi is not in the
supporting disk of any arc of α(Qi−1). According to Lemma 6.5, Qi is not unit disk
coverable. ��
If the above procedure finds the upper tangent, then we run a symmetric clockwise
scanning procedure to find the lower tangent (which guarantees to exist, for the upper
tangent exists). Next, we replace the vertices in L clockwise strictly from the upper
tangent point to the lower tangent point by pi , and then reset v∗ to pi . The runtime of
the two procedures is O(1 + k), where k is the number of vertices removed from L.
After a point is removed from L, it will never appear in L again. Hence the total time
of the algorithm for processing all points {p1, . . . , pn} is O(n).

Theorem 6.7 We can maintain the circular hull of a set Q of points such that if a new
point to the right of all points of Q is inserted, in O(1) amortized time we can decide
whether α(Q) exists, and if yes, update α(Q).

Corollary 6.8 Given a set of points in the plane sorted by x-coordinates, there exists
a linear time algorithm that can decide whether its circular hull exists, and if yes,
compute the circular hull.

6.3 The Data Structure for Dynamically Maintaining˛(Q)

In this subsection, we explain our data structure for maintaining α(Q) under both
insertions and deletions on Q. Recall that Q is a subset of L ∪ R and the vertical line
	 separates L and R. Let Q1 = Q ∩ L and Q2 = Q ∩ R. Our data structure will
maintain α(Q1) and α(Q2) separately. Recall that each insertion happens to a point
in R and each deletion happens to a point in L . Our goal is determine whether α(Q)

exists after each update.
For Q2, we use a circular doubly linked list to maintain α(Q2), in the same way

as in the static algorithm. As such, from any vertex v of α(Q2), we can visit its two
neighbors cw(v) and ccw(v) in constant time. If a point is inserted, then we update
α(Q2) as in the static algorithm. In addition, we also store explicitly the leftmost arc of
α(Q2) whenever it is updated, which introduces only a constant time to the previous
algorithm. If α(Q2) does not exist after an insertion, then since Q2 ⊆ Q and no point
from Q2 will be deleted, α(Q) will not exist after any update in future and thus we
can halt the entire algorithm. Without loss of generality, we assume that α(R) exists
and thus α(Q2) always exists.

For Q1, because points of Q1 are deleted in order from left to right, initially when
Q1 = L , we build the circular doubly linked list by processing points of L from right
to left, i.e., from pn to p1. Further, in order to maintain some historical information, we
have each vertex v of α(Q2) associated with two stacks Scw(v) and Sccw(v), which are
empty initially. Specifically, initially we process the points of L incrementally from
pn to p1. Consider a general step of the algorithm processing a point pi . Suppose
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p

Fig. 11 Illustrating Lemma 6.9, where Q1 = Q′
1 ∪{p}. The light (resp., dark) gray region is α′(Q1) (resp.,

α′(Q′
1))

cw(v1, pi ) and ccw(v2, pi ) are the two tangents found by using our static algorithm.
Then, in addition to the processing in the static algorithm, we push v1 into Sccw(pi ),
push v2 into Scw(pi ), and push pi into both Scw(v1) and Sccw(v2). Note that this
does not change the time complexity of our previous static algorithm asymptotically.
Later when pi is deleted, we simply pop pi out of both Scw(v1) and Sccw(v2). In this
way, at any moment during processing the deletions of Q1, for any vertex v in the
current circular hull α(Q1), the top of Scw(v) (resp., Sccw(v)) is always the clockwise
(resp., counterclockwise) neighbor of v on α(Q1), which can be accessed in constant
time from the vertex v. So we can use these stacks to replace the circular doubly
linked list, and we call it the stack data structure. In addition, for handling insertions,
we also explicitly store, say in an array A, the rightmost arc of the current circular
hull after processing each point of L (i.e., given i , A[i] stores the rightmost arc of
the circular hull of {pi , pi+1, . . . , pn}). These only introduces constant time to our
original static algorithm. If during processing a new point pi we find that the circular
hull of {pi , . . . , pn} does not exist, then we stop the algorithm and set start= i . In
this way, whenever we process a deletion on L , if the index of the deleted point is
smaller than or equal to start, then we know that α(Q1) and thus α(Q) does not exist
and we do not need to do anything. Without loss of generality, we assume that α(L)

exists and thus α(Q1) always exists (so the variable start is not needed any more).
The above describes our data structure for maintaining α(Q1) and α(Q2). We also

need to maintain other information. To explain them, we first show a property, as
follows.

Although Q1 is to the left of 	, α(Q1) may cover some region of the plane to the
right of 	, denoted by α′(Q1), and if w is the rightmost arc of α(Q1), then α′(Q1)

is exactly the portion of D1(w) to the right of 	 due to the convexity of α(Q1) [19].
Symmetrically, we define α′(Q2) as the region of α(Q2) to the left of 	. The following
lemma shows that as points are deleted from Q1, α′(Q1) becomes monotonically
smaller, and as points are inserted into Q2, α′(Q2) becomes monotonically larger.
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Lemma 6.9 If Q′
1 ⊆ Q1, then α′(Q′

1) ⊆ α′(Q1); e.g., see Fig. 11. Similarly, if Q′
2 ⊆

Q2, then α′(Q′
2) ⊆ α′(Q2).

Proof Weonly prove the case for Q1, and the other case for Q2 can be treated likewise.
Indeed, let w and w′ be the rightmost arcs of Q1 and Q′

1, respectively. If w = null,
then w′ must be null due to Q′

1 ⊆ Q1, and thus we have α′(Q′
1) = α′(Q1) = ∅.

Assume that w �= null. If w′ = null, then since α′(Q′
1) = ∅ and α′(Q1) �= ∅,

α′(Q′
1) ⊆ α′(Q1) holds. Assume that w′ �= null (e.g., see Fig. 11). Since w is an arc

of α(Q1), D(w) contains Q1 and thus Q′
1. By Observation 2.1 (iv), D(w) contains

α(Q′
1), and thus, D(w) contains the arc w′. Note that α′(Q′

1) is bounded from the
left by 	 and bounded from the right by the portion of w′ to the right of 	. Since
α′(Q1) is the region of D(w) to the right of 	 and D(w) contains w′, it must hold that
α′(Q′

1) ⊆ α′(Q1). ��
In addition to the data structures for α(Q1) and α(Q2) described above, our dynamic
algorithm also maintains the following information. Recall that based on our assump-
tion both α(Q1) and α(Q2) always exist.

1. If Q2 is contained in α(Q1), i.e., the Q1-dominating case, then our algorithm will
detect it, and in this case α(Q) = α(Q1) and α(Q) exists.

2. If Q1 is contained in α(Q2), i.e., the Q2-dominating case, then our algorithm will
detect it, and in this caseα(Q) = α(Q2) andα(Q) exists. Further, because in future
deletions will only happen to Q1 and insertions will only happen to Q2, Lemma 6.9
implies that α(Q) = α(Q2) always holds. Therefore, in future we can ignore all
deletions and only handle insertions, which can be done by simply applying the
static algorithm on Q2.

3. If neither of the above cases happens, then our algorithm will detect whether α(Q)

exists, and if yes, the two common tangents of α(Q1) and α(Q2) will be explicitly
maintained.

6.4 Initialization

Initially, Q = Q1 = L , so we build the data structure for α(Q1) as discussed before.
This takes O(n) time. Since there are 2n update operations, the amortized cost is O(1).
One annoying issue is to check whether Q1- or Q2-dominating case will happen after
each update. We show how to resolve the issue. We discuss the Q1-dominating case
first.

Checking Q1-dominating case. Recall R = {q1, q2, . . . , qn} is sorted from left to
right. When q1 is inserted into Q (i.e., this is the first insertion), it is quite trivial to
determine whether the Q1-dominating case happens, which can be done in constant
time by checking whether q1 is contained in the supporting circle of the rightmost arc
of α(Q1) (which is maintained after each deletion). However, the problem becomes
challenging after more points are inserted. We use the following strategy to resolve
the problem “once for all”.

An easy observation is that once the Q1-dominating case does not happen for the
first time after an update (which may be either an insertion or a deletion), in light
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of Lemma 6.9, it will never happen again in future, because Q1 will become smaller
while Q2 will become larger. Also, before that particular update, α(Q) = α(Q1) holds
and thus α(Q) exists. Lemma 6.10 gives an O(n) time algorithm to find that particular
update. Note that this procedure is only performed once in the entire algorithm.

Lemma 6.10 The first update after which the Q1-dominating case does not happen
can be determined in O(n) time.

Proof For each i = 1, 2, . . . , n, we use α′[i, n] to refer to α′({pi , pi+1, . . . , pn}). As
discussed before, each α′[i, n] is the part of a unit disk on the right side of the line 	.
By Lemma 6.9, it holds that α′[i, n] ⊆ α′[i − 1, n] for all i = 2, 3, . . . , n. Recall
that the rightmost arc is maintained by our algorithm after each deletion of L . Thus,
given i , α′[i, n] can be obtained in O(1) time.

From the outset, we process insertions and deletions as follows. During the
algorithm, we maintain a variable i∗, which is the first deletion after which the Q1-
dominating case will not happen for the points in the current set Q2. Initially before
any deletion or insertion, Q1 = L and Q2 = ∅, and thus we set i∗ = n. For each
deletion of a point pi , if i < i∗, then we proceed on the next update; otherwise we
return the deletion of pi as the answer to the problem. Consider an insertion of a
point q j . We first check whether q j is in α′[i∗, n]. If yes, we proceed on the next
update. Otherwise, we keep decrementing i∗ until q j ∈ α′[i∗, n] or i∗ = 0. Then
we check whether i∗ < i , where i is the index of the leftmost point of the current
set Q1 (i.e., Q1 = {pi , . . . , pn}). If i∗ < i , then we return the insertion of q j as the
answer to the problem. Otherwise, we proceed on the next update. The correctness of
the algorithm is based on Lemma 6.9. It is not difficult to see that the algorithm runs
in O(n) time. ��
Lemma 6.10 finds the update after which the Q1-dominating case does not happen for
the first time. Regardless of whether it is an insertion or a deletion, let Q1 and Q2 be
the two subsets right after the update. So we know that both α(Q1) and α(Q2) exist,
and the Q1-dominating case does not happen.

Checking Q2-dominating case. Next, we discuss how to detect whether the Q2-
dominating case happens after each update in future (starting from the update found in
Lemma 6.10), by a Q2-dominating case detection procedure, as follows. As discussed
before, once we find the Q2-dominating case happens for the first time after an update,
we can simply use our static algorithm to handle the deletions only in future. Starting
from j∗ = n, we check whether p j∗ is in the supporting disk D of the leftmost arc
of the current α(Q2). Recall that the leftmost arc of α(Q2) is explicitly stored (and
if it is null, then its supporting disk is ∅). If yes, we decrement j∗ until j∗ = 0 or
p j∗ /∈ D (thus all points of L from p j∗+1 to pn are in D). Now consider an insertion
to Q2. If the leftmost arc of α(Q2) gets updated, then by Lemma 6.9, all points of
L from p j∗+1 to pn are still contained in the supporting disk D of the new leftmost
arc. We further check whether p j∗ is in D. If yes, we decrement j∗ until j∗ = 0 or
p j∗ /∈ D. Let i∗ be the index of the leftmost point of the current set Q1. Whenever
j∗ decrements as above, if i∗ > j∗, then we know the Q2-dominating case happens
and then we only need to process the insertions using the static algorithm in future.
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Similarly, when pi∗ is deleted, we increment i∗ by one, and if i∗ > j∗, and we again
run into the Q2-dominating case.

In the following discussion on processing updates, before actually processing each
update, we run the above procedure to check whether the Q2-dominating case hap-
pens. If yes, then the rest of the algorithm is trivial. Otherwise, we will perform the
corresponding algorithm (to be discussed below) for processing the update. Hence,
the Q2-dominating case detection procedure is actually part of the update processing
algorithm. In the following discussion whenever we process an insertion or a deletion,
we assume that the Q2-dominating case will not happen after the operation. It is easy
to see that the procedure takes O(n) time in the entire algorithm for processing all 2n
updates.

According to the above discussion, we start from the update found by Lemma 6.10,
and neither dominating case will happen. This implies that the common tangents of
α(Q1) and α(Q2) exist if and only if α(Q) exists. Next, we present an O(n) time
procedure to decide whether α(Q) exists, and if yes, find the two common tangents.
Note that this procedure is performed only once, e.g., after the update of Lemma 6.10,
which does not affect the O(1) amortized time performance per update.

Computing common tangents.Because we do not knowwhether α(Q) exists, we apply
our static algorithm processing the points of Q from right to left. If during processing a
point we determine the current circular hull does not exist, then we stop the algorithm
and let p refer to the point; otherwise let p = null. If p = null, then α(Q) exists
and we compute the common tangents of α(Q1) and α(Q2) by an algorithm given
below. Assume that p �= null. Since α(Q2) exists, p must be from Q1. Observe that
before p is deleted, α(Q) cannot exist. Suppose we consider the next update. If it is
a deletion of a point to the left of p, then we do nothing but we know α(Q) does
not exist. If it is an insertion of a point q j , then we know that α(Q) does not exist,
but instead of immediately inserting q j to our data structure for Q2, we hold q j in a
first-in-first-out queue Q, which is ∅ initially. If it is the deletion of p, then we know
that α(Q) exist, where Q does not include the points held inQ. In this case (and also
the case p = null), we find the two common tangents of α(Q1) and α(Q2), as follows.

The algorithm is similar to that for finding common tangents of two convex hulls.
Hershberger and Suri gave a linear time algorithm for that [19] (see Lemma 4.12
there). To make the paper self-contained, we sketch a slightly different algorithm.
We first find the upper common tangent as follows. Starting from the leftmost vertex,
we consider the vertices of α(Q2) in the clockwise order. For each vertex, we find
its upper tangent to α(Q1) by using the counterclockwise scanning procedure in our
static algorithm. Once we find the upper tangent, we check whether it is also tangent
to α(Q2). If yes, we have found the upper common tangent. Otherwise, we consider
the next vertex of α(Q2), but start the counterclockwise scanning procedure from the
current tangent point on α(Q1). As the upper common tangent exists, the algorithm
will eventually find it. We find the lower common tangent in a similar way using the
clockwise scanning procedure of our static algorithm. The time is linear in the total
number of vertices of α(Q1) and α(Q2).

After the common tangents are found, ifQ �= ∅ (which only happens if p �= null),
then we need to process the insertions on the points in Q in order to know whether
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α(Q) exists after the deletion of p. For this, we will apply on these points the insertion
algorithm to be given below.

Algorithm invariants. The above describes our initialization procedure, which takes
O(n) time. In the following, we present our algorithm for handling future insertions
(including those in Q) and deletions. Our algorithm maintains an invariant that is
stated in the following observation.

Observation 6.11 Suppose the algorithm is about to process an update.

(i) Before the update, the Q1-dominating case does not happen.
(ii) Before the update, the two common tangents of α(Q1) and α(Q2) exist and are

explicitly computed.
(iii) After the update, the Q2-dominating case does not happen.

The first invariant is established due to that we always process updates after the update
computed in Lemma 6.10. The third invariant is established by our Q2-dominating
case detection procedure. More precisely, once the procedure detects that the Q2-
dominating case happens after an update, then we will apply our static algorithm on
α(Q2) with insertions only. The second invariant has been established above for the
moment, and we will show later that it will be re-established after each future update
is processed. We are able to do so because our insertion processing algorithm may
also involve performing point deletions. For this reason, in the following we discuss
the deletion processing algorithm first.

6.5 Deletions

Suppose a point pi is deleted from Q1. Let Q′
1 = Q1 \ {pi } and let Q1 still be the

original set before the deletion. Let Q = Q1 ∪ Q2 and Q′ = Q′
1 ∪ Q2. Since α(Q)

exists (due to Observation 6.11 (ii)), α(Q′) exists. Thus, our task is to update the
common tangents if they are changed. We show that we can do so in O(1) amortized
time. Let cw(a1, a2) and cw(b1, b2) denote the upper and lower common tangents of
α(Q1) and α(Q2), respectively, which have been computed by Observation 6.11 (ii).

First of all, if pi is not the leftmost vertex of α(Q1) (which has been explicitly
stored when we build the data structure for Q1 = L initially), then pi is in the
interior of α(Q1) and thus nothing needs to be done (i.e., the common tangents do not
change). Otherwise, let p = cw(pi ), which can be accessed in O(1) time using our
stack data structure for Q1. According to our stack data structure, pi is at the top of
the stack Sccw(p). We pop pi out of Sccw(p). We also pop pi out of Scw(p′), where
p′ = ccw(pi ). If pi /∈ {a1, b1}, then the common tangents do not change and thus we
are done with the deletion. Otherwise, we assume that pi = a1 (the other case can be
treated likewise). Depending on whether a1 = b1, there are two cases.

If b1 �= a1, then after a1 is deleted, b1 is still a vertex of α(Q′
1) and thus ccw(b1, b2)

is still the lower common tangent. To find the new upper common tangent, we move p
counterclockwise on α(Q′

1) and simultaneously move a2 counterclockwise on α(Q2).
This procedure is similar in spirit to finding common tangent for two convex hulls
separated by a vertical line, and we sketch it below (e.g., see Fig. 12).
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α (Q1)

a1

b1

α (Q2)
a2

b2

p

Fig. 12 Illustrating the new upper common tangent (the dashed one) after a1 is deleted. The dotted curves
are arcs on α(Q′

1) but not on α(Q). To find the new upper common tangent, one can simultaneously rotate
p counterclockwise on α(Q′

1) and rotate a2 counterclockwise on α(Q2)

We first check whether cw(p, a2) is tangent to α(Q′
1) at p. Recall that by Observa-

tion 2.2 this is can be done by checking whether D(cw(p, a2)) contains ccw(p) and
cw(p) (which can be accessed from p in constant time using our stack data structure).
If not, thenwemove p counterclockwise on α(Q′

1) until cw(p, a2) is tangent to α(Q′
1)

at p. Then, we check whether cw(p, a2) is tangent to α(Q2) at a2. If not, then we
move a2 counterclockwise on α(Q2) until cw(p, a2) is tangent to α(Q2) at a2. If the
new cw(p, a2) is not tangent to α(Q′

1) at p, then we move p counterclockwise again.
We repeat the algorithm until cw(p, a2) is both tangent to α(Q′

1) at p and tangent to
α(Q2) at a2. As the upper common tangent exists, the procedure will eventually find
it.

We then consider the case where a1 = b1. In this case, the lower common tangent
is also changed and we need to compute it as well. As the Q2-dominating case does
not happen, both upper and lower common tangents exist. Thus, we can use the same
algorithm as above to find the upper common tangent and use a symmetric algorithm
to find the lower common tangent.

In either case above, we call the procedure for finding the upper common tangent the
deletion-type upper common tangent searching procedure, which takes O (1+k1+k2)
time, where k1 is the number of vertices of α(Q′

1) strictly counterclockwise from the
original p to its new position when the algorithm finishes and k2 is the number of
vertices of α(Q2) strictly counterclockwise from the original a2 to its new position
after the algorithm finishes (we say that these vertices are involved in the procedure). If
the lower common tangent is also updated, we call it the deletion-type lower common
tangent searching procedure. Lemma 6.12 shows that each point can involve in at
most one such procedure in the entire algorithm, and thus the amortized cost of the
two procedures is O(1).

Lemma 6.12 Each point of L ∪ R can involve in at most one deletion-type upper
tangent searching procedure and at most one deletion-type lower tangent searching
procedure in the entire algorithm (for processing all 2n updates).

Proof We only discuss the upper tangent case, for the lower tangent case is similar.
Let v be a vertex on α(Q′

1) involved in the procedure. We show that v cannot involve
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in the procedure again. Indeed, v was not a vertex of α(Q1) before pi is deleted. After
pi is delete, since v is involved in the procedure, v must be a vertex of α(Q′

1). As
only deletions will happen on Q1, v will always be a vertex of the circular hull of Q1
until it is deleted. Hence, v will never be involved in the procedure again (because to
involve in the procedure, v cannot be a vertex of the circular hull of Q1).

Let q be a vertex on α(Q2) involved in the procedure. Let a2 and a′
2 be the old and

new upper common tangent points on α(Q2), respectively. Let b2 and b′
2 be the old and

new lower common tangent points on α(Q2), respectively. Then, q ∈ ∂α(Q2)(a
′
2, a2).

Notice that ∂α(Q2)(a
′
2, a2) ⊆ ∂α(Q2)(b2, a2). By Observation 6.4 (i), any disk tangent

to α(Q2) at q does not contain Q1. On the other hand, since q is involved in the
procedure, we have q ∈ ∂α(Q2)(a

′
2, b

′
2) because a2 is moving counterclockwise to a′

2
while b2 is moving clockwise to b′

2 according to our algorithm. Thus, any disk tangent
to α(Q2) at q must contain the new set Q′

1 after the deletion.
Now consider another deletion operation later. We argue that q will not be involved

in the same procedure for the deletion. Let Q′′ be the set of Q right before the deletion,
and let Q′′

1 = Q′′ ∩ L and Q′′
2 = Q′′ ∩ R. Clearly, Q′′

1 ⊆ Q′
1 and Q2 ⊆ Q′′

2. Assume
to the contrary that q involves in the procedure again. Then, q is a vertex of α(Q′′

2).
Let D be a disk tangent to α(Q′′

2) at q. Hence, D covers Q′′
2 and thus Q2. This implies

that D is also tangent to α(Q2) at q. Thus, D contains Q′
1. On the other hand, because

q is involved in the procedure, as discussed above, any disk tangent to α(Q′′
2) at q

does not contain Q′′
1. Hence, D does not contain Q′′

1. Because Q′′
1 ⊆ Q′

1, we obtain
that D does not contain Q′

1, incurring contradiction. ��

This finishes the description of our deletion algorithm, which takes O(1) amortized
time. Note that the second invariant in Observation 6.11 is established.

6.6 Insertions

Consider an insertion of a point q j into Q2. We first update the hull α(Q2) as in
our static algorithm. If q j is redundant, then we are done for the insertion because
α(Q) still exists (by Observation 6.11 (ii)) and the common tangents do not change.
Otherwise, q j appears as the rightmost vertex in the new α(Q2) (recall that we have
assumed thatα(R) exists and thusα(Q2) always exists). Let Q′

2 be the set of Q2 before
q j is inserted and Q2 the set after the insertion. Let Q′ = Q1∪Q′

2 and Q = Q1∪Q2.
For a purpose that will be clear later, we temporarily keep the circular hull of α(Q′

2)

unaltered.
Since the Q2-dominating case does not happen, one of the following two cases

will happen: (1) the common tangents of α(Q1) and α(Q2) exist; (2) α(Q) does not
exist. Our algorithm will detect which case happens. In the first case, the algorithm
will find the new common tangents. In the second case, some further processing that
involves deleting points from Q1 will follow (the deletion processing algorithm in
Sect. 6.5 will be invoked). Before describing our algorithm, we give two lemmas that
will help demonstrate the correctness of our algorithm. Let cw(a1, a2) and ccw(b1, b2)
be the upper and lower common tangents of α(Q1) and α(Q′

2), respectively, which
are already known by Observation 6.11 (ii). We use β(a2, b2) denote the subset of
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vertices of α(Q′
2) clockwise from a2 to b2 excluding a2 and b2, and β(a2, b2) = ∅ if

a2 = b2. In fact, β(a2, b2) = ∂α(Q′
2)

[b2, a2]. Let β[a2, b2] = β(a2, b2) ∪ {a2, b2}.
Lemma 6.13 (i) The rightmost vertex of α(Q′) is also the rightmost vertex of α(Q′

2),
which must be in β[a2, b2].

(ii) The rightmost arc of α(Q′) is one of the following three arcs: the rightmost arc of
α(Q′

2), cw(a1, a2), and ccw(b1, b2).

Proof Let v be the rightmost vertex of α(Q′). We first show that v must be in Q′
2.

Assume to the contrary that this is not true. Then, v ∈ Q1. Since all points of Q′
2

are to the right of 	 and all points of Q1 are to the left of 	, none of the points of
Q′

2 is a vertex of α(Q′), which implies that all points of Q′
2 are in α(Q′), and thus

α(Q′) = α(Q1). Therefore, we obtain that all points of Q′
2 are in α(Q1), which is

the Q1-dominating case. This contradicts Observation 6.11 (i) that the Q1-dominating
case does not happen. Hence, v is in Q′

2. Since Q′
2 ⊆ Q′, it is not difficult to see

that v is also the rightmost vertex of α(Q′
2). Since β[a2, b2] consists of all vertices of

α(Q′
2) that are also vertices of α(Q′), v must be in β[a2, b2]. The above proves the

first statement of the lemma. The second statement follows from v ∈ β[a2, b2], which
consists of all vertices of α(Q′

2) that are also vertices of α(Q′). ��
If q j is in the supporting disk of the rightmost arc of α(Q′), i.e., q j is redundant with
respect toα(Q′), thenα(Q) exists and cw(a1, a2) and ccw(b1, b2) are still the common
tangents of α(Q1) and α(Q2). Otherwise, α(Q) exists if and only if the tangents from
q j to α(Q′) exist. If α(Q) exists, we use a and b to denote the upper and lower tangent
points from q j to α(Q′), respectively. Let z1 and z2 be the counterclockwise and
clockwise neighbors of q j in α(Q2), or equivalently, they are the upper and lower
tangent points from q j to α(Q′

2).

Lemma 6.14 Assume that q j is not in the supporting disk of the rightmost arc of α(Q′)
and α(Q) exists.

(i) If z1 ∈ β(a2, b2), or if z1 = a2 and cw(a1, a2) and q j form an inner turn, then
cw(a1, a2) is still the upper tangent of α(Q1) and α(Q2); e.g., see Fig. 13.

α (Q1)

a1

b1

α (Q0
2)

a2

b2

qj

z1

Fig. 13 Illustrating Lemma 6.14 (i)
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(ii) If z1 /∈ β[a2, b2], or z1 = a2 and cw(a1, a2) and q j form an outer turn, then
cw(a, q j ) is the new upper common tangent of α(Q1) and α(Q2) as well as
the upper tangent from q j to α(Q1), and further, a ∈ ∂α(Q1)(a1, b1); e.g., see
Fig. 14.

(iii) If z2 is in β(a2, b2), or if z2 = b2 and ccw(b1, b2) and q j form an inner turn,
then ccw(b1, b2) is still the upper tangent of α(Q1) and α(Q2).

(iv) If z2 /∈ β[a2, b2], or z2 = b2 and ccw(b1, b2) and q j form an outer turn, then
ccw(b, q j ) is the new lower common tangent of α(Q1) and α(Q2) as well as the
lower tangent from q j to α(Q1), and further, b ∈ ∂α(Q1)(a1, b1).

Proof We only prove (i) and (ii), since (iii) and (iv) can be proved analogously.
Assume that z1 ∈ β(a2, b2). Then, by the definition of β(a2, b2), D(cw(z1, q j )) is

tangent to α(Q′) at z1, and thus cw(z1, q j ) is also the upper tangent from q j to α(Q′)
and z1 = a. To show that cw(a1, a2) is still the upper common tangent, it suffices to
show that both a1 and a2 are still vertices of α(Q). Assume to the contrary this is not
true. Then, because z1 ∈ β(a2, b2), cw(z1, q j ) is the upper tangent from q j to α(Q′),
and the rightmost vertex of α(Q′) is in β[a2, b2] by Lemma 6.13, if we apply the
clockwise scanning procedure on α(Q′) to search the lower tangent ccw(b, q j ), then
at least one of a1 and a2 will be removed from the vertex list of α(Q) during procedure.
As at least one of a1 and a2 is not a vertex of α(Q) and the scanning procedure starts
from the rightmost vertex of α(Q′

2), a1 cannot be a vertex of α(Q) and b must be
in Q′

2, and further, ccw(b, q j ) must cross the vertical line 	 twice because both b and
q j are to the right of 	 while a1 is to the left of 	. Hence, ccw(b, q j ) is the leftmost
arc of α(Q). In addition, since b ∈ Q′

2, α(Q) is actually α(Q2), implying that all
points of Q1 are in α(Q2). Therefore, we obtain that this is the Q2-dominating case,
contradicting with Observation 6.11 (iii) that the Q2-dominating case does not happen
after q j is inserted. Hence, cw(a1, a2) is still the upper tangent of α(Q1) and α(Q2).

Assume that z1 = a2 and cw(a1, a2) and q j form an inner turn. Then, because
by Lemma 6.13 the rightmost vertex of α(Q′) is also the rightmost vertex of α(Q′

2),
which is inβ[a2, b2], if we apply the counterclockwise scanning procedure onα(Q′) to
search the upper tangent from q j to α(Q′), then the procedure will return cw(z1, q j ),
and thus z1 = a. Consequently, following the same proof as above, we can show

α (Q1)

a1

b1

α (Q0
2)

a2

b2

qj

z1
a

Fig. 14 Illustrating Lemma 6.14 (ii)
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that cw(a1, a2) is still the upper tangent of α(Q1) and α(Q2). The proves the lemma
statement (i).

Next we prove the lemma statement (ii). Assume z1 /∈ β[a2, b2]. Consider the
counterclockwise scanningprocedure onα(Q′

2) for searching cw(z1, q j ) and the coun-
terclockwise scanning procedure on α(Q′) for searching cw(a, q j ). As the rightmost
vertex v of α(Q′) is also the rightmost vertex of α(Q′

2), the two procedures both
start from v. Further, since v ∈ β[a2, b2] and z1 /∈ β[a2, b2], the counterclockwise
scanning procedure on α(Q′

2) for cw(z1, q j ) will process vertices of β[a2, b2] coun-
terclockwise from v to a2, after which the counterclockwise neighbor of a2 on α(Q′

2)

will be processed. This means that the counterclockwise scanning procedure on α(Q′)
for cw(a, q j ) will also process vertices of β[a2, b2] counterclockwise from v to a2,
after which the counterclockwise neighbor of a2 on α(Q′) will be processed, which
is a1. We claim that a is not in Q2, since otherwise by the similar analysis as above the
Q2-dominating case would happen, incurring contradiction. Hence, a is a vertex on
α(Q1). As cw(a, q j ) is the upper tangent of from q j to α(Q′), D(cw(a, q j )) contains
Q′ and thus Q1. Hence, D(cw(a, q j )) is tangent to α(Q1) at a, and thus cw(a, q j ) is
an upper tangent from q j to α(Q1). On the other hand, since D(cw(a, q j )) contains
Q′ and also q j , cw(a, q j ) is an arc of α(Q). Since a ∈ Q1 and q j ∈ Q2, cw(a, q j ) is
the upper common tangent of α(Q1) and α(Q2).

We next discuss the case where z1 = a2 and cw(a1, a2) and q j form an outer
turn. As above, we consider the two counterclockwise scanning procedures. Since
z1 = a2, the two procedures will both process vertices on β[a2, b2] from v until a2.
As cw(a1, a2) and q j form an outer turn, according to our counterclockwise searching
procedure on α(Q′) for cw(a, q j ), when we process a2, we need to further check
whether the two neighbors of a2 in α(Q′) are both in α(a2, q j ). We claim that this
is not true. Indeed, assume to the contrary that this is true. Then, we obtain that
α(a2, q j ) = α(Q). But this means that the Q2-dominating case happens since both a2
and q j are in Q2, incurring contradiction. Because the two neighbors of a2 in α(Q′)
are not both in α(a2, q j ), according to our counterclockwise searching procedure, we
will proceed on processing the counterclockwise neighbor of a2 on α(Q′), which is a1.
Then, following the same analysis as the above case, we can show that cw(a, q j ) is
the upper tangent from q j to α(Q1) and also the upper common tangent of α(Q1) and
α(Q2).

It remains to show that a ∈ ∂α(Q1)(a1, b1). Since cw(a, q j ) is the upper tangent
from q j to α(Q′) and also the upper tangent from q j to α(Q1), a must be a vertex of
both α(Q′) and α(Q1). Because ∂α(Q1)(a1, b1) consists of all points that are vertices
of both α(Q′) and α(Q1), it must contain a. This proves the lemma statement (ii). ��
In light of Lemma 6.14, our algorithm works as follows. We first check whether q j

is in the supporting circle of the rightmost arc of α(Q′). By Lemma 6.13, this can be
done in constant time. If yes, then cw(a1, a2) and ccw(b1, b2) are still the common
tangents of α(Q1) and α(Q2), and we are done with the insertion. In the following,
we assume otherwise. Depending on whether z1 satisfies the condition (i) or (ii) in
Lemma 6.14, and whether z2 satisfies the condition in (iii) or (iv) of Lemma 6.14,
there are four cases.
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z1 satisfies Lemma 6.14 (i) and z2 satisfies Lemma 6.14 (iii). If z1 satisfies
Lemma 6.14 (i) and z2 satisfies Lemma 6.14 (iii), then cw(a1, a2) and ccw(b1, b2)
are still the common tangents of α(Q1) and α(Q2). So α(Q) exists and we are done
with the insertion.

z1 satisfies Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iii). If z1 satisfies
Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iii), then ccw(b1, b2) is still the lower
common tangent but cw (a1, a2) is not the upper common tangent any more. This also
implies that α(Q) exists. Next, we find the new upper common tangent, as follows.We
apply the counterclockwise scanning procedure on α(Q1) as in the static algorithm,
but it is sufficient for the scanning procedure to start from a1 (as discussed in the proof
of Lemma 6.14). As the upper common tangent exists, this procedure will find it. We
call the procedure the insertion-type upper common tangent searching procedure. The
running time of the procedure is O(1+k), where k is the number of vertices of α(Q1)

counterclockwise strictly from a1 to the new upper tangent point (we say that these
vertices are involved in the procedure). By the following lemma, the amortized cost
of the procedure is O(1).

Lemma 6.15 Each point of L ∪ R can involve in the insertion-type upper common
tangent searching procedure at most once in the entire algorithm.

Proof Let v be a point involved in the procedure, which is a vertex of α(Q1). Let
v1 and v2 be v’s counterclockwise and clockwise neighbors on α(Q1), respectively.
According to our counterclockwise scanning procedure, cw(v, v2) and q j form an
outer turn, and thus the disk D(cw(v, v2)) does not contain q j , and similarly, cw(v1, v)

and q j form an outer turn and D(cw(v1, v)) does not contain q j .
We claim that at least one of v1 and v2 are to the right of v. To prove the claim,

it is sufficient to show that v is not the rightmost vertex of α(Q1). Indeed, since v is
involved in the procedure, v is in ∂α(Q1)[a1, b1]. By Observation 6.4 (iii), the rightmost
vertex of α(Q1) is in ∂α(Q1)[a1, b1]. Therefore, v is not the rightmost vertex of α(Q1).
The claim is thus proved. Without loss of generality, we assume that v2 is to the right
of v.

We argue that v will not be involved in the same procedure again in future. Assume
to the contrary that v is involved in the same procedure again during another insertion
of qk , with k > j . Let Q′′

1, Q
′′
2, and Q′′ refer to the corresponding sets right before

the insertion. Since v is involved in the procedure, v has not been deleted and thus
is in Q′′

1. Since v2 is to the right of v, v2 has also not been deleted and thus is in Q′′
1

as well. As cw(v, v2) is an arc of α(Q1) and Q′′
1 ⊆ Q1, cw(v, v2) is also an arc of

α(Q′′
1).

Let a′′
1 (resp., b′′

1) be the tangent point on α(Q′′
1) of the upper (resp., lower)

common tangent of α(Q′′
1) and α(Q′′

2). Since v is involved in the procedure for insert-

ing qk , v must be a vertex of α(Q′′
1) in ∂α(Q′′

1)
[a′′

1 , b
′′
1 ]. As cw(v, v2) is an arc of

α(Q′′
1) and v ∈ ∂α(Q′′

1)
[a′′

1 , b
′′
1 ], cw(v, v2) must be an arc of α(Q′′) and thus the disk

D(cw(v, v2))must cover Q′′. Hence, D(cw(v, v2)) covers Q′′
2. Notice that q j is in Q′′

2,
for j < k. Therefore, q j is contained in D(cw(v, v2)). But we have obtained above
that D(cw(v, v2)) does not contain q j . Hence, we obtain contradiction. ��
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z1 satisfies Lemma 6.14 (i) and z2 satisfies Lemma 6.14 (iv). If z1 satisfies
Lemma 6.14 (i) and z2 satisfies Lemma 6.14 (iv), then cw(a1, a2) is still the upper
common tangent but ccw(b1, b2) is not the lower common tangent any more. This is
a symmetric case to the above case, and we can apply the clockwise scanning pro-
cedure on α(Q1) (starting from b1) to find the new lower common tangent. We call
this the insertion-type lower common tangent searching procedure, which takes O(1)
amortized time by a similar analysis as Lemma 6.15.

z1 satisfies Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iv). If z1 satisfies
Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iv), e.g., see Fig. 15, then neither
cw(a1, a2) nor ccw(b1, b2) is a common tangent any more. Indeed, this is the most
challenging case. One reason is that we do not know whether α(Q) exists. Therefore,
our algorithm needs to determine whether α(Q) exists, and if yes, find the new com-
mon tangents, which are the tangents from q j to α(Q1) by Lemma 6.14. Further, if
α(Q) does not exist, then our algorithm will find a special vertex p∗ on α(Q1) such
that there is no unit disk that can cover Q2 and the points of Q1 to the right of p∗
including p∗. As such, before p∗ is deleted, α(Q) always does not exist (but α(Q)

may still not exist even after p∗ is deleted). The following lemma will be useful later.

Lemma 6.16 Assume that α(Q) does not exist. If for P ⊂ Q1, α(P ∪ Q2) exists, then
there is a unit disk tangent to α(Q2) at q j that contains all points of P ∪ Q2.

Proof If q j is a vertex of α(P ∪ Q2), then by Observation 2.1 (i) there is a disk D
with q j on its boundary and covering P ∪ Q2. Since D covers Q2 and has q j on its
boundary, D is tangent to α(Q2) at q j . This proves the lemma. Below we show that
the case where q j is not a vertex of α(P ∪ Q2) cannot happen.

Assume to the contrary q j is not a vertex of α(P ∪ Q2). Then q j is in the
interior of α(P ∪ Q2). So, removing q j from Q2 will not affect α(P ∪ Q2), i.e.,
α(P ∪Q′

2) = α(P ∪Q2), where Q′
2 = Q2 \{q j }. Recall that by our algorithm invari-

antObservation 6.11 (ii),α(Q1∪Q′
2) exists. Since P ⊆ Q1,α(P∪Q′

2) ⊆ α(Q1∪Q′
2).

Since q j is in the interior of α(P ∪ Q′
2), q j must be in the interior of α(Q1 ∪ Q′

2),
and thus α(Q1 ∪ Q′

2) = α(Q1 ∪ Q′
2 ∪ {q j }). But this implies that α(Q) exists as

Q = Q1 ∪ Q′
2 ∪ {q j }, which contradicts with the fact that α(Q) does not exist. ��

We next elaborate on the algorithm. It is possible that a1 is not in the upper hull or b1
is not in the lower hull of α(Q1). We first consider the case where a1 is in the upper
hull and b1 is in the lower hull; other cases can be handled in a similar (and easier)
way and will be discussed later.

If α(Q) exists, then as those previous cases, we could find the upper tangent from q j

to α(Q1) by a counterclockwise scanning procedure on α(Q1), starting from a1, and
similarly, find the lower tangent from q j to α(Q1) by a clockwise scanning procedure
on α(Q1), starting from b1. The two procedures could run independently. However,
since we do not know whether α(Q) exists and in the case where α(Q) does not exist
we need to find a particular vertex p∗, we will coordinate the two scanning procedures
by processing vertices in order of decreasing x-coordinate. Specifically, starting from
pa = a1, we will process pa and scan α(Q1) counterclockwise, and simultaneously,
starting from pb = b1, we will process pb and scan α(Q1) clockwise, in the same way
as the static algorithm. We coordinate the two scanning procedures by the following
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α (Q1)

a1

b1

α (Q '
2)

a2

b2

qj

z1
a

z2

Fig. 15 Illustrating the case where z1 satisfies Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iv). The two
new tangents cw(a, q j ) and ccw(b, q j ) are also shown, with b = b1

rule: if pa is to the right of pb, then we process pa first; otherwise we process pb first.
In addition, our algorithm maintains the following invariant: There is a unit disk with
q j on the boundary covering both z2 and cw(pa), and there is a unit disk with q j on the
boundary covering both z1 and ccw(pb). For the purpose of describing our algorithm,
we temporarily set cw(a1) to a2 and set ccw(b1) to b2.2 The above invariant holds
initially when pa = a1 and pb = b1, because cw(pa) = a2 ∈ Q2 ⊆ D(cw(q j , z2))
and ccw(pb) = b2 ∈ Q2 ⊆ D(cw(q j , z1)).

Without loss of generality, we assume that pa is to the right of pb. Sowe process pa ,
as follows.We first check whether there is a unit disk with q j on the boundary covering
both pa and z2. If not, then we stop the algorithm and return p∗ = pa . If yes, we
proceed as follows.

We check whether cw(ccw(pa), pa) and q j form an inner turn. If yes, then
cw(pa, q j ) is the upper tangent from q j to α(Q1) and thus is the new upper com-
mon tangent by Lemma 6.14. Then, we proceed to find the lower tangent, which is
guaranteed to exist, by running the clockwise scanning procedure. If it is an outer turn,
then we check whether α(pa, q j ) contains cw(pa) and ccw(pa). If yes, then we return
cw(pa, q j ) as the upper common tangent and also return ccw(pa, q j ) as the lower
common tangent. Otherwise, if ccw(pa) is to the left of pa (i.e., pa is not the leftmost
vertex of α(Q1)), then we set pa = ccw(pa) and proceed as above; otherwise, we set
p∗ = pa and stop the algorithm.

The above describes our algorithm. For the correctness, in addition to Lemma 6.14,
it is sufficient to show that if the algorithm returns p∗, then p∗ is correctly computed,
as proved in Lemma 6.17.

Lemma 6.17 Suppose the algorithm returns p∗. Then, there is no unit disk that can
cover all points of Q2 and the points of Q1 to the right of p∗ including p∗.

Proof Suppose we are processing a vertex pa . There are two ways that p∗ is returned:
(1) when there is no unit disk with q j on the boundary covering both pa and z2;
(2) when pa is the leftmost vertex of α(Q1) and we still attempt to set pa = ccw(pa).

2 One could consider that we are working on α(Q′), and thus cw(a1) is indeed a2 and ccw(b1) is indeed b2.
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In both cases, p∗ = pa . Our goal is to show that P ∪ Q2 is not unit disk coverable,
where P is the subset of points of Q1 to the right of pa including pa .

In the first case, assume to the contrary that P ∪ Q2 are unit disk coverable. Then,
by Lemma 6.16, there is a unit disk with q j on the boundary covering P ∪ Q2. Thus,
we obtain contradiction since pa ∈ P and z2 ∈ Q2.

In the second case, we have P = Q1 and Q = P ∪ Q2. So it suffices to show that
α(Q) does not exist. Assume to the contrary that α(Q) exists. By Lemma 6.14, the
tangents from q j to α(Q1) are the tangents from q j to α(Q′), and a ∈ ∂α(Q1)(a1, b1).
According to our algorithm, a cannot be a vertex of α(Q1) counterclockwise from a1
to pa . Thus, a is a vertex of α(Q1) counterclockwise from ccw(pa) to b1. Further,
a must be a vertex α(Q1) counterclockwise from a1 to b. On the other hand, since
pa is the leftmost vertex of α(Q1) and pa is currently being processed, it must be
the case that pb = pa and v has already been processed, where v = ccw(pb). This
means that b cannot be a vertex of α(Q1) counterclockwise from v to b1, and thus
b must be a vertex of α(Q1) counterclockwise from a1 to pa . Since a is a vertex
α(Q1) counterclockwise from a1 to b, we obtain that a must be a vertex of α(Q1)

counterclockwise from a1 to pa . But this contradicts with that a is a vertex of α(Q1)

counterclockwise from ccw(pa) to b1. ��
As in the third case, we also call the above algorithm the insertion-type common
tangent points searching procedure, and its runtime is O(1 + k) time, where k is the
number the vertices of α(Q1) counterclockwise strictly from a1 to the final position
of pa when the algorithm stops and the number of vertices α(Q1) clockwise strictly
from b1 to the final position of pb when the algorithm stops (we say that those vertices
are involved in the procedure). We can use literally the same proof as Lemma 6.15 to
show that each point of L ∪ R can involve in the procedure at most once in the entire
algorithm. In fact, the proof of Lemma 6.15 shows that each point of L∪R can involve
in the insertion-type common tangent points searching procedure in both this case and
the above third case at most once in the entire algorithm. Hence, the amortized cost is
O(1).

Postprocessing. One of the following cases happens after the above algorithm: (1) the
two common tangents of Q1 and Q2 are found; (2) a vertex p∗ (which is either pa or pb)
is returned. In the first case, we are done with the insertion, and Observation 6.11 (ii)
is established. In the second case, α(Q) does not exist and we further perform the
following “postprocessing”. Without loss of generality, we assume that p∗ = pa .
According to our algorithm, pb is either pa or to the left of pa , and ccw(pb) must be
to the right of pa because it was processed before pa .

We perform deletions to delete points from Q1 in order from left to right until pa .
By the definition of p∗, after each deletion except the last deletion of pa , α(Q) does
not exist. Note that these deletions actually have not been invoked yet, so we perform
them ahead of time in the sense that when they are actually invoked in future we know
that α(Q) does not exist.

To process these deletions efficiently, the key idea is that we process the deletions
by pretending q j has not been inserted yet, or equivalently, we process the deletions
with respect to Q′

2. Because α(Q′) exists before any deletion, we know that it still
exists after each deletion. After all these deletions are completed, we will insert q j
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again (by “resuming” our previous work on processing the insertion; see below for
the details). This is the reason we temporarily kept the circular hull α(Q′

2) unaltered
before.

We again assume that the Q2-dominating case does not happen (with respect to Q′
2)

after each deletion, which can be determined by our Q2-dominating case detection
procedure by changing j∗ back to its value before q j was inserted. Note that we
also need to store the current value j∗ in another variable so that when we resume
processing the insertion of q j again (which will be discuss below) we simply reset j∗
to that value, which only introduces a constant time.

For each deletion, we update the common tangents of α(Q1) and α(Q′
2) by using

the algorithm in Sect. 6.5. Once pa is deleted, we insert q j again by “resuming” our
previous work of the insertion of q j , as follows. Let Q′

1 refer to the set of Q1 after pa is
deleted. Let cw(a′

1, a
′
2) and ccw(b′

1, b
′
2) be the common tangents of α(Q′

1) and α(Q′
2).

Let β(a′
2, b

′
2) denote the set of vertices α(Q′

2) clockwise from a′
2 to b′

2 excluding a′
2

and b′
2, and β(a′

2, b
′
2) = ∅ if a′

2 = b′
2. Let β[a′

2, b
′
2] = β(a′

2, b
′
2)∪{a′

2, b
′
2}. Recall that

pa and pb refer to the vertices of α(Q1) when our earlier algorithm for processing the
insertion of q j stops (and returns p∗). Depending on whether pa = a1 and whether
pb = b1, there are four cases.

– If pa �= a1 and pb �= b1, then cw(pa) is to the left of or at a1 and ccw(pb)
is to the left of or at b1. In this case, cw(a1, a2) and ccw(b1, b2) are still
the common tangents of α(Q′

1) and α(Q′
2), i.e., cw(a1, a2) = cw(a′

1, a
′
2) and

cw(b1, b2) = cw(b′
1, b

′
2). So β(a′

2, b
′
2) = β(a2, b2). If we apply the same algo-

rithm as before for processing the insertion of q j , we are still at the fourth case, i.e.,
z1 satisfies Lemma 6.14 (ii) and z2 satisfies Lemma 6.14 (iv). But the crux of the
idea is that instead of starting over the two scanning procedures from a1 and b1,
respectively, we “resume” the previous work by starting the counterclockwise
scanning procedure from cw(pa) on α(Q′

1) and starting the clockwise scanning
procedure from ccw(pb) on α(Q′

1). In this way, we avoid processing a vertex twice
except cw(pa) and ccw(pb), for whichwe can charge the time to the deletion of pa .

– If pa = a1 but pb �= b1, then ccw(pb) is to the left of or at b1 and cw(b1, b2) is still
the lower common tangent of α(Q′

1) and α(Q′
2), i.e., cw(b1, b2) = cw(b′

1, b
′
2),

but the upper one changes, i.e., cw(a1, a2) �= cw(a′
1, a

′
2). Consequently, it is

possible that z1 now satisfies Lemma 6.14 (i), which can be determined when
we process the deletion of pa . We resume the same algorithm as before for the
insertion of q j , i.e., regardless of which case happens, when we search the lower
common tangent point on α(Q′

1) by running the clockwise scanning procedure,
we start from ccw(pb). However, in the counterclockwise scanning procedure for
searching the upper common tangent point, we need to start from the new upper
tangent point a′

1 because a1 has been deleted.
– If pa �= a1 but pb = b1, then this is symmetric to the above second case. We start
the clockwise scanning procedure from b′

1 and start the counterclockwise scanning
procedure from cw(pa).

– If pa = a1 and pb = b1, then both a1 and b1 have been deleted since pa is deleted
and pb is either pa or to the left of pa . Hence, both upper and lower common
tangents get changed, i.e., cw(a1, a2) �= cw(a′

1, a
′
2) and cw(b1, b2) �= cw(b′

1, b
′
2).
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We start the new algorithm exactly the same as before, i.e., start the two scanning
procedures from a′

1 and b′
1, respectively.

Other than the time for computing the newcommon tangents after each deletion (whose
amortized time is O(1) as shown in Sect. 6.5), the amortized cost of processing the
insertion of q j is O(1). After the above processing, if α(Q′

1 ∪ Q2) exists, then we are
done with the insertion of q j (and Observation 6.11 (ii) is established). Otherwise, the
algorithm will return a new vertex p∗ and we will repeat the same algorithm. As more
and more points are deleted from Q′

1, eventually we will encounter a situation where
α(Q′

1 ∪ Q2) exists since α(Q2) exists (e.g., when all points of Q′
1 are deleted).

Recall that the above algorithm is for the situation where a1 is on the upper hull and
b1 is on the lower hull of α(Q1). If this is not the case, then a1 and b1 are either both
on the upper hull or both on the lower hull. Without loss of generality, assume that
they are both on the upper hull. Then, we can change the algorithm in the following
way. We only perform the counterclockwise scanning procedure on the upper hull,
starting from pa = a1. The algorithm for processing each vertex is the same as before
except the following: if pa arrives at b1 and we still want to set pa = ccw(pa), then
we stop the algorithm and return p∗ = pa . If the procedure finds the new upper
common tangent, then the lower common tangent exists and we find it by running the
clockwise scanning procedure starting from b1. If the procedure returns p∗, then we
perform deletions as above until pa . Note that the lower common tangent must get
changed, i.e., cw(b1, b2) �= cw(b′

1, b
′
2), because b1 is to the left of p∗ and thus must

be deleted. So we run into either the third or the four case as above (i.e., the two cases
with pb = b1). The correctness is still based on Lemma 6.14 and a similar proof for
Lemma 6.17. The amortized cost analysis of Lemma 6.15 still applies.

6.7 Adapting the Algorithm to the Radially Sorted Case

The above gives our algorithm in the problem setting where points in L ∪ R are sorted
from left to right. We show that we can adapt the algorithm easily to the radially sorted
case where points in L ∪ R are radially sorted around a point o such that L and R are
still separated by a line 	 through o (this is actually our original problem setting on
S = S+ ∪ S−).

Without loss of generality, we assume that 	 is vertical, and L = {q1, . . . , qn} and
R = {p1, . . . , pn} are sorted clockwise around o such that all points of L are to the left
of 	 and all points of R are to the right of 	. We first discuss how to update the circular
hull of Q2 under insertions when Q1 = ∅ (i.e., extending the static algorithm to the
radially sorted case). We still consider the points of R following their index order.
To handle each insertion of q j , we still run a counterclockwise scanning procedure
to find the upper tangent from q j to the current α(Q2) and a clockwise scanning
procedure to find the lower tangent. Recall that our previous algorithm starts the two
procedures from the rightmost vertex of α(Q2). Here, the difference is that we start
the two procedures from the vertex v, where v has the largest index among all vertices
of α(Q2). This will be consistent with our previous algorithm. Indeed, because the
points of R are right of 	 and radially sorted around o, all vertices of α(Q2) are on
one side of the line l through o and v while q j is on the other side of l. Based on
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Observation 6.3 (iv), searching the two tangents from v will be successful, and we can
use the similar analysis to prove the correctness of this adapted algorithm. Note that
this requires our algorithm to keep track of the vertex of the largest index of α(Q2),
which only introduces O(n) overall time for all points of R, just like in the previous
algorithm where we need to keep track of the rightmost vertex (which is actually also
the vertex of the largest index in the previous problem setting where points of R are
sorted from left to right; this means that if we describe the algorithm as maintaining
the vertex of α(Q2) with the largest index then the same algorithm works on both
problem settings without any change).

Further, exactly the same as before, we maintain the leftmost arc of α(Q2) after
each insertion. This is for handling the case where Q1 �= ∅. We still need the leftmost
arc because Q1 and Q2 are still separated by a vertical line, in the same way as before,
so we can use the same method as before to handle the interactions between α(Q1)

and α(Q2), such as computing their common tangents, determining dominating cases,
etc. For example, when the common tangents of α(Q1) and α(Q2) exist, after q j is
inserted, we need to update the common tangents. To this end, we first compute the
two tangent points z1 and z2 from q j to α(Q2) in the way described above, and then
we follow exactly the same algorithm as before, i.e., there are four cases depending
the locations of z1 and z2 with respect to Lemma 6.14.

For computing α(Q1) initially when Q1 = L , we consider the points of L in the
inverse index order, in a similar way as the above for R, but now we also need to
associate stacks with vertices as in the previous algorithm. The rest of the algorithm
follows the same as before.

In summary, we can solve the dynamic circular hull problem on S = S+ ∪ S− in
O(n) time, and thus Theorem 3.2 is proved.

7 Computing Common Tangents of Two Circular Hulls inO(logn)
Time

In this section, we prove Lemma 4.1. Without loss of generality, let |L| = |R| = n
and assume that L and R are separated by a vertical line 	 with L on the left side. Let
α1 and α2 denote the circular hulls of L and R, respectively. Also, we assume that the
vertices of α1 in counterclockwise order starting from the rightmost vertex c1 of α1
are stored in a balanced binary search tree T1, and each vertex of α1 is associated with
its two neighbors (so that given a node of T1 storing a vertex v of α1 we can access
cw(v) and ccw(v) in O(1) time). Similarly, vertices of α2 in clockwise order starting
from the leftmost vertex c2 of α2 are stored in another balanced binary search tree T2.

In the following, we present an O(log n) time algorithm for Lemma 4.1, i.e., deter-
mine whether α(L ∪ R) exists; if yes, then determine whether the L-dominating case
or the R-dominating case happens; if neither dominating case happens, then compute
the two common tangents of α1 and α2. Our algorithm is similar in spirit to the binary
search algorithm given by Overmars and van Leeuwen [26] for finding common tan-
gents of two convex hulls separated by a line, but the technical crux is in finding the
criteria on which the binary search is based.
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7.1 A Special Case

We first consider a special case where R has only one point q, but L has n vertices. We
first check whether the L-dominating case happens, by checking whether q is in the
supporting disk of the rightmost arc of α1. Using T1, the rightmost arc can be found
in O(log n) time. In the following, we assume that q is outside the disk. Next, we will
determine whether α(L ∪ {q}) exists, and if yes, find the two tangents from q to α1.
To this end, we first assume that the tangents exist and give an algorithm to find them.
Later we will show that the algorithm can be slightly modified to determine whether
the tangents exist (i.e., whether α(L ∪ {q}) exists).

We only show how to find the upper tangent point a, and the lower tangent point
can be found in a similar way. If we order the vertices of α1 counterclockwise starting
from c1 as a sequence L1, then we partition the sequence into three subsequences:
A, B,C , defined as follows. If c1 �= a, then A consists of all vertices from c1 to cw(a);
otherwise A = ∅, B = {a}, and C consists of the rest of vertices. By Observation 2.2,
a vertex v of α1 is a if and only if D(cw(v, q)) contains both cw(v) and ccw(v).
Lemma 7.1 provides a criteria on which our binary search algorithm is based to find a.

Lemma 7.1 Assume that a �= c1. Consider a vertex v ∈ A∪C. If v = c1, then v ∈ A.
Otherwise, v is in A if and only if the four vertices cw(v), v, c1, ccw(c1) are all in
D(cw(v, q)) or all in D(cw(c1, q)).

Proof If v = c1, then since c1 �= a and c1 is the first vertex of L1, v must be in A.
Assume that v is in A \ {c1}. We show that the four points cw(v), v, c1, ccw(c1) are
all in D(cw(v, q)) or all in D(cw(c1, q)).

We first give an observation: for any subsequence F ofL1, F is the cyclic sequence
of all vertices on the circular hullα(F) of F . To see this, letw be an arc ofα1 connecting
two adjacent vertices of F . Then D(w) contains all vertices of α1, and thus it covers F .
Therefore, by Observation 2.1 (ii),w is also an arc of α(F). Hence, the arc set of α(F)

consists of all arcs of α1 connecting all pairs of adjacent vertices of F plus another
arc connecting the first vertex and the last vertex of F .

Let F be the subsequence of L1 from c1 to v. By the above observation, F is the
vertex set of α(F). Recall our counterclockwise scanning procedure for finding a in
our static algorithm in Sect. 6.2,which starts from c1.When a vertex v′ is processed, the
result only depends on the two neighbors of v′. Hence, if we run our counterclockwise
scanning procedure on both α1 and α(F), the result of the algorithm after processing
a vertex v′ is the same for any v′ ∈ F \ {c1, v}. However, when v′ is c1 or v, the
result of processing v′ may be different as one of its neighbors gets changed from α1
to α(F). As each vertex of F \ {c1, v} is not a tangent point from q to α1 (because
v ∈ A \ {c1}), it is not a tangent point from p to α(F) either. Hence, the upper tangent
point from q toα(F) is either c1 or v. If it is c1, then D(cw(c1, q)) covers F ; otherwise,
D(cw(v, q)) covers F . Notice that all four points cw(v), v, c1, ccw(c1) are in F . Thus,
either D(cw(c1, q)) or D(cw(v, q)) contains all the four points.

Now assume that v is in C . We show that neither D(cw(v, q)) nor D(cw(c1, q))

contains all four points cw(v), v, c1, ccw(c1), which will prove the lemma. By the
definition of C , v �= a. Let F be the subsequence of L1 from a to c1. According to
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the above observation, F is the cyclic sequence of vertices of α(F). Thus, cw(v) and
c1 are the two neighbors of v in α(F), and v and ccw(c1) are two neighbors of c1 in
α(F). Assume to the contrary that either D(cw(v, q)) or D(cw(c1, q)) contains all
four points cw(v), v, c1, ccw(c1). We obtain contradiction below for either case.

In the first case (i.e., D(cw(v, q)) contains all four points), since cw(v) and c1 are
the two neighbors of v in α(F) and both of them are in D(cw(v, q)), D(cw(v, q)) is
tangent to α(F) at v. Thus, cw(v, q) is the upper tangent from q to α(F). We claim
that a = v. Indeed, since v ∈ C , F contains a by the definition of F . Because cw(a, q)

is the upper tangent from q to α1, D(cw(a, q)) contains all vertices of α1 and thus
covers F . Hence, cw(a, q) is the upper tangent from q to α(F) and a is the tangent
point. Thus, it holds that v = a. However, this contradicts with that v ∈ C .

In the second case, since v and ccw(c1) are the two neighbors of c1 in α(F) and both
of them are in D(cw(c1, q)), D(cw(c1, q)) is tangent to α(F) at c1. Thus, cw(c1, q)

is the upper tangent from q to α(F). Following the same analysis as above, we can
show that c1 = a. However, this contradicts with that a �= c1. ��
In light of Lemma 7.1, we can compute a in O(log n) time using the tree T1, as follows.
First, we check whether c1 is a, which can be done in constant time after c1 is accessed
in O(log n) time from T1. If not, let v be the vertex of α1 at the root of T1. We check
whether v = a in O(1) time. If yes, we stop the algorithm. Otherwise, we check
whether v ∈ A using Lemma 7.1. If yes, then we proceed on the right child; otherwise
we proceed on the left child. The running time is O(log n), which is the height of T1.
The lower tangent from q to α1 can be found likewise.

The above algorithm finds the tangents if they exist. If we do not knowwhether they
exist, then we slightly change the algorithm as follows. Whenever we check whether
a vertex v is the tangent point, we also check whether v and q can be covered by a unit
disk. If not, then no tangents exist and we stop the algorithm; otherwise we proceed
in the same way as before. But if we reach a leaf v and v is still not the tangent point,
then no tangents exist. The time of the algorithm is still O(log n).

7.2 The General Case

In the following, we discuss the general case where L and R each have n vertices. Our
algorithm begins with checking whether a dominating case happens in the following
lemma.

Lemma 7.2 Whether the L-dominating case (resp., the R-dominating case) happens
can be determined in O(log n) time.

Proof We only show how to determine whether the R-dominating case happens, and
the other case is similar. Recall that the R-dominating case refers to the case where
L is covered by the supporting disk D of the leftmost arc of α2, which is true if and
only if all vertices of α1 are in D by Observation 2.1 (iv). We first check whether the
leftmost arc of α2 is null. If yes, then the case does not happen. Otherwise, we have
the disk D and proceed as follows.

Let v be the vertex at the root of T1. The vertex v and the rightmost vertex c1 of α1
partition the boundary of α1 into two chains with a roughly equal number of vertices.

123



1218 Discrete & Computational Geometry (2022) 68:1175–1226

We check whether both v and c1 are in D. If not, then the R-dominating case does not
happen and we stop the algorithm. Otherwise, by [19, Lem. 4.6], one of the chains of
α1 partitioned by v and c1 is entirely in D, and that chain can be determined in O(1)
time by knowing the neighbors of v and c1. If the chain counterclockwise from c1 to v

is in D, then we go to the right child of v, i.e., working on the other chain recursively;
otherwise, we go to the left child of v. If we reach a leaf v, then the R-dominating case
happens if and only if v ∈ D. Clearly, the runtime of the algorithm is O(log n). ��
In the following, we assume that neither dominating case happens. Our goal is to
determine whether α(L ∪ R) exists, and if yes, compute the two common tangents of
α1 and α2. We first show how to find the common tangents by assuming that α(L ∪ R)

exists. We follow the binary search scheme of Overmars and van Leeuwen [26] for
convex hulls but resort to the criteria in Lemma 7.1.

With respect to any vertex q of α2, we define three sets of vertices of α1: A, B,C
in the same way as in Sect. 7.1. We further partition C into two subsets: C1 and C2
as follows. A vertex v ∈ C is in C1 if v is on α1 counterclockwise from a to b,
where a and b are the upper and lower tangent points from q to α1, respectively. Let
C2 = C \ C1. Note that C1 = ∅ if a = b, for a /∈ C . By Observation 2.2, a vertex
v ∈ C is in C1 if and only if there is a unit disk D tangent to α1 at v containing q,
which can be determined in O(1) time given the two neighbors of v. A vertex p of α1
is called an E-vertex with respect to q if p ∈ E for any E ∈ {A, B,C,C1,C2}.

Symmetrically, with respect to a vertex p ∈ α1, we also define E-vertices
of α2 following the clockwise order from the leftmost vertex c2 of α2, for E ∈
{A, B,C,C1,C2}. For a pair of vertices (p, q) with p ∈ α1 and q ∈ α2, we say
that the pair is an (E, F) case if p is an E-vertex of α1 with respect to q and q is an
F-vertex of α2 with respect to p, with E, F ∈ {A, B,C,C1,C2}.

We describe an algorithm to compute the upper common tangent cw(a1, b1) with
a1 and b1 as the tangent points on α1 and α2, respectively. Suppose p and q are vertices
at the roots of T1 and T2, respectively. Depending on whether (p, q) is an (E, F) case,
for E, F ∈ {A, B,C}, there are nine cases (several subcases arise for the case (C,C)).
We show below that in each case we can disregard half of the remaining vertices of
either α1 or α2. Let L1 be the list of vertices of α1 following their order in T1, i.e.,
counterclockwise from c1. Let L2 be the list of vertices of α2 following their order
in T2, i.e., clockwise from c2. We discuss the nine cases in order corresponding to
those in [26], as follows.

1. Case (B, B), which corresponds to Case a. in [26]; e.g., see Fig. 16. In this case,
a1 = p and b1 = q. We can stop the algorithm.

2. Case (A, B), which corresponds to Case b. in [26] (with the notation p and q
switched; the same applies below); e.g., see Fig. 17. In this case, the part of L1
before p and the part of L2 before q can be disregarded, i.e., we move p to its right
child and move q to its right child.

3. Case (C, B), which corresponds to Case c. in [26]; e.g., see Fig. 18. In this case,
the part of L1 after p and the part of L2 before q can be disregarded, i.e., we move
p to its left child and move q to its right child.

4. Case (B, A), which corresponds to Case d. in [26]; e.g., see Fig. 19. In this case,
the part of L1 before p and the part of L2 before q can be disregarded.

123



Discrete & Computational Geometry (2022) 68:1175–1226 1219

p q

α1 α2c1 c2

Fig. 16 Illustrating the case (B, B)

α1
α2

p q

c1 c2

Fig. 17 Illustrating the case (A, B)

5. Case (B,C), which corresponds to Case e. in [26]; e.g., see Fig. 20. In this case,
the part of L1 before p and the part of L2 after q can be disregarded.

6. Case (A, A), which corresponds to Case f. in [26]; e.g., see Fig. 21. In this case,
the part of L1 before p and the part of L2 before q can be disregarded.

7. Case (A,C), which corresponds to Case g. in [26]; e.g., see Fig. 22. In this case,
the part of L1 before p can be disregarded.

8. Case (C, A), which corresponds to Case h. in [26]; e.g., see Fig. 23. In this case,
the part of L2 before q can be disregarded.

9. Case (C,C), which corresponds to Case i. in [26]. In this case, two subcases are
further considered in [26]. Here, however, we need more subcases. Depending on
whether (p, q) is an (E, F) case, for E, F ∈ {C1,C2}, there are four subcases.

9.a. Case (C1,C2); e.g., see Fig. 24. In this case, the part of L2 after q can be
disregarded. Indeed, for each vertex q ′ in that part, q ′ is in C2 of L2 with respect
to p. By the definition ofC2, there is no unit disk tangent to α2 at q ′ that covers p
(and thus L). Therefore, q ′ cannot be the upper common tangent point, and thus
can be disregarded.

9.b. Case (C2,C1); e.g., see Fig. 25. In this case, the part of L1 after p can be
disregarded, for the similar reason discussed above.

123



1220 Discrete & Computational Geometry (2022) 68:1175–1226

α1
α2

p

q

c1 c2

Fig. 18 Illustrating the case (C, B)

α1
α2

p q

c1 c2

Fig. 19 Illustrating the case (B, A)

α1
α2

p

q

c1 c2

Fig. 20 Illustrating the case (B,C)

9.c. Case (C2,C2). In this case, the part of L1 after p and the part of L2 after q can
be disregarded.

9.d. Case (C1,C1). In this case, we can find a unit disk D1 that is tangent to α1 at p
and covers q and a unit disk D2 that is tangent to α2 at q and covers p. Clearly, D1
intersects D2, because each of them contains both p and q. If D1 = D2, then we
claim that ccw(p, q) is the lower common tangent. Indeed, since D1 = D2, D1
is tangent to α1 at p and also tangent to α2 at q. Thus, either cw(p, q) is the upper
common tangent or ccw(p, q) is the lower common tangent. As we know that p
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α1
α2

p q

c1 c2

Fig. 21 Illustrating the case (A, A)

α1
α2

p

qc1 c2

Fig. 22 Illustrating the case (A,C)

α1
α2

p

q

c1 c2

Fig. 23 Illustrating the case (C, A)

is aC-vertex ofL1 with respect to q, p cannot be the upper common tangent point
and thus cw(p, q) cannot be the upper common tangent. Hence, ccw(p, q) is the
lower common tangent. The claim implies that a1 cannot be after p in L1 and a2
cannot be after q in L2. Therefore, in this case, the part of L1 after p and the part
of L2 after q can be disregarded. If D1 �= D2, then their boundaries intersect at
two points. Let s be the intersection point such that if we move from p around
∂D1 clockwise, we will encounter s before the other insertion. Depending on
whether s is to the left or right of 	, there are two subcases, which correspond to
the two subcases of Case i. in [26].
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α1
α2

p

q

c1 c2

Fig. 24 Illustrating the case (C1,C2). Also shown are the two tangents from p to α2 (red dash-dotted arcs)
and the two tangents from q to α1 (blue dash-dotted arcs)

α1
α2

p

q

c1 c2

Fig. 25 Illustrating the case (C2,C1)

α1
α2p q

c1 c2

s D1

D2

Fig. 26 Illustrating the case (C1,C1), and the intersection s is to the left of 	

9.d.i. If s is to the left of 	, e.g., see Fig. 26, which corresponds to Case i1. in [26],
then the part of L1 after p can be disregarded.

9.d.ii. If s is to the right of 	, e.g., see Fig. 27, which corresponds to Case i2. in [26],
then the part of L2 after q can be disregarded.
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α1
α2p

qc1 c2

s D1D2

Fig. 27 Illustrating the case (C1,C1), and the intersection s is to the right of 	

By Lemma 7.1, with the two neighbors of p and the two neighbors of q, each of the
above nine cases can be determined in constant time. For the subcases in Case (C,C),
recall that given the two neighbors of p in α1, whether p is a C1-vertex with respect
to q can be determined in constant time. Similarly, given the two neighbors of q in α2,
whether q is a C1-vertex with respect to p can also be determined in constant time.
Hence, determining all cases and subcases can be done in constant time. Therefore,
the upper common tangent can be found in O(log n) time. By a symmetric algorithm,
we can compute the lower common tangent in O(log n) time.

The above algorithm is based on the assumption that α(L ∪ R) exists (and thus the
common tangents of α1 and α2 exist). If we do not know whether this is true, then we
slightly change the algorithm as follows. Suppose we are considering a pair of vertices
(p, q) as above. Then, we first check whether {p, q} is unit disk coverable. If not, then
α(L∪ R) does not exist and we stop the algorithm. Otherwise, we proceed in the same
way as before. In addition, if one of p and q is a leaf in its tree and the algorithm still
wants to go to a child of that leaf, then we know that the common tangents do not exist
and we stop the algorithm. The runtime of the algorithm is still O(log n). This proves
Lemma 4.1.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Appendix

Weprovide a counterexample to show that Tan and Jiang’s algorithm [29] is not correct.
We follow the same notation as in [29] without further explanations. The authors first
gave an algorithm for the convex position case where S is in convex position, and then
use it to solve the general case. Their algorithm uses binary search that relies on a
monotonicity property given in Theorem 1. The argument of the proof does not stand.
For example, because r∗

1 is adjustable, the authors claim that r∗
1 ≥ r∗

2 due to Lemma 3.
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o x

y

s1 s2 = s3

a

b

c

l

Fig. 28 Illustrating a counterexample for [29, Thm. 1]

But Lemma 3 does not imply that at all. Nevertheless, we provide a counterexample
to demonstrate that the monotonicity property claimed in Theorem 1 does not hold.

Refer to Fig. 28. S = {s1, a, b, c, s2}. A circle C centered at the origin o contains
all five points. s1 and s2 are the two intersections of x-axis and C . a, b, c are all in the
interior of C . Hence, C is the smallest enclosing circle of S. By definition, we have
s2 = s3. a and b are on a line l through o such that a is in the second quadrant and b
is in the fourth quadrant. l and y-axis form a relatively small angle. Both a and b are
arbitrarily close to the boundary of C so that any circle enclosing both a and b has a
radius very close to r or larger than r .

For any two points p and q, let |pq| denote their Euclidean distance.We can pick the
points a, b, c to guarantee the following properties (although we do not provide their
exact coordinates, one can verify that the example in Fig. 28 satisfies these properties):

– |oa| = |ob| (and thus |s1b| = |s2a| and |s2b| = |s1a|);
– |s1a| < |s1c| < |s1b| < |bc|;
– r ({s1, a, c}) = |s1c|/2;
– r ({c, s2, b}) = |bc|/2; and
– r ({a, c, s2}) = |as2|/2.

With the above properties, one can verify that the following holds (again, refer to [29]
for the definitions of the notation):
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r∗
1 = max {r ({s1, b}), r ({a, c, s2})} = max

{ |s1b|
2

,
|as2|
2

}

= |s1b|
2

,

r∗
2 = max {r ({s1, a}), r ({c, s2, b})} = max

{ |s1a|
2

,
|bc|
2

}

= |bc|
2

,

r∗
3 = max {r ({s1, a, c}), r ({s2, b})} = max

{ |s1c|
2

,
|s2b|
2

}

= |s1c|
2

.

Due to that |s1c| < |s1b| < |bc|, we obtain r∗
3 < r∗

1 < r∗
2 . Therefore, r

∗ = r∗
3 ,

and according to [29, Thm. 1], r∗
1 ≥ r∗

2 ≥ r∗
3 should hold, which contradicts with

r∗
3 < r∗

1 < r∗
2 . Hence, this theorem is not correct.
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