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Abstract

The antiprism triangulation provides a natural way to subdivide a simplicial com-
plex A, similar to barycentric subdivision, which appeared independently in combi-
natorial algebraic topology and computer science. It can be defined as the simplicial
complex of chains of multi-pointed faces of A, from a combinatorial point of view,
and by successively applying the antiprism construction, or balanced stellar subdivi-
sions, on the faces of A, from a geometric point of view. This paper studies enumerative
invariants associated to this triangulation, such as the transformation of the /-vector of
A under antiprism triangulation, and algebraic properties of its Stanley—Reisner ring.
Among other results, it is shown that the #-polynomial of the antiprism triangulation
of a simplex is real-rooted and that the antiprism triangulation of A has the almost
strong Lefschetz property over R for every shellable complex A. Several related open
problems are discussed.

Keywords Simplicial complex - Triangulation - Antiprism - Face enumeration -
h-polynomial - Real-rootedness - Lefschetz property

Mathematics Subject Classification 05E45 - 05A05 - 05A18 - 13C14 - 26C10

Editor in Charge: Jdnos Pach

Christos A. Athanasiadis
caath@math.uoa.gr

Jan-Marten Brunink
janmarten.brunink @uni-osnabrueck.de

Martina Juhnke-Kubitzke

juhnke-kubitzke @uni-osnabrueck.de

Department of Mathematics, National and Kapodistrian University of Athens,
Panepistimioupolis, 15784 Athens, Greece

2 Fakultit fiir Mathematik, Universitidt Osnabriick, Albrechtstrasse 28A, 49076 Osnabriick, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-021-00356-7&domain=pdf
http://orcid.org/0000-0001-6860-0748

Discrete & Computational Geometry (2022) 68:72-106 73

1 Introduction

Barycentric subdivision provides a natural way to triangulate a simplicial complex A,
of fundamental importance in algebraic topology. Because of its especially nice enu-
merative and algebraic properties, it has also been studied intensely from the point
of view of enumerative and algebraic combinatorics; see [11,12,20,22,23,28,29] and
[30, Chap. 9]. For instance, Brenti and Welker [11] described in explicit combinatorial
terms the transformation of the i-vector (a fundamental enumerative invariant) of A,
under barycentric subdivision, and showed that the /2-polynomial (the generating poly-
nomial for the A-vector) of the barycentric subdivision of A has only real roots (and
in particular, log-concave and unimodal coefficients) for every simplicial complex A
with nonnegative h-vector.

A similar, but combinatorially more intricate and much less studied than barycentric
subdivision, way to subdivide A is provided by the antiprism triangulation, denoted
here by sd 4 (A). To give the reader a hint on the comparison between the two trian-
gulations, we recall that the barycentric subdivision of a geometric simplex X can be
constructed by inserting a vertex in the interior of ¥ and coning over its proper faces,
which have been barycentrically subdivided by induction. The antiprism triangulation
sd_4(X) instead can be constructed by inserting another simplex of the same dimen-
sion in the interior of X, whose vertices are in a given one-to-one correspondence with
those of ¥, and joining each nonempty face of that simplex with the antiprism triangu-
lation of the complementary face of X. Figure 1 shows the antiprism triangulation of
a 2-dimensional simplex (the labeling of faces is explained in Sect. 4). As an abstract
simplicial complex, the barycentric subdivision of A, denoted here by sd(A), has faces
which correspond bijectively to the ordered partitions of the faces of A; in particular,
the vertices and facets of sd(A) correspond bijectively to the nonempty faces and the
permutations of the facets of A, respectively. The faces of sd_4(A) instead correspond
bijectively to certain multi-pointed ordered partitions of the faces of A; in particular,
the vertices and facets of sd_ 4 (A) correspond bijectively to the pointed faces and the
ordered partitions of the facets of A, respectively.

The antiprism triangulation was introduced by Izmestiev and Joswig [19] as a
technical device in their effort to understand combinatorially branched coverings of
manifolds, and arose independently and was studied under the name chromatic subdi-
vision in computer science (specifically, in theoretical distributed computing); see [21]
and references therein. This paper aims to show that, as is the case with barycentric
subdivision, the antiprism triangulation has very interesting enumerative and algebraic
properties and that its study leads to combinatorial problems which are often more
challenging than the corresponding ones for the barycentric subdivision. We denote by
h(A, x) the h-polynomial of a simplicial complex A and by o, the (abstract) simplex
on an n-element vertex set. Our main motivation comes from the following conjectural
analogue of the main result of [11].

Conjecture 1.1 The polynomial h(sd 4(A), x) is real-rooted for every simplicial com-
plex A with nonnegative h-vector.

This conjecture is part of the general problem to understand when the /-polynomial
of a triangulation of a simplicial complex is real-rooted. The present study of antiprism
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Fig. 1 Antiprism triangulation of the 2-simplex

triangulations has partly motivated the study of this problem for the much more general
class of uniform triangulations [5]. Although we are unable to fully settle Conjec-
ture 1.1 in this paper, we reduce it to an interlacing relation between the members
of two concrete infinite sequences of polynomials (see Conjecture 5.3), given the
following important special case of the conjecture and [5, Thm. 1.2].

Theorem 1.2 The polynomial h(sd 4(0,), x) is real-rooted and has a nonnegative,
real-rooted and interlacing symmetric decomposition with respect to n — 1 for every
positive integer n.

We also prove the unimodality of & (sd 4 (A), x) for every Cohen—Macaulay simpli-
cial complex A and show that the peak appears in the middle, by studying Lefschetz
properties of the Stanley—Reisner ring of sd_ 4 (A). The following result is an analogue
of the main result of [22] for the barycentric subdivision.

Theorem 1.3 The complex sd 4(A) has the almost strong Lefschetz property over R
for every shellable simplicial complex A. Moreover, for every (n — 1)-dimensional
Cohen—Macaulay simplicial complex A, the h-vector of sd_4(A) is unimodal, with the
peak being at position n/2, if n is even, and at (n — 1)/2 or (n + 1)/2, if n is odd.

This paper is structured as follows. The antiprism triangulation sd 4 (A) is described
combinatorially as an abstract simplicial complex and defined geometrically as a tri-
angulation, using either the antiprism construction, or balanced stellar subdivisions
(crossing operations), in Sect. 4. The antiprism construction is defined in Sect. 3,
where its face enumeration is studied within the framework of uniform triangula-
tions, introduced in [5]. These results are then applied in Sect. 5 to find combinatorial
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interpretations and recurrences for the basic enumerative invariants of the antiprism
triangulation of the simplex. The face enumeration of antiprism triangulations turns
out to be related to traditional combinatorial themes, such as ordered set partitions,
colorings and the enumeration of permutations by excedances (for example, the num-
ber of facets of sd 4(o,,) is equal to the number of ordered partitions of an n-element
set). Section 5 also proves Theorem 1.2 and describes combinatorially the transfor-
mation of the h-vector of a simplicial complex, under antiprism triangulation. The
proof of Theorem 1.2 is different from all proofs of the corresponding result for the
barycentric subdivision known to the authors; it exploits the recurrence for the A-
polynomial of sd 4(o,,) and uses the concept of interlacing sequence of polynomials.
Theorem 1.3 is proved in Sect. 7; the method generally follows those of [22,27], with
certain complications and shortcuts.

Basic background and definitions, together with some preliminary technical results,
are included in Sect. 2 for simplicial complexes, their triangulations and face enumer-
ation, and for the unimodality and real-rootedness of polynomials and their symmetric
decompositions, and in Sect. 6 for Lefschetz properties of simplicial complexes. Open
problems, other than those proposed earlier in the paper, and further directions for
research are discussed in Sect. 8.

2 Preliminaries

This section includes preliminaries on simplicial complexes and triangulations, their
basic enumerative invariants and the unimodality of polynomials and related proper-
ties. Throughout this paper we set N := {0, 1,2, ...} and [n] := {1, 2, ..., n} for
n € N. We also denote by G,, the symmetric group of permutations of [n] and by | V|
and 2V the cardinality and the powerset, respectively, of a finite set V.

2.1 Simplicial Complexes

We start with several definitions and refer to Stanley’s book [37] for background and
more information.

Let V be a finite set. An (abstract) simplicial complex A on the vertex set V is a
collection of subsets of V thatis closed under inclusion and such that {v} € A forevery
v € V. Throughout this article, we assume that all simplicial complexes are finite. The
elements of A are called faces and the inclusionwise maximal ones are called facets.
The dimension of a face F € A is defined as dim(F) = |F| — 1; the dimension of A,
denoted by dim(A), is the maximum dimension of its faces. Zero-dimensional and
one-dimensional faces of A are called vertices and edges, respectively. We say that
A is pure if all facets of A have the same dimension. As in [5], we denote by o;, the
abstract (n — 1)-dimensional simplex 2V on an n-element vertex set V (often taken to
be [n]).

The cone over A is the simplicial complex consisting of the faces of A, together with
all sets FU{u} for F € A,whereu ¢ V is anew vertex, called the apex. We will denote
this cone by ux A. More generally, the (simplicial) join of two simplicial complexes A
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and A, with disjoint vertex sets is defined as A1 %Ay = {F1UF> : F1 € A1, F> € Az}
Given a face F € A, the link and the star of F in A are defined as the simplicial
complexes

linka(F)={GeA: FUGe A, FNG =g} and
stara(F) ={G e A: FUG € A},

respectively. For G, G2, ..., G, €V we set
(G1,Ga,...,Gy) ={F : F C G, forsomei € [m]}.

In the sequel, A is a pure (n — 1)-dimensional simplicial complex with vertex set V
and F is a field. Let A be the polynomial ring F[x,:v € V] and write xp = HueF Xy
for F C V. The Stanley—Reisner ring (or face ring) of A (over IF) is defined as the
quotient ring F[A] = A/Ia, where In = (xp : F C V, F ¢ A) is the ideal of A
known as the Stanley—Reisner ideal (or face ideal) of A. The ring F[A] is graded by
degree; subscripts on F[A] and its (standard) graded quotients will always refer to
homogeneous components.

A linear system of parameters (1.s.0.p. for short) for F[A] is a sequence ® =
01, ...,6, of linear forms in F[A] such that the quotient F[A]/®F[A] has finite
dimension, as a vector space over [F. The complex A is called Cohen—Macaulay over
F if F[A] is a free module over the polynomial ring F[®] for some (equivalently, for
every) L.s.o.p. ® for F[A] and shellable if there exists alinear ordering G 1, Ga, ..., Gy,
of the facets of A such that for each 2 < j < m, the set

(FCG;:F{ZGiforl <i< j}

has a unique minimal element, with respect to inclusion. Even though shellable sim-
plicial complexes constitute a proper subclass of that of Cohen—Macaulay complexes,
the sets of possible f-vectors for the two classes of simplicial complexes coincide
(see, e.g., [37, Thm. 3.3]).

Given an (n — 1)-dimensional simplicial complex A, the f-vector of A is defined
as the sequence f(A) = (f=1(A), fo(A), ..., fa—1(A)), where f;(A) denotes the
number of i-dimensional faces of A. The h-vector of A is defined as h(A) =
(ho(A), h1(A), ..., h,(A)), where h; (A) is given by the formula

hi(A) =Y (1) (’Z B ’.)fj-l(m,
j=0

and h(A,x) = > 1 h;(A)x' is the h-polynomial of A. Equivalently, the latter can
be defined by the formula
n . .
h(A,x) =Y fin(A)x' (1 —x)"" =Y xlFl —x)" 17 1)
i=0

FeA
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Assume now that A triangulates an (n — 1)-dimensional ball, meaning that the geo-
metric realization of A is homeomorphic to an (n — 1)-dimensional ball (we also say
that A is an (n — 1)-dimensional simplicial ball). The boundary complex of A is then
defined as

0A = (F € A: F C G for aunique facet G € A).

The set A° = A \ A consists of the interior faces of A and h°(A, x) is defined by
the sum on the far right of (1) in which A has been replaced by A°. The following
well-known statement is a special case of [33, Lem. 6.2].

Proposition 2.1 [33] We have x"h(A, 1/x) = h°(A, x) for every triangulation A of
an (n — 1)-dimensional ball.

2.2 Triangulations

Let A and A’ be simplicial complexes. We say that A’ is a triangulation of A if
there exist geometric realizations K’ and K of A" and A, respectively, such that K’
geometrically subdivides K. Let L € K be a simplex and F be the corresponding face
of A. Then, K’ restricts to a triangulation K} of L. The subcomplex A’ of A" which
corresponds to K, is a triangulation of the abstract simplex 2F | called the restriction
of A"to F. The carrier of aface G € A’is the smallest face F € A suchthatG € A',.

A fundamental enumerative invariant of a triangulation of a simplex is the local
h-polynomial. Given a triangulation I' of an (n — 1)-dimensional simplex 2", this
polynomial is defined [36, Defn. 2.1] by the formula

by (@, x) = Y (=" Fh(Tp, x).

FCv

By the principle of inclusion—exclusion,

h(C,x) =Y Lp(Tr,x). )

Fcv

Stanley [36] showed that £y (I", x) has nonnegative and symmetric coefficients, so that
x"0y (T, 1/x) = Ly (T, x), for every triangulation I" of 2, and that it has unimodal
coefficients for every regular triangulation, meaning that I can be realized as the
collection of projections on a geometric simplex of the lower faces of a simplicial
polytope of one dimension higher.

The barycentric subdivision of a simplicial complex A is defined as the simplicial
complex sd(A) on the vertex set A \ {&} whose faces are the chains Fy C F; C
... € Fy of nonempty faces of A. The carrier of such a chain is its top element Fj. To
describe the h-polynomial and local z-polynomial of sd(o;,), we need to recall a few
definitions from permutation enumeration. An excedance of a permutation w € &,
is an index i € [n — 1] such that w(i) > i. Let exc(w) be the number of excedances
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of w. The polynomial

A,,(x): Z xexc(w)

weS,

is called the nth Eulerian polynomial; see [38, Sect. 1.4] for more information on
this important concept. Similarly, the nth derangement polynomial is defined by the
formula

dy(x) = Y xS,

weD,

where ©,, the set of all derangements (permutations without fixed points) in G,,. Then,
h(sd(op), x) = Ap(x)and Ly (sd(oy,), x) = d,(x) forevery n (see [36, Sect. 2]), where
V is the vertex set of o;,.

Let 7 = (fx(i, j)) be a triangular array of nonnegative integers, defined for
0 <i < j. A triangulation A" of a simplicial complex A is called F-uniform if for
every (n — 1)-dimensional face F' € A, the restriction A’F has exactly fr(k, n) faces
of dimension k — 1 for all 0 < k < n. The barycentric subdivision is a prototypical
example of an F-uniform triangulation, for a suitable array J; the antiprism triangu-
lation is another. The class of F-uniform triangulations was introduced and studied
in [5]. The h-polynomial and local A-polynomial of an F-uniform triangulation of
an (n — 1)-dimensional simplex depend only on F and n and will be denoted by
hr(o,, x) and £ (0, x), respectively.

2.3 Polynomials

We recall some basic definitions and useful facts about unimodal and real-rooted
polynomials. A polynomial p(x) = ag + ajx + -+ - + a,x™ € R[x] is called

e symmetric, with center of symmetry n/2, if a; = a,—; forall0 <i <n,
unimodal, with a peak at position k,ifag < a; < ... < ar > aky1 > ... > ay,
alternatingly increasing withrespectton,ifap < a, <a; <ay,—1 < ... < a2,

e y-positive, with center of symmetry n/2, if p(x) = ZL"/OZJ ijf (14 x)"=2J for
some nonnegative real numbers o, ¥1, ..., Y|n/2)-

Gamma-positivity implies palindromicity and unimodality; see [3] for a survey about
this very interesting concept.

A polynomial p(x) € R[x] is real-rooted if all complex roots of p(x) are real, or
p(x) is the zero polynomial. A real-rooted polynomial, with roots «; > oy > ..., is
said to interlace another real-rooted polynomial, with roots 1 > 2 > ..., if

.Sap < Br =< < B

By convention, the zero polynomial interlaces and is interlaced by every real-rooted
polynomial and constant polynomials interlace all polynomials of degree at most one.
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Background on real-rooted polynomials and the theory of interlacing can be found in
[9,15,35] and references therein. We recall here the crucial facts that every real-rooted
polynomial with nonnegative coefficients is unimodal and that (see [15, Lem 3.4])
if two real-rooted polynomials p(x) and g (x) have positive leading coefficients and
p(x) interlaces g (x), then p(x) 4 g(x) is real-rooted as well and it is interlaced by
p(x) and interlaces g(x). Moreover, every symmetric real-rooted polynomial with
nonnegative coefficients is y-positive.

A sequence (po(x), p1(x), ..., pm(x)) of real-rooted polynomials is called inter-
lacing if p;(x) interlaces p;(x) for 0 < i < j < m. The following lemma will be
used for the proof of Theorem 1.2 in Sect. 5.1.

Lemma 2.2 (a) ([8, Lem. 2.3], [39, Prop. 3.3]) Let p1(x), p2(x), ..., pm(x) be real-
rooted polynomials in R[x]. If p1(x) interlaces p,(x) and p;(x) interlaces
Pi+1(x) for alli € [m — 1], then (p1(x), p2(x), ..., pm(x)) is an interlacing
sequence.

(b) (cf. [15, Lem. 3.4]) If (p1(x), p2(x), ..., pm(x)) is an interlacing sequence of
real-rooted polynomials in R[x] with positive leading coefficients, then so is
(P1(x) + p2(x) + -+ P (X)), - oy Pu—1(X) + P (X), P (X)).

(c) Let (p1(x), pa(x), ..., pm(x)) be an interlacing sequence of real-rooted polyno-
mials in R[x] with positive leading coefficients. Then, p1(x)+ p2(x)+- - -+ pm(x)
interlaces c1p1(x) + cop2(x) + - + cmpm(x) for all positive real numbers
c1 < £ ... <cy. Inparticular, p1(x) + p2(x) + - -+ + pm—1(x) interlaces
P1(x) +2p2(x) + - - + mpp (x).

Proof We only need to prove part (c) and for that, we proceed by induction on m.
The case m = 1 being trivial, let us assume that the result holds for a positive integer
m — 1, consider a sequence (p(x), p2(x), ..., pm(x)) and positive real numbers
c1 < ¢ < ... < ¢y as in the statement of the lemma and set s, (x) := p1(x) +
p2(x) + - -+ + pm(x). Since the sequence (p1(x), ..., pm—2(X), Pm—1 + pm(x)) is
also interlacing [15, Lem. 3.4], the induction hypothesis implies that s,, (x) interlaces
cip1x)+- -+ em—2pm—2X)+cm—1(Pm—1x)+ pm(x)). Since s, (x) also interlaces
(cm — cm—1) pm (x) (because each of its summands does so), it must interlace the sum
of these two polynomials. This completes the induction.

For the second statement, let s,,—1(x) := p1(x) + p2(x) + - - - + pm—1(x). From
the first statement s,,—1 (x) interlaces p1(x) +2p2(x) +---+ (m — 1) p;—1(x). Since
sm—1(x) also interlaces mp,, (x), it must interlace the sum of these two polynomials
and the proof follows. O

Every polynomial p(x) € R[x] of degree at most n can be written uniquely in the form
p(x) = a(x) + xb(x), where a(x) and b(x) are symmetric with centers of symmetry
n/2 and (n — 1) /2, respectively. We say that p(x) has a nonnegative symmetric decom-
position with respect to n, if a(x) and b(x) have nonnegative coefficients. Following
[10], we also say that p(x) has a real-rooted symmetric decomposition (respectively,
real-rooted and interlacing symmetric decomposition) with respect to n, if a(x) and
b(x) are real-rooted (respectively, if a(x) and b(x) are real-rooted and x" p(1/x)
interlaces p(x)). By [10, Thm. 2.6], if p(x) has a nonnegative, real-rooted and inter-
lacing symmetric decomposition with respect to n, then b(x) interlaces a(x) and
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each one of them interlaces p(x). The alternatingly increasing property for p(x),
defined earlier, with respect to n is equivalent to the unimodality of both a(x) and
b(x).

3 The Antiprism Construction

The antiprism triangulation of a simplicial complex can be defined geometrically by
iterating the antiprism construction. This section reviews the latter and studies its
face enumeration, in the framework of uniform triangulations [5]. The results will be
applied in Sect. 5, but may be of independent interest too.

Let V = {vy,v2,...,v,} be an n-element set and A be a triangulation of the
boundary complex of the simplex 2V . We pick an n-element set U = {uy, u2, . .., u,)}
which is disjoint from the vertex set of A and denote by I" 4 (A) the collection of faces
of A together with all sets of the form E U G, where E = {u; : i € I} is a nonempty
face of the simplex 2Y for some @ C I C [n] and G is a face of the restriction of A to
the face F = {v; : i € [n]\ I} of 3(2") which is complementary to E. The collection
I 4(A) is a simplicial complex which contains 2¥ and A as subcomplexes; we call
it the antiprism over A. When A = 9(2Y) is the trivial triangulation, the antiprism
r A(B(ZV)) is combinatorially isomorphic to the Schlegel diagram [41, Sect. 5.2] of
the n-dimensional cross-polytope behind any of its facets. For general A, the antiprism
" 4(A) is a triangulation of I 4(3(2")): the carrier of a face E U G, as above, is the
union of E with the carrier of G, the latter considered as a face of the triangulation A
of 3(2"). Since I" 4(3(2")) triangulates the simplex 2", I" 4(A) is a triangulation of
2V as well with boundary complex equal to A.

Remark 3.1 Given a triangulation I of the (n — 1)-dimensional simplex 2", an analo-
gous procedure defines a triangulation, say A 4(I"), of the (n — 1)-dimensional sphere
which contains 2V and T' as subcomplexes and which we may call the antiprism
over I'. This construction was employed in [2, Sect. 4], in order to relate the y-vector
of a flag triangulation of the sphere to the local y-vector of a flag triangulation of
the simplex, and in [4, Sect. 4], in order to interpret geometrically binomial Eulerian
polynomials (see Example 3.5) and certain analogues for r-colored permutations. The
connection between the two constructions is that A 4(I') = T U T 4(aT).

The following statement is closely related to [4, Prop. 4.1].
Proposition 3.2 The simplicial complex T 4(A) triangulates the (n — 1)-dimensional
simplex 2V for every triangulation A of the boundary complex 3(2V). Moreover,
hTa),x) =) 2har, 1/2).

FCV

Proof We have already commented on the first sentence. For the second, using Propo-
sition 2.1 and the definition of the i-polynomial we find that
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XA, 1/x) = (T 4(A), x) = Y« — 0719
Gel 4(A)°

= Y Y x9a—xrlel

G#ECU GeT 4(A)
GNU=E

By definition of I' 4 (A), the inner sum is equal to x'E/h (A f, x), where F C V is the
face of 2" which is complementary to E. Replacing x by 1/x results in the proposed
expression for 4 (I" 4(A), x) and the proof follows. O

We now turn our attention to uniform triangulations of a2v).

Proposition 3.3 For every F-uniform triangulation A of the boundary complex of an
(n — 1)-dimensional simplex 2V

n—1
h(CA(D), x) = (Z)xkhfwk, 1/x) 3)
k=0
n—1 n
= (k>ef<ok, (1 +x)"F = x5, €
k=0
n—1 n
Ly(Ta(A), x) =) <k>zf(ak, (1 +x)"F -1 —x"h, Q)
k=0
n—1 n
h(CA(A), x) = h(A, x) =) <k>zf(ak, (A 4+x)"*—1—x—..—x"5
k=0
(©6)
n—1 n
= <k>hf<ak, 0" = x(x = DR, (7

In particular, if all restrictions of A to proper faces of 2V are regular triangulations,
then the polynomials Ly (I’ 4(A), x) and h(I' 4(A), x) — h(A, x) are unimodal and
h(T A(A), x) is alternatingly increasing with respect ton — 1.

Proof Equation (3) follows directly from Proposition 3.2. To deduce (4) from that, we
use (2) to express hr (o, 1/x) in terms of local h-polynomials, apply the symmetry
property of the latter and change the order of summation to obtain

[k
M ( .)ef(a,, x)
0 J

n—1 k n—1 k

ACA) ) =) <Z>"k > (k.)e]-‘(aj’ n =3y (Z)
k=0 im0 M k=0
n—1 n—1 n k .
= tr(oj. )Y <k> ( .)xk]
=0 k=) /

j=
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J

For the fourth and fifth step we have used the identity (}) (];) = (;’) ® :i) and the
binomial theorem, respectively.

Alternatively, (4) follows from an application of Stanley’s locality formula [36,
Thm. 3.2] to T 4(A), considered as a triangulation of the antiprism I" 4(3(2")) over
the boundary complex of 2V. Equation (5) follows when combining (4) with

n—1

n
h(C4(A), x) = Ly (T 4(A), x) + Y (k)ﬁf(dk, x), ®)

k=0
the latter being (2) applied to I" 4(A). Equation (6) follows from (4) and

n—1

h(A,x):Z(Z)Z}-(ak,x)(l+x+x2+~--+x"_k_1), ©9)
k=0

which is also a consequence of [36, Thm. 3.2]; see [20, (4.2)]. Equation (7) follows
from (6) by expressing £ #(o%, x) in terms of the s-polynomials /& 7 (o}, x), changing
the order of summation and computing the inner sum, just as in the proof of (4); we
leave the details of this computation to the interested reader.

For the last statement we note that, by the regularity assumption, £ (o, x) is
(symmetric with center of symmetry k/2 and) unimodal for 0 < k < n. As a result,
(5) and (6) imply the unimodality of £y (I" 4(A), x) and h(I" 4(A), x) — h(A, x),
respectively, and (6) and (9) imply that the symmetric decomposition

h(TA(A), x) = h(A, x) + (h(T 4(A), x) — h(A, x))

of h(I" 4(A), x) withrespect to n — 1 is nonnegative and unimodal. The latter statement
is equivalent to 2(I" 4(A), x) being alternatingly increasing. O

Remark 3.4 Let A be as in Proposition 3.3. Since coning a simplicial complex does not
affect the ~-polynomial, the right-hand side of (9) is also an expression for 2 (ux A, x),
where u * A denotes the cone of A with apex u. The formula

n—1

huxAx) =Y (Z)h}-(ok,x)(x — pynke

k=0

can be derived from that by expressing (0%, x) in terms of the A-polynomials
hr(oj, x), changing the order of summation and computing the inner sum, just as
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in the proof of (4) and (7) or, alternatively, by adapting the argument in the proof of
Proposition 3.2. When A is the barycentric subdivision of dg;,,, this yields the recursion

n—1

An) =y <Z>Ak(x>(x -1y

k=0
for the Eulerian polynomial A, (x), valid for n > 1. This appears as (2.7) in [16].

Example 3.5 Suppose again that A is the barycentric subdivision of do,. Then (3)
yields that

n—1

n—1
hTaA).x0) =Y (”)xkAk(l/x) =1+x) (Z)Ak(x) = Ap(x) — xA,(x)
k=1

k=0 k

and h(T 4(A), x) — h7(30,) = Ap(x) — (1 + x) A, (x), where

A () i=1+4x ]; (Z)Ak(x)

is the nth binomial Eulerian polynomial studied, for instance, in [4,32]. From (8)
we compute further that £y (I" 4(A), x) = Zn(x) — (1 4+ x)A,(x) — d,(x), where
dy(x) = Lx(op, x) is the nth derangement polynomial (see Sect. 2.2).

Therefore, by Proposition 3.3, Xn (x) — xA,(x) is alternatingly increasing with
respectton — 1 and Zn (x) — (1 +x)A, (x) is symmetric and unimodal.

4 The Antiprism Triangulation

This section briefly describes combinatorially and geometrically the antiprism trian-
gulation of a simplicial complex. For more information we refer to [19, Appendix A.1]
and [21], where these descriptions are given in variant forms. We first review the cor-
responding descriptions of the barycentric subdivision, which we will parallel to treat
the antiprism triangulation.

Let A be a simplicial complex. Consider the (simple, undirected) graph G(A) on the
node set of nonempty faces of A for which two nodes are adjacent if one is contained
in the other. The barycentric subdivision sd(A) is defined as the cligue complex of
G(A), meaning the abstract simplicial complex whose vertices are the nodes of G(A)
and whose faces are the sets consisting of pairwise adjacent nodes. This is equivalent
to the definition already given in Sect. 2.2.

Geometrically, sd(A) can be described as a triangulation of A as follows. Assume
that all faces of A of dimension at most j have been triangulated, for some j € N.
Then, triangulate each (j + 1)-dimensional face of A by inserting one point in the
interior of that face and coning over its boundary, which is already triangulated. By
repeating this process, starting at j = 0 and moving to higher dimensional faces, we
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Fig.2 Antiprism triangulation of the cone over the boundary of the 2-simplex

get a triangulation of A which is combinatorially isomorphic to sd(A). Alternatively,
sd(A) can be constructed by applying successively the operation of stellar subdivision
to each face of A of positive dimension, starting from the facets and moving to lower
dimensional faces in any order which respects reverse inclusion. A stellar subdivision
onaface F € A replaces star (F) by the join of link 5 (F) with the cone over 3(25).

The antiprism triangulation can be defined similarly, if the nonempty faces of A
are replaced by pointed faces and coning is replaced by the antiprism construction of
Sect. 3. Recall that a pointed subset of a set V is any pair (S, v) suchthatv € S C V.
Similarly, a pointed face of a simplicial complex A is any pair (£, v) such that F € A
is a face and v € F is a chosen vertex.

Definition 4.1 Let A be a simplicial complex. We denote by G 4(A) the (simple,
undirected) graph on the node set of pointed faces of A for which two distinct pointed
faces (F, v) and (F’, v’) are adjacent if

e F=F or
o FC F'andv' € (F'\ F),or
e F/C Fandve (F\F.

The antiprism triangulation of A, denoted by sd 4(A), is the abstract simplicial com-
plex defined as the clique complex of G 4(A).

Examples of antiprism triangulations are shown in Figs. 1 and 2.

The faces of sd 4(A) can be described explicitly, in combinatorial terms [21,
Sect. 2]. Given a set S, an ordered set partition (or simply, ordered partition) of §
is any sequence of nonempty, pairwise disjoint sets (called blocks) whose union is
equal to S. A multi-pointed ordered partition of S is defined as a pair (7, 7), where
w = (B1,Ba,...,By)and t = (Cy, Ca, ..., Cy) are ordered partitions of S and of a
subset of S, respectively, with the same number of blocks, such that C; is a nonempty
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subset of B; for every i € [m]. We think of such a pair as an ordered partition of S,
together with a choice of a nonempty subset for every block. The sum of the cardinal-
ities of these subsets C; (total number of chosen elements) will be called the weight
of (m, 7). Then, the (k — 1)-dimensional faces of sd 4(A) are in one-to-one corre-
spondence with the multi-pointed ordered partitions of faces of A of weight k. More
specifically, the multi-pointed ordered partition (z, t), with 7 = (By, B2, ..., By)
and t = (Cy,Ca,...,Cy), corresponds to the face of sd 4(A) with vertices the
pointed faces (F,v) of A, where F = By U By U --- U B; for some i € [m] and
v € C;. The faces of the antiprism triangulation of the simplex 2" are the multi-
pointed ordered partitions of subsets of V; they will be referred to as multi-pointed
partial ordered partitions of V. Note that the facets of sd 4(A) are in one-to-one cor-
respondence with the ordered partitions of the facets of A (since all elements in the
blocks should be chosen). Figure 1 shows the antiprism triangulation of the 2-simplex,
including some faces labeled by multi-pointed ordered partitions.

As was the case with barycentric subdivision, sd_4(A) can be constructed geomet-
rically by applying the antiprism construction of Sect. 3 to its faces, starting from the
edges and moving to faces of higher dimension in any order which respects inclusion.
This process is slightly different from the one in [19,21] which uses crossing operations
on the faces of A instead, starting from facets and moving to faces of lower dimension
in any order which respects reverse inclusion. A crossing operation (also known as
a balanced stellar subdivision [7]) on a face F' € A replaces stara (F) by the join
of link s (F) with the antiprism (as defined in Sect. 3) over 8(2). Both approaches
result in a triangulation which is combinatorially isomorphic to sd 4 (A). Under this
isomorphism, the carrier of a multi-pointed ordered partition of a face F' € A is equal
to F. As aresult, the interior faces of the antiprism triangulation of the simplex 2% are
in one-to-one correspondence with the multi-pointed ordered partitions of F'. A type of
operation more general than stellar and balanced stellar subdivision was introduced in
[18] and was applied there to all faces of a fixed dimension to produce a triangulation
of A.

5 Face Enumeration

This section studies the rich enumerative combinatorics of antiprism triangulations
and proves Theorem 1.2. Following the notation of [5], we denote by & 4 (o, x) and
£ 4(0y, x) the h-polynomial and local /-polynomial of sd 4(o,,), respectively. These
two polynomials play an important role in this study. The main difficulty for proving
the real-rootedness of & 4(oy, x) comes from the fact that we know of no simpler
recurrence relation for it than that of Proposition 5.1. Some of the combinatorial
interpretations of &4 (0, x) extend to describe the effect of the antiprism triangulation
on the A#-polynomial of any simplicial complex.

5.1 The Antiprism Triangulation of a Simplex

As discussed in Sect. 4, the number of (k — 1)-dimensional faces of the antiprism
triangulation sd 4 (0,,) is equal to the number of multi-pointed partial ordered set par-
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titions of [n] of weight k. We now give a recurrence and combinatorial interpretations
for the h-polynomial of sd 4 (oy,). For the first few values of 7,

1, if n =0,

1, ifn=1,

1+ 2x, if n=2,

b x) = 1 4 9x + 3x2, if n =3,
' 1+ 28x + 42x2 + 4x3, if n =4,

1+ 75x + 310x2 4+ 150x3 4 5x%, if n =35,

1+ 186x + 1725x2 + 2300x3 + 465x* + 6x7, if n=6,

1+ 441x + 8211x2 4 23625x3 + 13685x* + 1323x° 4+ 7x°, if n = 7.

We first need to introduce some more terminology. Let ¢ = (7, ) be a multi-pointed
partial ordered set partition of [n]. Thus, # = (B1, B, ..., By) is an ordered partition
of a subset S of [n] and T = (Cy, Ca, ..., Cy), where C; is a nonempty subset of B;
for every i € [m]. We will say that ¢ is proper if C; is a proper subset of B; for every
i € [m]. We will use the same terminology with the adjective ‘partial’ dropped, when
S = [n]. The excedance set of a permutation w € G, is defined as the set of indices
i € [n — 1] such that w(i) > i; see [13] for more information on this concept.

Proposition 5.1 (a) We have

n—1

haonx) =3 (’Z)xwm, 1/x)

k=0

for every positive integer n.
(b) The coefficient of x* in h_4(0,, x) is equal to:

o the number of proper multi-pointed partial ordered set partitions of [n] of weight k,

e the number of ways to choose a subset S C [n] and an ordered set partition w of
S and to color k elements of S black and the remaining elements white, so that no
block of m is monochromatic,

o the number of ordered set partitions m = (B1, Ba, ..., By) of [n] for which the
union U}Z{ 2l B; has exactly k elements,

° (Z) times the number of permutations in S, with excedance set equal to [k],

o the explicit expression

k+1
(’;) DD Sk + 1,

j=1

where S(n, k) are Stirling numbers of the second kind.
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Proof Part (a) follows from Proposition 3.3, as a special case of (3). For part (b), we
first note that from (5) of the same proposition and (2) we get

n—1
NCIOEDY <::l)£,4((7m7x)((1 +x)" =1 = X"

m=0

forn > 1 and

hA(Gn,X) = Z <:1)€.A(Uma x),

m=0

respectively. By induction on n, the former equality implies that the coefficient of x¥
in £ 4 (0,, x) is equal to the number of proper multi-pointed ordered set partitions of
[n] of weight k. This and the latter equation yield the first interpretation of s 4 (o, x)
claimed in part (b). The second interpretation is a restatement of the first (where
black elements correspond to the chosen elements in the blocks of the multi-pointed
partition).

The third interpretation can be deduced from the first as follows. Let Q (n, k) denote
the collection of proper multi-pointed partial ordered partitions of [n] of weight k.
Each element of Q(n, k) is a triple consisting of a subset S C [n], an ordered partition
m = (By, B2, ..., B,) of S and a choice of nonempty proper subset C; of B; for every
i € [r], such that the union U;Zl C; has cardinality k. From such a triple one can define
an ordered partition of [n] by listing the blocks Cy, ..., C., B1\C1q, ..., B\ C; in this
order and, if nonempty, adding [r] \ S at the end as the last block. It is straightforward
to verify that the resulting map is a bijection from Q(n, k) to the collection of ordered
partitions of [n] described in the third proposed interpretation.

For the last two claimed interpretations, let us denote by c(n, k) the number of
permutations in &,, with excedance set equal to [k], for k € {0, 1,...,n}. Then,
c(n,n) = 0 and, as a consequence of Lemma 2.2 and Theorem 2.5 in [13] (see also
Sect. 3 of this reference), c(n, k) = c(n,n — k — 1) and

k
k+1
c(n,k):l—l—Z( ; >c(n—k—1+m,m)
m=1

fork € {0, 1,...,n— 1}. Inview of c(n, k) = c(n, n — k — 1), the latter equality can
be rewritten as

n—k—1

cm =1+ (n;k>c(k+m,m). (10)
m=1

On the other hand, writing & 4(0,, X) = > j_o p.A(n, k)x* for n € N, the recursion
of part (a) gives that
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n—1
patn k)= <:1>p,4(m,m —k)

m=k
fork € {0, 1,...,n — 1}. Setting

n

pA(n, k) = (k)ﬁA(n, k),

the last recursion can be rewritten as

n—1
(1)pae= X (1) (3 )pastnm =, e,

=k
n—1 n—k n—k—1 n—k
patn k=73 (m_k)m(m,m—m = ( N )ﬁA(k+m,m>.
m=k m=0

Comparing this recursion to (10) we get that p 4(n, k) = c(n, k) for all n and all
0 < k < n. This proves the next to last interpretation, claimed in part (b). The last
interpretation follows from this and the explicit formula for c(n, k) obtained in [13,
Prop. 6.5]. O

The following statement is the main result of this section.

Theorem 5.2 The polynomial h 4(o,, x) is real-rooted and interlaces h 4(0p41, X)
for every n € N. Moreover, h 4(0,,, x) has a nonnegative, real-rooted and interlacing
symmetric decomposition with respect to n — 1, for every positive integer n.

Proof We consider the polynomials

n

s ()= 3 (”)xk”hA(oHr, 1/x),

k=0 k

shown in Table 1 for small values of n, r € N. By part (a) of Proposition 5.1 and the
definition of g, ,(x) we have

qn.0(x) = h g (0n, x) +x"h (00, 1/x), (11)
Clo,r(x) = xrhA(Ur, l/x) (12)

for every positive integer n and every r € N, respectively. We claim that
Q= (@n,0(X), gn—1,1(3), - . ., q1,n—-1(x), 40,2 (X), G0,n+1(x))

is an interlacing sequence of real-rooted polynomials for every n € N. In particular,
selecting the first and last two terms, we have the interlacing sequence

(h A(Gn, X) + X" h (0w, 1/x), x" B g(0n, 1/%), X" T h g (0011, 1/))
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of real-rooted polynomials for every n € N. Before we prove the claim let us
observe that, since x"h_4(0y,, 1/x) and x"T'h 4(6,41, 1/x) have degrees n and
n + 1, respectively, the statement that the former polynomial interlaces the latter
is equivalent to the statement that 4 4 (o, x) interlaces h_4(0y,+1, x). Similarly, since
h p(on, x) + x"h g(0,, 1/x) is symmetric of degree n, the statement that this poly-
nomial interlaces x"*'h 4 (0,41, 1/x) is equivalent to each of the statements that the
same polynomial is interlaced by x"*h 4(0,,+1, 1/x) and that it interlaces & _4 (0,41, x)-

We now prove the claim by induction on n. This is true forn = 0, since Qg = (1, x).
We assume that it holds for n — 1 € N. The standard recurrence for the binomial
coefficients shows that g, (X)) = gn—1.r(x) + gn—1.r+1(x) for every r € N. Writing
this in the form

Qn—r,r(x) = ('In—r—l,r(x) + Qn—r—l,r-i-l(x)

and iterating, we get

CIn—r,r(x) = 6]n—r—l,r(x) + Gn—r—2,r+1 x)+--+ qo,n—l(x) + qo,n (x) (13)

forr € {0, 1, ..., n}. This means that the first n + 1 terms of Q,, are the partial sums
of the reverse of Q,_; and hence they form an interlacing sequence, by part (b) of
Lemma 2.2. Thus, by part (a) of this lemma, to complete the induction it suffices to
show that g, o(x) and go_, (x) interlace go ,+1(x). As already discussed, and in view
of (11) and (12), this is equivalent to showing that & 4 (o, x) + x"h 4(oy, 1/x) and
h 4 (oy, x) interlace h 4(oy,+1, x). To verify this we note that, setting » = 0 in (13),
comparing with (11) and (12), and replacing n with n 4 1, we get

qn,0(X) + gn-1,1(x) + -+ + qo.n(x) = h4(On41, X). (14)

Since the sum of the terms of an interlacing sequence is interlaced by the first term, we
conclude that i 4 (0, x) + x"h 4(0,, 1/x) interlaces h_4(0,,+1, x). Finally, applying
part (c) of Lemma 2.2 to the interlacing sequence Q,,_; we conclude that the sum of
the first n terms of this sequence, which equals % 4 (o, x), interlaces the sum of the
partial sums of the reverse of Q,_1, which equals /& _4(0y,+1, x). This completes the
proof of the claim.

Finally, note that x"h 4(oy, 1/x) and x”+1hA(0n+1, 1/x) are the last two terms
of Q,. Since this sequence is interlacing, the two polynomials are real-rooted and
the former interlaces the latter. As already discussed, this means that z 4(0,, x) is
real-rooted and interlaces & _4(0y+1, x). Similarly, the sum of the first n terms of the
sequence Q,_ interlaces the last term. In view of (12) and (14), this means that
h 4 (oy, x) interlaces x"*h 4 (o, 1/x) and, equivalently, that & 4 (o, x) is interlaced by
x""'h 4(0n, 1/x). Since we already know from Proposition 3.3 that s _4 (0, x) has a
nonnegative symmetric decomposition with respect to n — 1, this decomposition must
be real-rooted and interlacing by [10, Thm. 2.6]. O

Let us write 6 4 (0, x) := hq(0y, x) — h 4(d0,, x). As mentioned in the proof of
Proposition 3.3, the expression h_4(0;,, x) = h 4(d0,, x) + 0 4(oy, x) is the (nonneg-
ative) symmetric decomposition of &4 (o, x) with respect ton — 1. Thus, 4 (3o, x)
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Table 1 Some polynomials gy, (x)

r=0 r=1 r=2 r=3
n=01 by 2x + x2 3x + 9x2 + x3
n=1 1+x 3x + x2 5x + 10x2 + x3 7x 4 51x2 +29x3 4 x4
n=2 1+4x +x2 8x + 11x2 +x3 12x + 61x% +30x3 4 x*

n=3 1+12x+12x24x3 20x4+72x24+31x34x*

and 0 4 (0, x) are real-rooted by Theorem 5.2. Although the latter appears to be a very
special case of Conjecture 1.1, according to [5, Thm. 1.2], it would imply the conjec-
ture if the following statement (which we have verified computationally for n < 20)
also turns out to be true.

Conjecture 5.3 The polynomial h 4(0,—1, x) interlaces 0 (o, X) for every positive
integer n.

Remark 5.4 The polynomial & 4(o,,, x) + x"h 4(0y, 1/x), shown to be real-rooted in
the proof of Theorem 5.2, is equal to the k-polynomial of a flag triangulation of the
(n — 1)-dimensional sphere. Indeed, let I' = sd 4(0;,), so that h(T", x) = h_4(op, X).
Then, in the notation of Sect. 3, in particular Remark 3.1, A = A 4(I'") is a flag
triangulation of the (n — 1)-dimensional sphere and A(A, x) = h([", x) + h°(T, x) =
h(T, x) +x"h(T', 1/x) = h q(opn, x) + x"h g(0,, 1/x).

Remark 5.5 The polynomial

n

PA(On, X) 1= Z pan, k)xk = Zc(n, k)xk,

k=0 k=0

where, as in the proof of Proposition 5.1, c¢(n, k) is the number of permutations in
&, with excedance set equal to [k], was shown to be symmetric and unimodal in [13,
Sect. 3]. For the first few values of n,

1, if n=1,
14+ x, if n=2,
14 3x + x2, if n =3,
PAOn, X)) = 3 1+ Tx + Tx? + x3, if n=4,
14+ 15x +31x% + 15x3 + x*, if n=>5,
14 31x + 115x2 4+ 11523 4+ 31x* + %2, if n=6,
1 4+ 63x 4+ 391x2 + 675x3 +391x* +63x7 +x°, if n=7.

The following statement is stronger than the real-rootedness of & 4 (o, x).

Conjecture 5.6 The polynomial p p(oy,, x) is real-rooted and interlaces p A(0p+1, X)
for every n € N. In particular, p A(oy, x) is y-positive for every n € N.
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5.2 The Local h-Polynomial

We now focus on the local k-polynomial £ 4(o,, x) of the antiprism triangulation
of o,,. For the first few values of n,

1, if n=0,
0, ifn=1,
2x, ifn=2,

04(0n x) = 3x + 3x2, if n =23,

’ 4x + 30x% + 4x3, if n =4,
5x 4 130x2 4 130x3 4 5x4, if n =75,
