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Abstract
Monsky’s celebrated equidissection theorem follows from his more general proof of
the existence of a polynomial relation f among the areas of the triangles in a dissection
of the unit square. More recently, the authors studied a different polynomial p, also a
relation among the areas of the triangles in such a dissection, that is invariant under
certain deformations of the dissection. In this paper we study the relationship between
these two polynomials. We first generalize the notion of dissection, allowing triangles
whose orientation differs from that of the plane.We define a deformation space of these
generalized dissections and we show that this space is an irreducible algebraic variety.
We then extend the theorem of Monsky to the context of generalized dissections,
showing thatMonsky’s polynomial f can be chosen to be invariant under deformation.
Although f is not uniquely defined, the interplay between p and f then allows us to
identify a canonical pair of choices for the polynomial f . In many cases, all of the
coefficients of the canonical f polynomials are positive. We also use the deformation-
invariance of f to prove that the polynomial p is congruent modulo 2 to a power of
the sum of its variables.
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1 Introduction

In 1970 Paul Monsky [9] proved the following theorem:

Theorem Fix a dissection of the unit square into n triangles, and denote the areas of
the triangles by a1, . . . , an. Then there is an integer polynomial f in n indeterminates
such that f (a1, . . . , an) = 1/2.

A corollary is Monsky’s famous “equidissection” theorem: if a square is dissected into
n triangles of equal area, then n must be even. This follows because there is no integer
polynomial in n variables with f (1/n, . . . , 1/n) = 1/2 when n is odd.

Happy 50th birthday, Monsky’s Theorem!

In the half-century since its publication, the equidissection theorem has inspired
a significant amount of mathematics, including numerous other equidissection theo-
rems in the plane, higher dimensional analogs, approximation theorems, and more.
Relatively little attention has been focused on the polynomial f , however.

A dissection of a square is defined as a finite collection of triangles in the plane
whose interiors do not intersect and whose union is the square. Monsky’s theorem is
a statement about dissections.

Over the years it has occurred to several people to first fix the combinatorics of a
dissection, and then try to understand which collections of areas are realized by the
triangles. We heard of this approach from Joe Buhler, whose student Adam Robins
wrote [11] about it, and from Serge Tabachnikov, whose students Joshua Kantor and
MaxMaydanskiywrote [6] about it. In this direction,we established in [1] the existence
of a nonzero integer polynomial p, different than f , associated to certain dissections
which also has one variable for each triangle and which vanishes, rather than taking
the value 1/2, on the input (a1, . . . , an). By construction p depends only on the
combinatorics of the dissection, so the same p also vanishes at any tuple of areas
arising by deforming the dissection; indeed under the hypotheses of our theorem the
zero set of p is exactly the area variety of the triangulation, which is the (closure
of the) collection of realizable areas. For elementary reasons p is irreducible and
homogeneous.

The polynomials p and f are our primary objects of study. These polynomials are
closely related, although they have different roles in the theory. In [1] we called p a
Monsky polynomial, but here we emphasize the distinction and the interplay between
the two, sowe give them different names: p is the area polynomial and f is theMonsky
polynomial. Here are two examples which make numerous appearances throughout
the paper.

Example 1.1 The dissection in Fig. 1A has area polynomial p = A − B + C − D
(or its negative), and Monsky polynomial f = A + C (or f̃ = B + D, or f + p =
2A− B+2C − D, etc.). One can easily see that regardless of where the central vertex
is placed, the polynomial p evaluates to zero, and as long as the square has unit area,
f , f̃ , and f + p all evaluate to 1/2. For any square, f evaluates to half the total area.

123



Discrete & Computational Geometry (2022) 67:947–983 949

A

B

C

D

(A) Example 1.1:
p = A − B + C − D
f = A + C
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(B) Example 1.2:
See text for p and f.

Fig. 1 Seminal examples: p evaluates to zero and f evaluates to 1/2

Example 1.2 Less apparently, the dissection in Fig. 1B has

p = A2 + C2 + E2 − 2AC + 2AE + 2CE − B2 − D2 − F2 − 2BD − 2BF + 2DF,

f = A2 + C2 + E2 + 2AE + 2CE + 2DF + (A + C + E)(B + D + F).

Again, regardless of the placement of u and v, p evaluates to zero and f evaluates to
half the area of the square.

The fact that p is well defined1 essentially reflects the correctness of a heuristic
dimension count, whereasMonsky’s polynomial f provides number-theoretic (specif-
ically, mod 2) information. However, in Monsky’s theorem a dissection is treated as a
static object, and invariance of f under deformation is not guaranteed. Think of a dis-
section in which some triangles in the middle, say i and j , have areas summing to 1/2.
Then the polynomial f (x1, . . . , xn) = xi + x j satisfies the conclusion of Monsky’s
theorem, but the sum ai + a j could easily change when the dissection is deformed.
One of our main goals is to extend Monsky’s theorem to show that f can be made
deformation-invariant, as it is in the examples we have already seen.

It turns out that the act of deforming a dissection is trickier than it may appear at
first glance, and it deserves to be taken seriously. One issue is that the vertices may
be constrained to lie on certain line segments, so in general the vertices cannot move
freely and independently of each other. Another issue is that one is forced to confront
the possibility that triangles might degenerate, or turn upside-down. In the first part of
this paper we develop a framework for handling these issues, building on our work in
[1]. The main idea is to view a dissection as the image of a certain map which itself
has a natural deformation space. We are led to a notion of a generalized dissection,
and we will see that there are generalized dissections that cannot be deformed back
into (classical) dissections. See Fig. 2 (right), where there are three triangles, one of
which is upside-down. Examples like this turn out to be crucial to our theory.

Our main theorem about these deformation spaces, which we call X , is that they
are irreducible rational varieties. This is proved in Sect. 4. Our proof is more subtle
than we anticipated, because we encountered fundamental issues about arrangements
of points and lines that required some finesse to mitigate. In Sect. 5 we discuss some

1 up to sign.
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Fig. 2 A dissection (left) and a generalized dissection (right) of a square

questions that arose in this process and their relationship with the well-studied areas
of point/line configurations and oriented matroids.

A different method for treating the problem of deformations has been proposed and
studied in [7] by Labbé et al., who were interested in approximating equidissections.

In the second part of the paper, with the foundations now established, we are able to
investigate p and f . Our main technical results (Theorems Monsky+ and Monsky++)
extend Monsky’s theorem to the deformation space X , showing that f can indeed be
chosen to be invariant under deformation. That is, we give algebraic versions of the
theorem, showing that for any (generalized) dissection, not only do the areas of the
triangles satisfy a polynomial relation, but also the formulas for the areas satisfy a
polynomial relation. Thus we may think of f as a “dynamic” object, as we did already
with p.

Once both p and f are thusly defined, we are finally able to rigorously explore the
relationships between the two. In Sects. 9 and 10 we prove our main results about p
and f by exploiting features of each polynomial to deduce information about the other.
Specifically, recall from Example 1.1 above that a given dissection has many Monsky
polynomials. The canonicalness of {p,−p} allows us to define a canonical pair { f , f̃ }
with extra known and conjectured properties; for example these have minimal degree
among deformation-invariant polynomials satisfying Monsky’s theorem. These poly-
nomials also often have non-negative coefficients, an observation we will return to
in Sect. 11. In the other direction the number-theoretic content of f transports to p,
giving additional information about its structure. For instance we show that mod 2, the
polynomial p is congruent to a power of the sum of the variables. We close in Sect. 12
with a question about equidissections.

One of the pleasant features of the present setup is that we minimize the amount of
combinatorial information needed to parameterize the deformation space of a gener-
alized dissection. This information is often implicit in a drawing of the dissection, and
this setup simplifies the computation of p and f relative to what we did in [1]. The
job is still inherently computationally expensive, but the cost now essentially depends
only on the number of triangles in the dissection, and not how much degeneracy there
is.

Many mysteries remain about these polynomials.
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Part 1. Deforming Dissections

In this part of the paper we develop the language of generalized dissections and con-
strained triangulations, which we use to define deformation spaces of dissections.

2 Generalized Dissections

Classically, a dissection of a square is a finite collection of triangles in the (Euclidean)
plane whose interiors do not intersect and whose union is the square. Our first goal
here is to give a more general definition that allows for deformations. We start by
setting some terminology.

We work in the affine plane C2. (The reader who prefers to think of everything
taking place in R2 is encouraged to do so; we prove in Sect. 4.4 that this makes no
difference to our theory.)

If S is a cyclically ordered finite set S = (s1, . . . , sn) then we define an edge of S
to be any of the ordered pairs (si , si+1), with indices taken mod n.

A polygon, or n-gon, is a cyclically ordered set of n ≥ 3 distinct points inC2, called
vertices. A 3-gon is also called a triangle; thus a triangle comes with an orientation.
A polygon is totally degenerate if its vertices are collinear, degenerate if it has three
consecutive vertices (in the cyclic order) that are collinear, and non-degenerate if no
three consecutive vertices are collinear. An abstract polygon, or abstract n-gon, is a
2-cell whose boundary circle consists of n 0-cells (vertices) and n 1-cells (also called
edges).

Corresponding to any polygon� (including degenerate and totally degenerate ones)
is an abstract polygon whose vertices are labeled by the points of� (in the same cyclic
order). Associated to a family of polygons we can construct an abstract 2-dimensional
complex from a corresponding family of abstract polygons by gluing together along
edges: the edge (v,w) of one polygon is glued to the edge (w, v) of another.

Notice that we have chosen to label the vertices of the abstract polygons and com-
plexes by the points themselves. For example, the vertex of the abstract polygon
corresponding to (1, 1) is called (1, 1).2

Definition 2.1 Let � be a polygon in C2. A generalized dissection of � consists of a
finite set Triangles and a finite set Constraints such that:

(i) Each element of Triangles is a non-degenerate triangle in C2.
(ii) Each element of Constraints is a totally degenerate polygon inC2, each of whose

vertices is a vertex of at least one triangle in Triangles.
(iii) Any two distinct constraints share at most one vertex.
(iv) The associated 2-complex built from abstract polygons corresponding to the

union of Triangles and Constraints is an oriented disk with boundary equal to �.

Note that � is allowed to be degenerate or totally degenerate. We think of the ele-
ments of Triangles as the triangles in the dissection, except now they are oriented.
Elements of Constraints are interpreted as collinearity constraints; item (iii) ensures

2 Another reasonable name for this vertex would have been v(1,1), which has the advantage of emphasizing
the abstract nature of this vertex, but the disadvantage of being clearer.
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Fig. 3 A dissection and its associated 2-complex. The shaded cells are the poofagons

(A) A dissection. (B) A generalized
dissection that is
not a dissection.

(C)      A dissection with
a constraint.

(D) Not a dissection.

Fig. 4 Some basic examples

that the constraints are maximal. The abstract polygons corresponding to elements of
Constraints are called poofagons. (These may or may not be triangles, but they are not
elements of Triangles.) Item (iv) implies that we can interpret the data as the image
of a PL map from a cellulated disk into the plane, under which the poofagons have
degenerated into line segments. (Not every such map gives a generalized dissection
though, as illustrated below by Fig. 4D.)

Often, the sets Triangles and Constraints are implicitly defined by a drawing. For
classical dissections this is always the case, as we prove in Proposition 2.6 below.
An example of a classical dissection is shown in Fig. 3, along with the 2-complex
associated to the corresponding (implicitly defined) generalized dissection. The gen-
eralized dissection has four poofagons, one quadrilateral and the rest triangles, shown
as shaded cells.

One should acquaint oneself with a few more examples before proceeding. Some
basic ones are shown in Fig. 4, and we separately highlight an especially important
one in Fig. 5.

Example 2.2 (cf. Example 1.1) Figure 4A is a dissection with four triangles; it is also
a generalized dissectionwith the same four triangles (now oriented) and no constraints.
The corresponding abstract triangles glue together to form a simplicial complex of
which this is a drawing. Figure 4B resembles 4A, except the central vertex has been
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(A) (B)

Fig. 5 The ACE example: a generalized dissectionwith constraints. This cannot be deformed to a dissection

dragged outside the square. Here and elsewhere, we have indicated the vertices with
small dots in order to avoid potential confusion with edges that intersect at points of
the plane that are not vertices. This is not a dissection. It is a generalized dissection
with four triangles, one of which is oriented differently from the plane. As in Fig. 4A,
there are no constraints. The corresponding abstract triangles form the same simplicial
complex as Fig. 4A.

Example 2.3 (cf. Example 1.2) Figure 4C is a dissection, both classical and gener-
alized, with four triangles. The generalized dissection has a constraint, which is a
(totally degenerate) quadrilateral. The associated cell complex can be triangulated in
two ways by choosing a diagonal of this quadrilateral; one of the resulting simplicial
complexes is shown later in Fig. 7.

Example 2.4 Figure 4D is not a generalized dissection at all. Although its faces “can-
cel,” the flattened tetrahedron pinned to the center of the square makes it impossible
to describe this as a generalized dissection. In particular, the simplicial complex made
from the obvious eight (abstract) triangles is homeomorphic to the one-point union of
a disk and a sphere.

Example 2.5 (the ACE example, cf. Example 1.2) Finally, Fig. 5A is a generalized
dissection with three triangles and three constraints. It is an interesting specimen. It
takes a moment to identify the triangles and the constraints (with the correct orien-
tations). There are three triangles, one of which is upside-down. The reader should
verify that this this does indeed satisfy the definitions of a generalized dissection, with
the associated simplicial complex shown in Fig. 5B, with the poofagons shaded. (This
is the same 2-complex shown later, in Fig. 7.) One feature of this example is that it
cannot be deformed into a (classical) dissection in which all three triangles remain
alive.

Proposition 2.6 (D � D) The triangles of any (classical) dissection of a square,
when oriented counterclockwise in R2, comprise the set Triangles of a generalized
dissection.

Proof Let D be a dissection, and let Triangles be the set of triangles, each oriented
counterclockwise. We need only to specify the collinearity constraints.
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v

Fig. 6 A non-generic dissection, and two generic dissections

Recall that D consists of triangles in R2. Say that a vertex of D is constrained if it
is in the interior of an edge of (a triangle of) D and unconstrained otherwise. Define
a segment of D to be a line segment in the plane that is contained in the union of the
boundaries (edges) of the triangles of D and contains no unconstrained vertex in its
interior. Finally a segment is calledmaximal if it is not contained in any larger segment
and it contains at least three vertices of D.

For each maximal segment M , we define a constraint containing exactly those
vertices that are contained in M . To determine the cyclic order, we use the fact that
every vertex v in the interior of M is constrained, so all edges containing such v (and
not contained in M) are on the same side of M . Precisely, we traverse the boundary
of a small regular neighborhood of M in the plane, counterclockwise. Each time
we cross an edge of D, we record the vertex in M that the edge contains. After
eliminating duplicates, we have a cyclic ordering on the vertices contained in M . The
set Constraints consists of the cyclically ordered sets constructed in this way.

It is now easy to see that we have a generalized dissection. Item (iii) of the defini-
tion is satisfied since constraints intersect exactly where the corresponding maximal
segments intersect, and two such segments cannot overlap in an interval by maximal-
ity. Item (iv) of the definition is also satisfied because the associated 2-complex is
made by cutting the square open along the maximal segments and gluing in poofagons
corresponding to the constraints. �
Definition 2.7 A generalized dissection is generic if no line in C2 contains two inter-
secting constraints.

Example 2.8 Figure 6 shows a non-generic dissection D on the left. The vertex v is
unconstrained; our definition of generalized dissection does not allow us to interpret
the entire horizontal segment containing v as a single constraint. Instead we view
this segment as two separate constraints intersecting at v; this violates the definition
of generic. The middle and right figures show two generic dissections that are close
to D. The middle figure has two constraints, whereas on the right the constraints have
been merged and there is an additional vertex. We will see in Sect. 4 that these two
generic dissections have different deformation spaces.

In Sect. 4 we will define a generic drawing, and we will see that the two uses of the
term “generic” line up.

Question 1 Is every generalized dissection close to a generic one?
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Question 2 Is every dissection close to a generic one?

These are questions of incidence geometry, and the answers may depend on the under-
lying field. The meaning of “close” will be made precise in Sect. 4.

3 Constrained Triangulations

A generalized dissection of a square has an associated 2-complex which is homeo-
morphic to a disk. If we triangulate any non-triangular poofagons, the result leads to
what we call a constrained3 triangulation.

Definition 3.1 A constrained triangulation T is a pair T = (T , C), where T is an
oriented simplicial complex homeomorphic to a disk, and where C = {Ci } is a (finite)
set of (collinearity) constraints. Vertices on the boundary of T are called corners, and
other vertices of T are called interior vertices. Each collinearity constraint Ci is a set
of vertices of T of the form Vertices(Si )where Si is a contiguous set of triangles of T .
(This means that there is a connected subgraph of the dual graph to T whose vertices
are the triangles of Si .) We require the sets Si of triangles to be disjoint, although
the constraints Ci need not be. A 2-cell of T is called alive or living if there is no
constraint containing all of its vertices. Except in Sect. 5, a constrained triangulation
always has four corners, which are labeled p,q, r, s in the cyclic order determined by
the orientation of T .

A note about our usage: much of the modern and classical literature uses the word
“triangulation” to distinguish a special type of dissection, namely a simplicial one.
However our usage is different. We use the word “dissection,” modified in various
ways, to refer to a concrete (geometric) object, whereas a “triangulation” is an abstract
(topological) object. It is helpful to think of a dissection as a drawing of a triangulation;
in fact we make this precise in Sect. 4. (This is how we will deform a dissection.) So
indeed triangulations are always simplicial but a simplicial dissection, which consists
of actual triangles in the plane, is not the same thing as a triangulation, which is an
abstract simplicial complex.

Proposition 3.2 (D � T ) Let D be a generalized dissection. There is a constrained
triangulation T (D) whose vertices and living triangles are in 1-1 correspondence
with the vertices and triangles of D.

Proof Triangulate the poofagons of the associated 2-complex arbitrarily and for each
poofagon define a constraint consisting of the vertices of the poofagon, using the
boundary to determine the cyclic order. �
Triangulating the poofagons in a different way produces a (slightly) different T sat-
isfying the conclusion of the proposition, and any two such T ’s are related in this
way.

If C is empty then T is an abstract version of a classical simplicial dissection of a
square. We call this an honest triangulation. All triangles in an honest triangulation

3 In our previous paper [1] we referred to this as a generalized triangulation.
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Fig. 7 A (drawing of)4 an honest triangulation T , with everything labeled. This is Example 1.2

are alive. The constrained triangulation associated to any classical dissection with no
constrained vertices (i.e., what is classically called a “simplicial dissection”) is honest.

Figure 7 reproduces the honest triangulation T of Example 1.2. Figure 8 illustrates
additional examples of the form T = (T , C), all with the same triangulation T .

Example 3.3 (cf. Example 1.2) If a constraint consists of the vertices of a single
triangle, we indicate the constraint by marking the triangle. For instance Fig. 8A
has two constraints, each consisting of three vertices, indicated by the marks in the
triangles.

Example 3.4 (cf. Examples 1.2 and 2.3) Constraints consisting of vertices from mul-
tiple triangles are indicated by connecting the marks in the dual triangulation with dot-
ted lines. Figure 8B has a single constraint C consisting of the vertices of both marked
triangles, i.e., the four vertices {q, s, u, v}. (Unlike with generalized dissections, these
constraints do not come with a cyclic ordering because T is given so we do not need
to ensure that it is a disk.) If we delete the edge uv, turning the two dead triangles
into a quadrilateral, then we obtain the same 2-complex we get by poofing the dissec-
tion in Fig. 4C; the poofagon is the quadrilateral. This figure shows one possibility
for T (D), where D is the (generalized) dissection of Fig. 4C. The other is obtained
by exchanging the edge uv for the edge qs. Incidentally, without the dotted line this
example would be different; there would be two separate constraints that intersect in
u and v. This is analyzed in Example 5.1 in Sect. 5.2. This possibility is why we mark
the triangles rather than shading them, as we did with poofagons.

Example 3.5 (cf. Example 1.2) Figure 8C shows an extreme example of a constrained
triangulation. Clearly this does not arise as T (D) for any generalized dissection D.

Example 3.6 (ACE again; cf. Examples 1.2 and 2.5) Figure 8D is the const-
rained triangulation for the ACE example, so named because the living triangles are
labeled A,C, E in Fig. 7. (Compare with Fig. 5.) Here C = {qvu, rsv, spu}. There
is no way to realize this as a classical dissection, without killing one of the living
triangles. In Fig. 5A the generalized dissection D has one upside-down triangle (suv)
and the same three constraints that are in C (though there, technically, the constraints
are cyclically ordered). The constrained triangulation of Fig. 8D is T (D).

4 Ceci n’est pas une triangulation.
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(A) Two constraints again. (B)      Here C contains one
constraint, qvsu .

(C) Trianglicide. (D) Our favorite:
the ACE example.

Fig. 8 Some constrained triangulations

Example 3.7 If C contains exactly one constraint and this constraint contains no more
than two corners, then T is the type of object we studied in [1]. Also there we usually
required that the constraint be non-separating.

4 The Space of Drawings

4.1 Definitions and Theorem

We are now ready to introduce the space that allows us to talk about deforming a
(generalized) dissection.

Definition 4.1 Let T = (T , C) be a constrained triangulation. A drawing of T is a
map ρ : Vertices(T ) → C2 such that

(i) for each C ∈ C there is a line �C ⊂ C2 such that ρ(v) ∈ �C for each v ∈ C ;
(ii) the images of the corners form a parallelogram in C2; that is, ρ(p) + ρ(r) =

ρ(q) + ρ(s).

The space of all drawings, topologized as a subspace of (C2)Vertices(T ), is denoted
Ẋ(T ). A drawing is generic if in addition to the above, we also have

(iii) the 4-gon (parallelogram) (ρ(p), ρ(q), ρ(r), ρ(s)) is non-degenerate;
(iv) if {x, y, z} is the vertex set of a living triangle in T then (ρ(x), ρ(y), ρ(z)) is a

non-degenerate triangle in C2;
(v) ρ is injective (in particular this guarantees that the lines �C are uniquely defined);
(vi) if C,C ′ are distinct constraints with C ∩ C ′ �= ∅ then �C �= �C ′ .

The closure in Ẋ(T ) (equivalently in (C2)Vertices(T )) of the set of all generic drawings
of T is denoted X(T ). We call T drawable if there exists a generic drawing of T , i.e.,
if X(T ) is non-empty.
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v

Fig. 9 This drawing is generic, even though three vertices are lined up horizontally

The space Ẋ is evidently an algebraic variety, and as the closure of an open subset, X
consists of a union of components of Ẋ . In this section we give a parameterization of
X in the drawable case. This shows that X is rational and irreducible; it also follows
that at most one component of Ẋ(T ) can contain a generic drawing.

Theorem 4.2 Let T be drawable. Then X(T ) is an irreducible rational variety which
is one of the components of Ẋ(T ).

Some comments about the definition:

• Recall that we have defined the term “generic” already for generalized dissections.
The connection is that if T is a (drawable) constrained triangulation, then every
image of a generic drawing ofT is a generic generalized dissection, and conversely,
every generic generalized dissection D is the image of a generic drawing of the
constrained triangulation T (D).

• Note also that this definition of generic is slightly more liberal than the usual
concept of a general position map of points into the plane (subject to (i) and (ii)
of course). Namely, we allow collections of vertices to be (accidentally) collinear,
as long as such syzygies don’t violate condition (vi). The dissection D in Fig. 9 is
generic, for example, and it is a generic drawing of T (D). Compare with Fig. 6.

• Observe that ifD is a generic generalized dissection, the slight ambiguity in defin-
ing T (D) that arises in Lemma 3.2 disappears in X , and so X(D) := X(T (D)) is
well defined even though T (D) isn’t. Likewise for Ẋ .

• Examples of drawable triangulations include all honest triangulations (C = ∅) as
well as any T (D) for a generic generalized dissectionD. (The latter follows from
item (iii) of Definition 2.1.)

• Questions 1 and 2 can be restated more precisely as follows.

Question 1′. Is T (D) drawable for all (not necessarily generic) generalized
dissections D?
Question 2′. Is T (D) drawable for all (not necessarily generic) dissections D?

Our main interest here is (generalized) dissections, in which context Theorem 4.2
has the following consequence.

Corollary 4.3 For any generalized dissectionD, the deformation space X(D) is either
empty or a rational variety that is a single irreducible component of Ẋ(D).

Proof If X(D) �= ∅ then T (D) is drawable and Theorem 4.2 applies. �
123
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Fig. 10 A combinatorially reducible T

4.2 Combinatorial Irreducibility and Drawing Orders

We introduce some terminology before proving Theorem 4.2. Here is a pop quiz: if
w, x, y, z are points in the plane, and w, x, y are collinear, and x, y, z are collinear,
thenmustw, x, y, z all be collinear? The answer is no. If x �= y then x and y determine
a unique line and w and z must be on it. But if x = y then w and z can be anywhere.

Example 4.4 (cf. Examples 1.2, 2.3, and 3.4) Consider the constrained triangulation
shown in Fig. 10. This has two separate constraints C,C ′ (the marks are not joined
by a dotted line). Note that it has no generic drawings, because if we label the interior
vertices x and y, then by the pop quiz any drawing ρ either has ρ(x) = ρ(y) (violating
condition (v) of genericity) or �C = �C ′ (violating condition (vi) of genericity).

This leads to the following definition and lemma, the proof of which is no different
in the general case than it is in the above example.

Definition 4.5 A constrained triangulation T = (T , C) is combinatorially irreducible
if there is at most one vertex in the intersection C ∩ C ′, for any two constraints
C,C ′ ∈ C.

Lemma 4.6 Every drawable T is combinatorially irreducible.

Our proof of Theorem 4.2 gives an explicit rational parameterization of X(T ) in the
drawable case. The tool we use is called a drawing order.

Let T = (T , C) be drawable. It can nevertheless be difficult to actually draw T , if
one chooses an unfavorable order in which to draw the vertices. Let ≤ be a total order
on Vertices(T ), with

p ≤ q ≤ s ≤ r ≤ v for all interior v ∈ Vertices. (1)

Associated to ≤ there is an integer-valued function v �→ αv on Vertices defined
as follows. Label the vertices other than the corners by v1, . . . , vk so that vi ≤ v j

iff i ≤ j . Let C ∈ C be a constraint. For each j = 1, . . . , k define C≤ j = C ∩
{p,q, s, r, v1, . . . , v j } ⊂ Vertices(T ), and say that C is relevant to v j if v j ∈ C and
|C≤ j | ≥ 3. Now define αp = αq = αs = 2, αr = 0, and for j = 1, . . . , k,

α j = αv j := 2 − # {C ∈ C : C is relevant to v j }.
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We call the total order ≤ a drawing order if (1) holds and also α j ≥ 0 for each j .
Intuitively, we imagine trying to draw the vertices one by one in the order determined
by ≤. When it is time to place v j , the number of available degrees of freedom is
(usually) α j . As long as each α j ≥ 0, we will produce a drawing. (It is not necessary
to require that the corners come first, but it is convenient for the parameterization that
follows.)

Lemma 4.7 Every combinatorially irreducible T has a drawing order.

Proof Let T = (T , C) be combinatorially irreducible. If Vertices(T ) = {p,q, r, s}
then the order p,q, s, r is a drawing order. So we may assume T has interior vertices
v1, . . . , vk with k > 0.

Let R1 be the set of interior vertices of T of valence less than 6. This set is non-
empty by an elementary argument about planar graphs, spelled out in Lemma 4.8.
For j > 1, let R j be the set of interior vertices of the graph G − ⋃

i< j Ri that have
valence less than 6. (When a vertex is removed from a graph, any edges incident with
the vertex are also removed.) Lemma 4.8 shows that each interior v ∈ Vertices(T ) is
in some R j , because as long as G − ⋃

i< j Ri contains interior vertices of T , R j will
be non-empty.

Now let ≤ be any total order on Vertices such that (1) holds and for all interior
v ∈ Ri , w ∈ R j , if i > j then v < w. (The ordering within a given R j doesn’t
matter.) We claim this is a drawing order. The reason is that by construction each
interior vertex v is adjacent to fewer than six vertices that precede it in the order. By
combinatorial irreducibility, any two constraints containing v are otherwise disjoint.
So there must be fewer than three constraints that are relevant to v, because any such
constraint would contribute at least two distinct neighbors of v from among the earlier
vertices. Thus α j ≥ 0 as desired. �
Lemma 4.8 Let G be a finite simple graph embedded in the plane such that the exterior
face is bounded by the quadrilateral pqrs. Label the other vertices v1, . . . , vk and
assume k > 0. Then some vi has valence less than 6.

Proof Let V = k + 4 denote the total number of vertices, let E denote the number
of edges, and let F denote the number of faces determined by the embedding of G in
the plane. It is an easy consequence of Euler’s equation V − E + F = 2 that a finite
simple planar graph must contain a vertex of valence less than 6. The point here is
that p,q, r, s cannot be the only vertices with this property. Our proof also involves
nothing more than Euler’s formula.

We may assume G is connected, for otherwise we can find the vertex we seek in
any connected component not touching the boundary.

Suppose for contradiction that each vi has valence at least 6. ThenG connected and
k > 0 imply that the sumof the valences ofp,q, r, s is at least 9. Summing valenceswe
have 2E = ∑

v Valence(v) ≥ 6k+9 = 6(V −4)+9 = 6V −15 and since E ∈ Z this
implies E ≥ 3V − 7. Looking at faces we also have 2E = ∑

f Length( f ) ≥ 3F + 1
(where Length( f ) denotes the number of edges traversed by a path tracing out the
boundary of the face f ). Now by Euler we have

E + 2 = V + F ≤ E + 7

3
+ 2E − 1

3
= E + 2.
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We must therefore have equality, so in particular all interior faces are triangles, which
is the key to the rest of the argument. This implies

∑
v∈{p,q,r,s} Valence(v) ≥ 10,

whence
∑

v∈{p,q,r,s} Valence(v) = 10 (because otherwise the first inequality above
would become E ≥ 3V − 6, a contradiction). This in turn means only two (half-)
edges emanate from the corners and go to the interior. Say one emanates from p.
Then the other cannot emanate from p or q or s since all interior faces are triangles.
Thus the other emanates from r. Moreover these two edges must be the same edge pr,
again because all interior faces are triangles. Now no interior vertices can be present,
meaning k = 0, a contradiction. �
4.3 Proof of the Theorem

Lemma 4.9 Let T be drawable, and let≤ be a drawing order. There is a rational map

g≤ :
∏

Cαv ��� X(T )

parameterizing X(T ). Moreover, if ρ is a generic drawing of T then ρ has a unique
preimage under g≤, and in fact g≤ is injective in a neighborhood of this preimage.

Here we interpret C0 as the singleton {0}.
Proof We define the rational map

g :
∏

v∈Vertices(T )

Cαv ��� (C2)Vertices(T )

as follows. Let x = (xv)v∈Vertices(T ) be coordinates on the domain of g. The coordinate
functions gv(x) of the point g(x) are constructed inductively according to the chosen
drawing order, as follows.

Recall that αp = αq = αs = 2 and αr = 0. We start by defining gp(x) = xp ∈ C2,
gq(x) = xq ∈ C2, gs = xs ∈ C2, and gr(x) = xq + xs − xp. Then for each interior
v ∈ Vertices(T ), we assume that the coordinate functions gw(x) for vertices w with
w < v have been defined. To define gv , we distinguish the three cases: αv = 0, 1, 2.

If αv = 2, then xv is a point in C2, and we set gv(x) = xv . If αv = 1, then xv ∈ C
is a number and there is a (unique) constraint that is relevant to v. We denote by
y and z the first two points with respect to ≤ of this constraint, and we set gv(x) =
xvgy(x)+(1− xv)gz(x). Finally if αv = 0 then (xv = 0 and) there are two constraints
C and C ′ relevant to v. Let y, z be the first two elements of C (with respect to ≤), and
let y′, z′ be the first two elements of C ′. Since y, z, y′, z′ < v, the rational functions
gy(x), gz(x), gy′(x), gz′(x) are already defined. Let gv(x) be the rational function in
gy(x), gz(x), gy′(x), gz′(x) expressing the coordinates of the intersection of the line
L through gy(x), gz(x) with the line L ′ through gy′(x), gz′(x). This rational function
can be computed explicitly, e.g., using Cramer’s rule. There is a denominator. But T
is assumed to be drawable, and in a generic drawing ρ the two lines L and L ′ are
distinct and non-parallel. Thus this denominator is not identically zero, and so gv(x)
is indeed a rational function.
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We are now finished defining g = g≤, and it remains to analyze its image. Note
that the domain of g is irreducible, so the closure of Im(g) is an irreducible algebraic
variety. We claim that this closure is exactly X .

Let ρ be a generic drawing of T . We define parameters x = (xv) (in order) such
that g(x) = ρ. If αv = 2 the parameter is just ρ(v). If αv = 1 then by the injectivity
of ρ we know that ρ(v) is an affine combination of the first two vertices in the relevant
constraint for v, so the parameter xv is uniquely determined. If αv = 0 then the fact
that the lines L and L ′ are distinct and meet at the point ρ(v) means that ρ(v) is the
(unique and correct) point parameterized by g. Therefore, the image of g contains all
generic drawings, so the closure of Im(g) contains X .

Moreover, if g(x) = ρ is a generic drawing then there is an open neighborhoodU of
x = (xv) ∈ ∏

Cαv such that g(x ′) is a generic drawing for any x ′ ∈ U . This is because
conditions (i) and (ii) of the definition of drawing are enforced by the definition of g,
whereas (iii), (iv), (v), and (vi) are open conditions. Thus U maps into X . Since U
is dense in the domain of g and X is closed, it follows that the closure of Im(g) is
contained in X , as desired.

Finally, we note that for distinct points x ′, x ′′ ∈ U , if v is the first vertex for which
x ′
v �= x ′′

v then v has different images in C2 under the maps g(x ′) and g(x ′′). So g is
injective on U . �
Proof of Theorem 4.2 The preceding lemma provides the necessary parameterization
of X(T ). The inverse of g is an algebraic map, so X is indeed rational. Moreover
X ⊂ Ẋ , X is irreducible, and X contains an open set of Ẋ , so X must be an irreducible
component of Ẋ . �
Corollary 4.10 Let T be drawable and let ≤ be a drawing order. Then

∑
v αv is

independent of choice of ≤ and is equal to the dimension of X(T ).

Note that the dimension of X agrees with the heuristic count, namely 6 for the corners
plus 2 for each interior vertex minus 1 for each vertex beyond the second in any
constraint.

It is also worth noting that the affine group Aff = Aff2(C) acts on X , and generic
drawings have trivial stabilizers. In particular X(T ) is topologically a product of C2

(for translations) and a cone (for scaling) and is therefore contractible (if it is non-
empty). We do not know if the quotient X/Aff is contractible.

4.4 Home Field Advantage

The space Ẋ consists of maps toC2. We conclude this section by arguing that from the
point of view of drawing pictures, R2 would work just as well. It may be interesting
to study drawing spaces over other fields.

Definition 4.11 A constrained triangulation T is really drawable if there is a generic
drawing ρ that maps all vertices into R2. Such a ρ is called a real drawing. A con-
strained triangulation T is positively drawable if there is a real drawing ρ such that for
any (oriented) triangle (p, q, r) of T , the triangle (ρ(p), ρ(q), ρ(r)) inR2 is oriented
positively. Such a ρ is called a positive drawing.
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Here are some remarks about these definitions.

• There certainly exist constrained triangulations that are positively drawable. For
instance every honest (unconstrained) triangulation is positively drawable. Also,
T (D) is positively drawable for any generic dissection D, since D is a positive
drawing of T (D). Conversely (the image of) any positive drawing of any T is a
generic dissection.

• There exist (really) drawable constrained triangulations that are not positively
drawable. The smallest one is the ACE example, shown in Fig. 8D.

• If a constrained triangulation is drawable then it is really drawable. To see this,
find a drawing order and choose real parameters. Almost all choices are in the
domain of the parameterization g, because any denominator that vanishes at all
real points would also vanish at all complex points. Almost all real parameters in
the domain of g have image a real drawing. The inflection points of a complex cubic
curve can be used to generate a linear system that is drawable but not really, by the
Sylvester–Gallai theorem (see e.g. [2]). Existence of such things also follows from
Mnëv universality [8,10]. However they do not arise from planar triangulations.

• There exist constrained triangulations that are not drawable, by Lemma 4.6.
Slightly less trivially, there are combinatorially irreducible T ’s that are not draw-
able. For instance the constraints could force the boundary parallelogram to be
degenerate. This may be the only obstruction to drawability in the combinatorially
irreducible case. See also Question 1.

5 Musings About Ẋ

This is an article about (generalized) dissections. The notion of a constrained trian-
gulation allows us to study deformations of generalized dissections, and as we have
already observed, constrained triangulations of the form T (D) have certain pleasant
properties: they are always combinatorially irreducible, for instance, and if Question 1
has an affirmative answer then they are always drawable too. The space X(D) is, as
we have shown, an irreducible algebraic variety.

The collection of constrained triangulations includesmany other interesting objects,
though, that may be worthy of study on their own merits. We conclude Part 1 by
highlighting some examples and general questions about their drawing spaces, as well
as some parallels with the theory of realizations spaces for oriented matroids. Nothing
in this section is central to the paper, although it is not entirely irrelevant either. The
reader who is anxious to get to the area relations can safely proceed to Part 2.

5.1 The Boundary

Because of our interest inMonsky’s theorem,wehave so far only discussed constrained
triangulations with four corners (see Definition 3.1), and we have required drawings
to realize the boundary as a parallelogram. Some of the issues we want to mention in
this section are particular to that case, but many are not. For the rest of this section we
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use the notation T� to indicate a constrained triangulation with arbitrary boundary,
whereas T continues to denote a constrained triangulation with four corners.

The spaces Ẋ and X (Definition 4.1) can be defined for arbitrary T� with the
adjustments that condition (ii) should be ignored and condition (iii) should require
the boundary, whatever it is, to be drawn as a non-degenerate polygon. Combinatorial
irreducibility (Definition 4.5) applies to T� without modification.

While we are at it we give one more definition. Given T , we have defined both
arbitrary drawings and generic drawings (Definition 4.1). An intermediate type of
drawing is one which satisfies conditions (i)–(iv) of these definitions; we call these
life-preserving, as living triangles of T are required to be drawn non-degenerately.
The closure of the life-preserving drawings is denoted X̂ . Obviously

X ⊂ X̂ ⊂ Ẋ ,

and like X , the space X̂ is the closure of an open subset of Ẋ , hence is a union of
components of Ẋ . For T�, we make the same definition, modifying conditions (ii)
and (iii) as we did earlier to define Ẋ and X .

Our feeling is that X(T ) captures the intuitive idea of deforming a dissection.
However we acknowledge that this is to some extent a matter of taste; any of X , X̂ , Ẋ
could reasonably be thought of as a deformation space for T . In the next subsection
we make some conjectures about X̂ .

A notational aside: The ˙ in Ẋ is meant to evoke the constant map, which is an
element of Ẋ , while the ˆ in X̂ resembles a triangle5 to remind that (most) functions
in X̂ are faithful on the living triangles. The notation X has no decoration because it
is used the most.

5.2 Combinatorial Reductions and X̂

If T� = (T , C) is not combinatorially irreducible, then it can be decomposed into
combinatorially irreducible factors. If u, v ∈ C∩C ′ for distinctC,C ′ ∈ C (and distinct
u, v ∈ Vertices(T )) then the reduction of T� = (T , C) results in two combinatorial
factors (or just factors) T ′� and T ′′�, where:

• T ′� = (T ′, C′) where T ′ = T and C′ = C except that C,C ′ have been replaced by
their union;

• T ′′� = (T ′′, C′′) where T ′′ is the result of identifying vertices u, v of T , and C′′ is
adjusted accordingly (removing any resulting constraints of size less than 3).

For various reasons, the factors resulting from these operations are not always
constrained triangulations, and even if they are, they may not be combinatorially
irreducible. Moreover, T� may have multiple reductions. Nevertheless, recursively
continuing this procedure to its conclusion eventually leads to a “factorization” of T�
into a collection of combinatorially irreducible factors.

5
�
X doesn’t typeset very nicely.
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Fig. 11 A combinatorially reducible T and its (two) irreducible factors, T ′ and T ′′

Example 5.1 (cf. Examples 1.2, 2.3, 3.4, and 4.4) The basic example to keep in mind
is theT shown inFig. 11.All thesefigures have appearedbefore; this is a parallelogram.
There are two constraints in T . In Fig. 11 we have equated the factor T ′ with a generic
drawing of it. We have also shown T ′′, which is an honest triangulation. Both T ′ and
T ′′ are combinatorially irreducible and drawable; the figure shows generic drawings
of both. Note that neither of these is considered a generic drawing of T , though for
different reasons. In this case Ẋ(T ′) = X(T ′) (though this is not totally obvious)
and Ẋ(T ′′) = X(T ′′). Both are irreducible components of Ẋ(T ), which has no other
components.

This is a good time to point out that combinatorial irreducibility is not necessary for the
existence of a drawing order (compare Lemma 4.7). Recall that from a drawing order
≤ we produce a parameterization g≤ of a component of Ẋ(T ). In the combinatorially
irreducible case any drawing order will yield the same component, namely X(T ). On
the other hand in the current example, with the interior vertices labeled u and v, the
drawing order pqsruv yields a parameterization of the component X(T ′′), whereas
the drawing order6 pquvsr leads to a parameterization of the other component X(T ′).

Conjecture 1 If T� is a constrained triangulation with arbitrary boundary polygon,
then T� is combinatorially irreducible if and only if X̂(T�) is an irreducible variety.

In the case we have focused on for the majority of this paper, i.e., constrained trian-
gulations T with the boundary condition, an extra condition is required to make the
analogous conjecture possible.

Definition 5.2 A constrained triangulation T (of a parallelogram) is toroidally irre-
ducible if (a) it is combinatorially irreducible, (b) there do not exist constraints C,C ′
with {p,q} ⊂ C and {r, s} ⊂ C ′, and (c) there do not exist constraints C,C ′ with
{q, r} ⊂ C and {p, s} ⊂ C ′.
This is sort of like saying that T is combinatorially irreducible after identifying oppo-
site edges of the boundary to make T into (a triangulation of) a torus. We will not
spell out the reduction process but one can imagine that T ′ has a (single) constraint
that “wraps around” the torus, and T ′′ is a “constrained triangulation of a segment.”

Figure 12 (left) exhibits toroidal reducibility. Here C has two constraints, pqu and
rsv (using our usual notation). This is combinatorially irreducible but not toroidally
irreducible.

6 This is technically not a drawing order but the point remains.
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p = q

s = r

Fig. 12 A toroidally reducible T (left) and drawings of its two irreducible factors, T ′ and T ′′

Fig. 13 Collateral damage

The space Ẋ(T ) has two components. One component is X(T ), consisting of
drawings ρ with non-degenerate boundary pqrs and with u on the line pq and v on the
line rs. One such drawing is shown in Fig. 12 (middle); these drawings are (almost all)
generic. This component coincides with X(T ′) and Ẋ(T ′). The other component of
Ẋ consists entirely of non-generic drawings ρ having ρ(p) = ρ(q) and ρ(r) = ρ(s);
these might be thought of as “dissections of a segment.” Both components are 8-
dimensional (2-dimensional after quotienting by the affine group action).

Conjecture 2 If T is toroidally irreducible then X̂(T ) is irreducible.

5.3 Components of Ẋ

We give some more examples to illustrate the differences between X , X̂ , and Ẋ . For
honest triangulations we have X = X̂ = Ẋ ; this space is non-empty and irreducible
and isomorphic to an affine space.

Example 5.1 (Fig. 11) has ∅ = X �= X̂ = Ẋ , and the latter has two components
of the same dimension. This example is combinatorially reducible, hence not (gener-
ically) drawable. The components of X̂ = Ẋ are X(T ′) and X(T ′′) where T ′ and
T ′′ are the factors of T . In other words although there is no generic drawing of T ,
every drawing of T is close to a generic drawing of one of the two combinatorially
irreducible factors of T .

Example 3.3 (Fig. 8A, Fig. 12) is drawable, and we have ∅ �= X �= X̂ = Ẋ ; again Ẋ
has two components of the same dimension. This example is not toroidally irreducible.
The components of X̂ = Ẋ are again X(T ′) and X(T ′′) where the two factors are
obtained by the toroidal reduction alluded to above. The first of these is also X(T ).

A new example shown in Fig. 13 exhibits ∅ = X = X̂ �= Ẋ , and Ẋ has just one
component, consisting of drawings with all five vertices on a line. The phenomenon
on display here is called collateral damage.
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At the opposite extreme from the honest case, suppose that T = (T , C) where the
vertices of each triangle of T form a constraint. Here of course X̂(T ) = X(T ) = ∅.
The space Ẋ has a component consisting of drawings in which all points are collinear,
but there may also be other components of smaller dimension. (In Example 3.5, Ẋ has
just one component.) The space Ẋ(T ) plays a role in our study because it is a model
for the base locus of the area map Area : X(T ) ��� Y (T ) associated to the honest T .
(In fact that base locus is always contained in Ẋ(T ), though this may be a proper
containment.) We analyze this base locus in a forthcoming paper.

We do not know if it is possible to have X �= X̂ �= Ẋ . What about in the drawable
case, i.e., is ∅ �= X �= X̂ �= Ẋ possible?

It may be the case that components of Ẋ(T ) can always be interpreted as X(T ∗) for
the various combinatorial factors T ∗ of T . Some of the components, those making up
X̂ , are X(T ∗) for the factors that are themselves drawable constrained triangulations.
If there is only one of these with non-degenerate boundary, it is also X(T ). However,
this picture is merely conjectural.

Question 3 How many components does Ẋ have, and what are their dimensions?

In particular, we do not know if Ẋ can have components of dimension larger than
dim X or dim X̂ , when either of these two is non-empty. (In the drawable case, of
course, Corollary 4.10 gives the dimension of X .) As this may involve subtle issues in
incidence geometry, the answer may again (like Question 1) depend on the underlying
field.

Recall that the heuristic dimension count is 6 for the corners, 2 for each additional
vertex, and −1 for each vertex beyond the second in any individual constraint. (For
T�, the heuristic is the same except the boundary contributes 2m if it has m vertices.)
Corollary 4.10 verifies this for the component X of Ẋ , when the former is non-empty.
It is possible that in the absence of collateral damage this holds for all T , and even T�.
As far as we know, though, the dimension could be higher than the heuristic indicates,
because the constraints could be redundant (in obvious or subtle ways). Here is an
“obvious” example: constraints abc, bcd, acd are equivalent to abcd. Thus these
three really only cut the dimension down by 2. This is because the third constraint
selects a component of the reducible variety determined by the first two. The heuristic
is too low by 1.

A non-obvious redundancy could arise if there were a (non-trivial) incidence theo-
rem, such as Pappus. Here there are nine points, and the collinearity of eight specific
triples implies the collinearity of a ninth. So, after accounting for the eight hypothe-
sized constraints, further including the ninth lowers the heuristic dimension count but
doesn’t actually change the variety.

Things like this (probably) are what make the dimension of the realization space
algorithmically intractable for general point/line configurations. (See below.) Fortu-
nately, Pappus’ theorem does not come into play for us, because we only work with
triangulations of a disk whereas the configuration of Pappus’ theorem is non-planar.7

7 If each triple that is a collinearity hypothesis of Pappus’ theorem is made into a triangle, then the resulting
2-complexmade of eight triangles does not embed in the plane, because its 1-skeleton contains (a subdivision
of) the graph K3,3.
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However, there may be other incidence theorems and we do not know whether any
non-obvious redundancies can arise in the setting of constrained triangulations.

5.4 Realization Spaces of OrientedMatroids

The issueswe havementioned so far in this section are reminiscent of general questions
about realizing configurations of points and lines. We now focus on this analogy, and
we present a fewvariations on several problems about orientedmatroids that are known
to be difficult.

At points of Ẋ , although certain triangles are required to be degenerate, the others
have no restriction one way or the other. As a result Ẋ contains all constant functions,
and Ẋ decomposes as a product ofC2 (due to translations) and a cone (due to scaling).
In particular Ẋ is contractible. It may be interesting to study the topology of the
quotient of Ẋ by the affine action.

By contrast, in the context of point/line configurations (commonly described in the
language of oriented matroids), there are point/line configurations with disconnected
realization space. This is the “isotopy problem” for point/line configurations, solved
in the 1980s by various people including the Mnëv universality theorem [8,10]. This
means there are different drawings of points, with the same pre-specified incidence
relations, that are not isotopic to each other through such configurations. This is a
restricted sense of isotopy, though, as in a realization space one is not allowed to
introduce degeneracies (even temporarily) along theway. In this sense our deformation
spaces are fundamentally different.

If Conjecture 1 is true, it would suggest that these “planar” systems are significantly
simpler than general systems, just as planar graphs are significantly simpler than
general graphs. Nevertheless we suspect that Question 3 and its relatives are difficult
even for constrained triangulations. It is worth writing down the following (probably
intractable but more basic) question.

Question 4 Given a finite set Vertices and a finite collection of subsets C of V , what
is the dimension of the space of those maps ρ : V → C2 such that for each set C ∈ C,
the set of points {ρ(v) : v ∈ C} lies in a line?

The same question can be asked with C2 replaced by Fn for any field F. We would be
interested to know if there are results about the hardness of this problem.

A related question that we know virtually nothing about is the following. Fix a finite
simplicial complex T and a number n such that T embeds inRn . Let d be a function on
the simplices of T such that d(σ ) ≤ dim σ for all σ , and also d(σ ) ≤ d(τ ) if σ ⊂ τ .
What is the nature of the space X of maps ρ : T → Rn satisfying dim ρ(σ) = d(σ )

for all simplices σ? What about maps satisfying dim ρ(σ) ≤ d(σ )?

Part 2. Area Relations

We now shift gears and begin our study of Monsky’s theorem and the polynomials f
and p discussed in the introduction. Our principal contribution is to extend Monsky’s
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theorem to the deformation spaces X that we defined in Part 1. We then explore the
consequences of this extension for f and p. Henceforth all constrained triangulations
T will be assumed to have square boundary.

6 Area of a Triangle

Let F be a field of characteristic not equal to 2, and let pi = (xi , yi ) for i = 1, 2, 3
be three points in the affine plane F2. We define the area of the (ordered) triangle
� = (p1, p2, p3) to be

Area(�) = Area(p1 p2 p3) = 1

2

∣
∣
∣
∣
∣
∣

1 1 1
x1 x2 x3
y1 y2 y3

∣
∣
∣
∣
∣
∣
.

Note that if F = R then this is the usual signed area function. We will also use
this definition when F is C or a function field. Note also that regardless of the field,
Area(p1 p2 p3) = 0 if and only if p1, p2, p3 lie on a line in F2.

7 Monsky Theorems

If D is a (classical) dissection of the unit square into triangles with areas a1, . . . , an ,
then Monsky’s theorem gives a polynomial f with integer coefficients such that

2 f (a1, . . . , an) = 1. (2)

In this section, we use a modification of Monsky’s argument, carried out over the field
of rational functions in the vertex coordinates, to show that f can be chosen to depend
only on T (D) and not on D, meaning that the ai can represent the areas of the triangles
in any drawing of T (D), including drawings that are not positive. Accordingly, (2)
needs to be modified to take into account the total area of the drawing; see (3) below.
Moreover, because we carry out the argument in the setting of abstract triangulations,
the theorem will apply equally well to generalized dissections as to dissections, even
when the former have no positive drawings. Equation (3) will also hold for limits of
drawings.

We give two versions of this argument, the first for honest triangulations in Sect. 7.2
and the second that incorporates the constraints in Sect. 7.3. In the presence of con-
straints, these results have significant computational benefit over the approach taken
in [1]. We discuss this further in Sect. 7.4.

7.1 Monsky Homogenized and Deformed

We have set up our drawing spaces so that the boundary can be mapped to an arbitrary
parallelogram, rather than just the unit square.We state our generalization ofMonsky’s
Theorem in a similar spirit. For this purpose, itmakes sense to homogenize the equation
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of Monsky’s Theorem. This is quite easy to do. Take a dissection of the unit square,
and take any f ∈ Z[A1, . . . , An] satisfying Monsky’s theorem for this dissection.
Note that the polynomial σ = A1 + · · · + An evaluates to 1 when the areas ai are
plugged in. Thus if we homogenize f with respect to the homogenizing variable σ we
obtain a homogeneous polynomial f̂ satisfying

2 f̂ (a1, . . . an) = σ(a1, . . . , an)
e, (3)

where e is the degree of f . This relation, nowhomogeneous, has the advantage of being
affine invariant; that is, this equation will hold not only for the original dissection, but
also for any affine image of it.

We also wish to find relations that are invariant under deformations. The following
example illustrates this and introduces some notation used in the statement of the
generalized Monsky Theorem.

Example 7.1 (cf. Examples 1.1 and 2.2) In Example 1.1, we introduced the dissec-
tion D of Fig. 14.

If this is the unit square, and the central vertex has coordinates (x, y), then the areas
are

Z̃ A = y

2
, Z̃ B = 1 − x

2
, Z̃C = 1 − y

2
, Z̃D = x

2
.

The tildes over the Z ’s indicate that the corners have been fixed to those of the unit
square. In a moment we will switch from Z̃ to Z , when we allow the boundary to be
an arbitrary parallelogram. In the spirit of finding relations among the areas that are
preserved under deformations, we consider Z̃ A, Z̃ B , Z̃C , Z̃D to be polynomials (or
rational functions) living in the field of rational functions in the two coordinate vari-
ables x and y. Contrast this with the ai ofMonsky’s Theorem, which are real numbers.
We seek algebraic relations among the four rational functions Z̃ A, Z̃ B , Z̃C , Z̃D .

In this case, finding such relations is not hard. Corresponding to the geometric
observation that the bottom and top triangles add up to half the area of the square,
algebraically we have 2(Z̃ A + Z̃C ) = 1, or more homogeneously,

2(Z̃ A + Z̃C ) = σ,

where σ = Z̃ A + Z̃ B + Z̃C + Z̃D . Thus the polynomial f (A, B,C, D) = A + C
satisfies (2), provided the boundary is a unit square.

Having found a homogeneous relation of the form 2 f = σ e among the Z̃ ’s, we now
observe that the same relation holds even if the boundary is an arbitrary parallelogram.
Precisely, consider the rational function field S in the eight variables xv, yv where v

is one of the four vertices other than r, and inside S, define xr = xq + xs − xp
and yr = yq + ys − yp. Let ZA, ZB, ZC , ZD ∈ S be the homogeneous quadratic
polynomials in these eight variables expressing the areas of the triangles without
fixing the corners. Then by an easy argument invoking affine invariance, the identical
relation 2 f = σ e will hold among the Z ’s. This argument is spelled out in detail in
Corollary 7.6.
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7.2 Honest Triangulations

We now give our first modification of Monsky’s argument, designed for honest trian-
gulations.

The clever uses of ultranorms and Sperner’s lemma in the proofs trace directly
to Monsky’s original theorem [9]. The use of Sperner’s lemma built on an earlier
approach due to Thomas [12]. We emphasize that we are adapting those ideas to our
current context. We mimic the treatment in Pete Clark’s class notes [3] which fleshes
out some of the steps.

We first establish some notation. Let T be a triangulation of a square with k interior
vertices and n = 2k + 2 triangles. Let S be the rational function field Q(xv, yv) for
v ∈ Vertices(T ) \ {r}. In S, set xr = xq + xs − xp and yr = yq + ys − yp. The field
S is the coordinate function field of the space of drawings of T .

Theorem 7.2 (Monsky+) Let T be a triangulation of a square and let S be the
coordinate function field of its drawing space. For each triangle � j , let Z j ∈ S be
the homogeneous quadratic polynomial in {xv, yv} expressing the area of � j . Define
σ ∈ S by

∑
Z j = σ.

Then there exists a homogeneous polynomial fT with integer coefficients in n variables
such that

2 fT (Z1, . . . , Zn) = σ e

in S, for some non-negative integer e.

Definition 7.3 If T is a triangulation of a square with n triangles, then any polynomial
f satisfying the conclusion of TheoremMonsky+ is called aMonsky polynomial for T .

For example, the polynomials A+C , B + D, and 2A− B + 2C − D are all Monsky
polynomials for Example 1.1 (also Example 7.1).

Proof Let R be the subring Z[Z1, . . . , Zn] ⊂ S. Note that σ ∈ R, and we endeavor
to show that σ is an element of the ideal

√
(2) of R. It then follows that some power

σ e may be written as 2 times an integer polynomial in the Zi . Furthermore, this
polynomial can be chosen to be homogeneous of degree e since both σ and all the Zi

are homogeneous of the same degree.
Thus all is reduced to showing σ ∈ √

(2). Assume this is not the case. Then there
is a minimal prime p containing (2) such that σ /∈ p (since

√
(2) is the intersection of

all prime ideals containing (2)). By Krull’s principal ideal theorem p has height 1.
Let Rp be the ring R localized at the prime ideal p and R̄ be the integral closure

of Rp. The ideal p′ = pRp in Rp has height 1. Let q be a prime ideal of R̄ lying over p′.
Then q has height 1 in R̄ [4].

By the Mori–Nagata theorem R̄ is a Krull domain, hence R̄q is a discrete valuation
ring containing R̄. The valuation on R̄q yields a non-Archimedean ultranorm ‖ · ‖ on
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the fraction field of R̄q (which is also the fraction field of R). Since Z j ∈ R ⊂ R̄q,
we have ‖Z j‖ ≤ 1 for each j . In addition 2 ∈ p so 2 ∈ qR̄q so ‖2‖ < 1. Furthermore
σ /∈ p so σ is a unit in Rp, hence in R̄, hence ‖σ‖ = 1. Extend the ultranorm ‖ · ‖
to S, referring to [5] as necessary.

Now, following Monsky, we color each point φ = (φx , φy) of the plane S2 with
one of the colors A, B,C via the following comparisons:

• if ‖φx‖ ≥ ‖φy‖ and ‖φx‖ ≥ ‖1‖ then φ gets color A;
• else if ‖φy‖ ≥ ‖1‖ then φ gets color B;
• else φ gets color C .

In other words, we color A, B,C according to which of φx , φy , or 1 has the largest
norm, breaking ties in that order. (See [9].)

Monsky proved two lemmas which hold in this context exactly as he proved them,
using the definingproperties of the ultranorm, namely‖αβ‖ = ‖α‖·‖β‖ and‖α+β‖ ≤
max {‖α‖, ‖β‖}, with equality if ‖α‖ �= ‖β‖. We leave the verifications as exercises.

Lemma 7.4 (Monsky) The color of φ agrees with the color of φ + ψ for any
C-colored ψ .

Lemma 7.5 (Monsky) Any triangle � whose vertices are colored ABC satisfies
‖Area(�)‖ > 1.

We intend to use this coloring of S × S to induce a coloring of the vertices of T . We
do this as follows. Let M : S × S → S × S be the unique affine transformation on
S × S taking (xp, yp) to (0, 0), (xq, yq) to (1, 0), and (xs, ys) to (0, 1). Note that the
determinant of M is

∣
∣
∣
∣
xq − xp xs − xp
yq − yp ys − yp

∣
∣
∣
∣

−1

,

which equals the nonzero element 1/σ of S (so in particular M exists). Thus for any
triangle � in S × S we have

Area(M�) = 1
σ
Area(�)

and since ‖σ‖ = 1,

‖Area(M�)‖ = ‖Area(�)‖.

(Note that we are computing Area in the field S.)
Now, as promised, the coloring of S × S induces a coloring of the vertices of T by

assigning to the vertex v of T the color of the point M(vx , vy). This colors the corners
pqrs with the colors CAAB and is therefore a Sperner coloring, so there is an ABC
triangle� j . ByMonsky’s Lemma 7.5, ‖Area(M(� j ))‖ > 1. But ‖Area(M(� j ))‖ =
‖Area(� j )‖ = ‖Z j‖ ≤ 1, a contradiction. �

When working with the polynomial f , it is useful to exploit the fact that any
parallelogram is affinely equivalent to the unit square, thereby allowing us to remove
the x, y variables corresponding to corners. We make now this idea precise.
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Given a triangulation T , consider the fixed-corner function field S̃, defined to be
the rational function field in the 2k variables X̃v, Ỹv , where v denotes an interior
vertex. For corner vertices v, define elements X̃v, Ỹv ∈ S̃, by (X̃p, Ỹp) = (0, 0),
(X̃q, Ỹq) = (1, 0), (X̃r, Ỹr) = (1, 1), and (X̃s, Ỹs) = (0, 1).

Corollary 7.6 Let T be a triangulation of a square and let S̃ be the fixed-corner function
field defined above. For each triangle, let Z̃i ∈ S̃ be the (possibly inhomogeneous)
polynomial of degree less than or equal to 2 expressing the area of this triangle in
the 2k variables X̃v, Ỹv . Then there exists a homogeneous polynomial fT with integer
coefficients in n variables such that

2 fT (Z̃1, . . . , Z̃n) = 1 (4)

in S̃. Furthermore, for fT , we may take any polynomial satisfying the conclusion of
Theorem Monsky+. Conversely, any homogeneous polynomial of degree e satisfying
(4) also satisfies the conclusion of Theorem Monsky+.

Proof Let fT be a polynomial obtained from Theorem Monsky+. For all vertices v,
including corners, substitute X̃v, Ỹv for xv, yv . After these substitutions, each Zi

becomes Z̃i and σ becomes 1. Hence (4) is satisfied in S̃.
Conversely, suppose that fT is any homogeneous polynomial with integer coeffi-

cients satisfying (4). Let M be the map defined in the proof of TheoremMonsky+, and
for any vertex v, including corners, define (x̃v, ỹv) = M(xv, yv). In (4), substituting
x̃v, ỹv for the variables X̃v, Ỹv for all interior vertices v turns each Z̃i corresponding
to triangle Ti = uvw into

1

2

∣
∣
∣
∣
∣
∣

1 1 1
x̃u x̃v x̃w

ỹu ỹv ỹw

∣
∣
∣
∣
∣
∣
= 1

2σ

∣
∣
∣
∣
∣
∣

1 1 1
xu xv xw

yu yv yw

∣
∣
∣
∣
∣
∣
= 1

σ
Zi ,

the first equation following from the fact that M has determinant 1/σ . Hence with this
substitution, (4) becomes

2 f

(
1

σ
Z1, . . . ,

1

σ
Zn

)

= 1.

Finally, by the homogeneity of f , we get the desired 2 f (Z1, . . . , Zn) = σ e. �
Example 7.7 (cf. Example 1.2) Let T be the triangulation shown in Fig. 7. Here
there are six triangles with two interior vertices u and v, so by Corollary 7.6 we may
work in the rational function field in the four variables xu, yu, xv, yv . The Z ’s are
defined by

2ZA = yu, 2ZB = xv yu − xu yv − yu + yv, 2ZC = 1 − xv,

2ZD = xu, 2ZE = xu yv − xv yu − xu + xv, 2ZF = 1 − yv.
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This time, there is no linear polynomial fT satisfying the desired conclusion. However
the quadratic

f̃T = (B + D + F)2 − 2DF + 2AC + (A + C + E)(B + D + F)

is a Monsky polynomial: it has the property that 2 f̃T (ZA, . . . , ZF ) = 1. See also
Example 10.4.

7.3 Constraints

Wenext soup up our previous argument a bitmore to take into account the constraintsC.
We assume T = (T , C) is drawable and that we have a parameterization g of X(T )

coming from a drawing order ≤ as in Theorem 4.9. We find that there is again a
polynomial f satisfying (3), this time with the areas of the living triangles expressed
in terms of the parameters wi of the drawing order.

Let T = (T , C) be a constrained triangulation of a square that is drawable. Let
≤ be any drawing order, let k = ∑

αi , and let g≤ : Ck → XT be the parame-
terizing map defined in Sect. 4. Denote the coordinates of Ck by w1, . . . , wk . Let
U = Q(w1, . . . , wk) be the corresponding field of rational functions in k variables.
We call U the parameter field of the drawings of T . Note that the number of living
triangles is n = k + 2.

Theorem 7.8 (Monsky++) Let T = (T , C) be a constrained triangulation of a
square that is drawable. Fix a drawing order ≤ with corresponding parameter field
U. For each living triangle � j , 1 ≤ j ≤ n, let W j ∈ U be the rational function in
the wi expressing the area of � j , i.e., W j is the j th coordinate function of the map
Area ◦ g≤. Let σ = ∑

Wj . Then there exists a homogeneous polynomial fT with
integer coefficients in n variables such that

2 fT (W1, . . . ,Wn) = σ e

in U, for some non-negative integer e. In fact, if fT (note the font change) is the
polynomial promised by Monsky+ for the honest triangulation T , then we may choose
fT to be the polynomial obtained from fT by plugging in zeroes for the variables that
correspond to the dead triangles of T .

Definition 7.9 If T is a constrained triangulation of a square with n living triangles,
then any polynomial f satisfying the conclusion of Theorem Monsky++ is called a
Monsky polynomial for T .

Proof Fix T and≤. Letm be the total number of triangles (alive and dead) in T . Recall
n = k + 2 = ∑

αi + 2 is the number of living triangles. We number the triangles of
T so that the first k + 2 are living in T . Apply Monsky+ to the honest T to get

fT (Z1, . . . , Zm) = 1

2
σ e
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in the field S = Q({xi , yi : 1 ≤ i ≤ m}). Here as above Z j is the polynomial in the
xi , yi expressing the area of � j . Let fT denote the polynomial fT evaluated with all
variables corresponding to dead triangles set to zero. We claim that

fT (W1, . . . ,Wk+2) = 1

2
(W1 + · · · + Wk+2)

e

inU . To see this, specialize to any point (wi ) in the domain of g≤, where the equation
is an equality of complex numbers that is true by Monsky+, because these coordinates
describe a drawing of T . Since the domain of g≤ is dense in C(

∑
α), the polynomials

must be identical and the claim is established. �
The preceding theorem could also be proved directly, in a manner very similar to
the proof of Monsky+, but invoking the map g. These versions of Monsky’s theorem
provide the generalizations promised in the introduction.

Corollary 7.10 If D is a generalized dissection of a parallelogram � into triangles
with areas a1, . . . , an, then there is an integer polynomial f in n variables with
f (a1, . . . , an) = Area(�)e/2, for some non-negative integer e. Moreover f can be
chosen to be invariant under deformation of D.

Proof If the constrained triangulationT (D) is drawable thenwemay applyMonsky++
directly to T (D). In any case, even if T (D) = (T , C) is not drawable, we apply
Monsky+ to the honest triangulation T , getting the polynomial fT . The dissection D
is the image of a drawing ρ; it doesn’t matter that ρ is not generic. As the areas of
all dead triangles of T (D) are zero in D and any deformation of D, the polynomial
fT (D) obtained from fT by plugging in zeroes for all variables corresponding to dead
triangles in T (D) satisfies the conclusion of the corollary. �
Example 7.11 (ACE again, cf. Examples 1.2, 2.5, and 3.6) Let T be the ACE
example, i.e., the constrained triangulation shown in Fig. 8D; a generic drawing is
shown in Fig. 5A. Following the idea of Corollary 7.6, we fix the corners to be the
vertices of the unit square. Here there are three living triangles called A,C, E and
two interior vertices u and v. We use the drawing order in which u < v and see that
αu = 1 while αv = 0. Thus with fixed corners, there is just one parameter w1. The
relevant constraint for u is spu, and the relevant constraints for v are rsv and qvu.
For any value of w1 �= 1, the drawing g(w1) places u at (0, 1 − w1) and places v at
(w1/(w1 − 1), 1). The areas of the triangles are

WA = 1 − w1

2
, WC = 1

2(1 − w1)
, WE = w2

1

2(w1 − 1)
.

As the reader can see, 4WAWC = 1, so the polynomial

f̃T = 2AC

satisfies 2 f̃T (WA,WC ,WE ) = 1 and is aMonsky polynomial for T . Indeed, in agree-
ment with Theorem Monsky++, this f̃T equals the polynomial f̃T from Example 7.7
with the variables B, D, F set to 0.
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7.4 Computation

The last assertion of the Monsky++ theorem is that the polynomials fT and fT are
related in themost natural way possible. (Of course these polynomials are not uniquely
defined so this statement is not entirely precise.) However in practice, to compute
the polynomial fT (D) for a generalized dissection D, we do not actually use this
relationship. Doing that would require first invoking Monsky+, computing fT for the
corresponding honest triangulation, and then zeroing out a bunch of variables. But, as
these are Gröbner basis computations which grow very quickly in complexity with the
number of variables, it is far preferable to perform the calculation without introducing
variables that we know we are eventually going to evaluate to zero. This is the real
value of the Monsky++ theorem: it says that we can work directly with the parameters
of the dissection, i.e., the coordinate functions of g, thereby reducing the variables to
only those that are actually needed. This is what we just saw in Example 7.11, where
the deformation space has only one parameter. As a result one can typically compute
f reasonably quickly for a generalized dissection with up to about ten living triangles,
even though the corresponding honest triangulation T may have many more triangles
than this and attempting to compute fT may crash our computers. The left dissection
of Fig. 2, for example, has four parameters. There are six triangles and its Monsky
polynomial has degree four, so f has at most

(9
4

) = 126 monomials and it is easily
computed (in fact it has 104 monomials). The corresponding honest triangulation T
has ten triangles and a Monsky polynomial of degree six. This one is still computable
in a reasonable amount of time, but it is quite large and unwieldy.

8 The Area Variety

Following [1], we now introduce the machinery necessary to define the polynomial
p, starting with the area map. Given three points (x1, y1), (x2, y2), (x3, y3) ∈ C2, we
have defined the area of the oriented triangle � with these vertices (in this order) to
be

Area(�) = 1

2

∣
∣
∣
∣
∣
∣

1 1 1
x1 x2 x3
y1 y2 y3

∣
∣
∣
∣
∣
∣
.

We also sometimes write Area(p1 p2 p3) for the area of the triangle � with vertices
p1, p2, p3 ∈ C2. Note that Area(p1 p2 p3) = 0 if and only if p1, p2, p3 lie on a
(complex) line in C2. When � ⊂ R2 the function Area gives the usual (signed) area.

Let T be a fixed drawable constrained triangulation. Let T1, . . . , Tn be the living
triangles of T . Note each Ti inherits an orientation from T . Let Y (T ) be the projective
space Pn−1 with coordinates [· · · : Ai : · · ·], 1 ≤ i ≤ n. If T = T (D) then we also
denote Y (T ) by Y (D). As T is drawable, the set of generic drawings is open and
dense in X(T ). We therefore have a rational map

Area = AreaT : X(T ) ��� Y (T )
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given by Area(ρ) = [· · · : Area(Ti ) : · · ·].
Definition 8.1 Let T be drawable. The area variety V = V (T ) is the closure in Y (T )

of Area(X(T )). If T = T (D) for some generalized dissection D then we also refer
to V = V (T ) = V (D) as the area variety of D.

Note that the affine group Aff2(C) acts on X and that the area map is equivariant
with respect to this action. (This accounts for not just the translations and scaling we
alluded to after defining X , but also rotations and shears.) Thus since T is drawable
the generic fibers of the area map are at least 6-dimensional (that being the size of
Aff2). Meanwhile one easily counts that dim Y = n − 1 = dim X − 5.

Therefore, for a given T the area variety V (T ) has codimension at least 1 in Y (T ),
with equality if and only if generic fibers are exactly 6-dimensional. In other words, V
is a hypersurface in Y if and only if there is no 1-parameter family of area-preserving
deformations, other than those contained in an Aff2 orbit.

Definition 8.2 A drawable constrained triangulation T is hyper if V (T ) is a hyper-
surface in Y (T ).

Conjecture 3 If D is a generalized dissection then T (D) is hyper, i.e., V (D) is a
hypersurface in Y (D).

At least two phenomena can prevent an arbitrary constrained triangulation from being
hyper, as we described in [1, Sect. 4].8 However, these phenomena do not arise for
constrained triangulations of the form T (D).

All honest triangulations are hyper, and we proved in [1] that if T has only one
constraint and it is non-separating then T is hyper. That proof can be extended some-
what. In a forthcoming paper we further enlarge the set of T (D)’s that we know to be
hyper.

If T is hyper then there is a unique (up to scaling) non-zero polynomial p = pT
that vanishes on V . The polynomial p is irreducible because X , and therefore V , is an
irreducible variety. Also, p has rational coefficients (because the coordinate functions
of Area do) so p can be normalized to have integer coordinates with no common
factor. We assume this has been done; the polynomial pT is now well-defined up to
sign for any hyper T .

Definition 8.3 We call p and −p the area polynomials for T .

We remark that the area polynomials are computable, using Gröbner basis techniques,
but that these computations quickly become intractable as the triangulation grows.

9 Mod 2

Let T be a constrained triangulation that is hyper (hence drawable). We thus have
Monsky polynomials f and an area polynomial p, both homogeneous elements of

8 In each of those scenarios there is a subset of the variables that sums to zero and as far as we know
the area variety is still a hypersurface in a smaller projective space than Y . So, it is possible that a slight
modification of Conjecture 3 holds for all T .
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the polynomial ring Z[A1, . . . , An], with variables Ai corresponding to the living
triangles of T . Letting σ = ∑

Ai , the equations 2 f = σ e and p = 0 hold on the
variety V (T ). The existence of p and f with these properties is enough to reveal all
of the coefficients of p modulo 2.

Theorem 9.1 (mod 2) If T is hyper then its area polynomial p satisfies

p ≡ σ d mod 2,

where d = deg p.

Proof Since V (T ) is the zero set of the irreducible polynomial p, any polynomial that
vanishes on V (T ) is a multiple of p. Thus p | 2 f −σ e. These are integer polynomials
and the divisibility occurs inQ[A1, . . . , An], so there is a polynomial q in this ringwith
pq = 2 f − σ e. By Gauss’s Lemma, q must have integer coefficients. Therefore we
may reduce the coefficients mod 2, and using [ · ] for the reduction, we have [p][q] =
[σ e]. Since Z/2Z[A1, . . . , An] is a unique factorization domain, we conclude that
[p] = [σ d ] for some d = deg p ≤ e. �
Corollary 9.2 Let T be hyper, and suppose the area polynomial p has degree d. Then
all leading terms Ad

i occur with odd (hence non-zero) coefficient.

In a forthcoming paper we show that the leading coefficients are all equal up to sign.
We suspect these coefficients are all ±1, as we discuss in Sect. 11.

10 Canonical Monsky Polynomials

Let T be hyper, let p be its area polynomial, and suppose p has degree d. Recall
that p is only well-defined up to sign; we suppose we have chosen one of the two
possibilities.

Using p, we now single out a particular f satisfyingMonsky++.ByTheorem9.1we
have σ d + p = 2 f for some polynomial f ∈ Z[A1, . . . , An], homogeneous of degree
d = deg p. Note that f satisfies the conclusion of Monsky++, since 2 f − σ d = p
vanishes on V . This shows that we may choose

f = σ d + p

2

in Theorem Monsky++. This shows in addition that we may choose a Monsky poly-
nomial with the same degree as p (and no lower). If we begin with −p instead of p,
we end up with

f̃ = σ d − p

2
= f − p

instead. The pair { f , f̃ } is therefore a canonically defined pair ofMonsky polynomials,
both of minimal degree.
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Definition 10.1 For T hyper with area polynomial ±p of degree d, the canonical
Monsky polynomials are { f , f̃ } where f = (σ d + p)/2 and f̃ = (σ d − p)/2.

Proposition 10.2 For T hyper with area polynomials ±p of degree d, the polynomial
f0 is a Monsky polynomial for T if and only if f0 = (σ e + pq)/2 for some integer
e ≥ d and for some polynomial q ≡ σ e−d mod 2. In particular, the minimal degree
Monsky polynomials are exactly { f +mp} = { f̃ +mp}, where f , f̃ are the canonical
Monsky polynomials and where m is any integer.

Proof For polynomials f0 ∈ Z[A1, . . . , An], the condition that f0 be a Monsky poly-
nomial is equivalent to the condition that p | 2 f0 − σ e for some e, which in turn is
equivalent to the condition that f0 = (σ e + pq)/2 for some q ≡ σ e−d mod 2. The
second assertion follows by considering e = d. �
The canonical Monsky polynomials f , f̃ satisfy

f + f̃ = σ d , f − f̃ = p (5)

(where interchanging f and f̃ corresponds to interchanging p and −p).

Example 10.3 (cf. Examples 1.1, 2.2, and 7.1) We saw in Example 7.1 that for the
triangulation in Fig. 4A, A + C is a Monsky polynomial. The area polynomial is
p = A − B + C − D and so the canonical Monsky polynomials are f = B + D
and f̃ = A + C . We have 2 f = 2 f̃ = σ in the field U and on the variety V . Other
Monsky polynomials may be obtained by adding a multiple of p to f . For example,
p + f = 2A − B + 2C − D is a Monsky polynomial.

Example 10.4 (cf. Examples 1.2 and 7.7) For the honest triangulation T of Fig. 7 we
choose the area polynomial p = (A+C + E)2 −4AC − (B + D+ F)2 +4DF . (See
also [1], where this is worked out in detail.) This is irreducible and it vanishes on V .
The canonical Monsky polynomials are

f = σ 2 + p

2
= (A + C + E)2 − 2AC + 2DF + (A + C + E)(B + D + F),

f̃ = σ 2 − p

2
= (B + D + F)2 − 2DF + 2AC + (A + C + E)(B + D + F).

This is howwe first found the polynomials fT fromExample 1.2 and f̃T fromExample
7.7.

Notice in this example that there is another way to obtain f and f̃ from p. If we
write p = p+− p− as the difference of two polynomialswith non-negative coefficients
and no common terms, then we have p+ = p− on V , where

p+ = A2 + C2 + E2 + 2AE + 2CE + 2DF and

p− = B2 + D2 + F2 + 2BD + 2BF + 2AC .

We see that each of these coefficients is less than or equal to the corresponding coef-
ficient in the expansion of σ 2. The terms of this expansion that do not occur in p+ or
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p− are 2(A+C + E)(B + D + F). Thus we can “make up the difference” by adding
t = (A + C + E)(B + D + F) to both sides, giving p+ + t = p− + t on V , and

(p+ + t) + (p− + t) = σ d , (p+ + t) − (p− + t) = p. (6)

This means we have found two polynomials whose sum is σ d and whose difference
vanishes on V ; therefore each is half of σ d and they are Monsky polynomials. Com-
paring with (5), we see that in fact

f = p+ + t and f̃ = p− + t .

11 Positivity

Something happened in the last derivation that may not always work. When we wrote
p+ and p−, we observed that all the terms have coefficients that are “small,” in the sense
that none is larger than the corresponding coefficient of σ 2. As a direct consequence,
all coefficients of t , hence also of both f and f̃ , turned out to be non-negative.

This phenomenon is not essential to the procedure; if it fails one can still define t
satisfying (6) and proceed to determine f and f̃ . In that case t and at least one of f , f̃
would have some negative coefficients. For honest triangulations, however, we have
never observed this.

Definition 11.1 A polynomial is called positive if all its coefficients are non-negative.

Conjecture 4 (positivity) The canonical Monsky polynomials of every honest trian-
gulation are positive.

We can restate this conjecture in terms of the area polynomial as follows.

Definition 11.2 A homogeneous polynomial p of degree d is called small if each
coefficient of p has absolute value less than or equal to the corresponding multinomial
coefficient; that is, if both σ d − p and σ d + p are positive.

Because of the relationships 2 f = σ d + p and 2 f̃ = σ d − p, the positivity conjecture
is equivalent to saying that the area polynomial of an honest triangulation is small.

At the end of the previous section we mentioned our suspicion that the leading
terms Ad

i of the area polynomial p all have coefficient ±1. We point out now that this
is a special case of the positivity conjecture.

We conclude this sectionwith some further remarks about this conjecture.We frame
these remarks in terms of the area polynomial p, rather than f , because we have more
techniques for computing and working with p.

Observe that smallness is preserved under products: if p and p̄ are two small
polynomials, then p p̄ is also small. Observe also that smallness is a local condition
on the polynomial p, in the sense that its failure is always witnessed by (at least)
one individual monomial. In other words p is small if and only if each monomial
of p is small, even though a given monomial may not include all the variables in the
polynomial p. For instance any polynomial containing the term, say,−40ABCD fails
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Fig. 14 Example 1.1, reprised
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Fig. 15 The diagonal case Tn

to be small, because the degree is 4 and |−40| is larger than the coefficient of ABCD
in σ 4, which is 24 regardless of how many variables there are in σ .

With these observations, and using the methods of [1], we can show that the positiv-
ity conjecture holds for the infinite family Tn of honest triangulations shown in Fig. 15.
We call this the “diagonal case.” Note that T1 and T2 have already made numerous
appearances in this paper under the pseudonyms Example 1.1 and Example 1.2.

Proposition 11.3 For each n, the diagonal case Tn has positive Monsky polynomial.

Proof As it is honest, Tn is hyper, and we denote its area polynomial by pn . In [1] we
gave an explicit expression for pn , but it is difficult to tell directly from that expression
that pn is small. However we do know that the degree of pn is exactly n. If we focus on
any particular monomial of pn , then at least one subscript from {1, . . . , n + 1}, call it
j , does not occur in the variables of this monomial. If we kill triangles A j and Bj the
resulting polynomial pn|A j=Bj=0 factors into a linear factor with coefficients ±1 and
a degree n − 1 factor which is a version of pn−1 (but with subscripts at least j shifted
up by one). The linear factor is small, and inductively so is pn−1, so their product is
also small. The monomial from pn on which we focused is one term of this product,
and so this chosen monomial satisfies smallness. Since our choice of monomial was
arbitrary, it follows that pn is small, as desired. �
Example 11.4 (ACE again, cf. Examples 1.2, 2.5, 3.6, 7.11, and 10.4)
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Fig. 16 A T whose Monsky polynomial is not positive

To see some non-honest examples, one can start with the honest triangulation T2
and plug in zeroes. For instance consider the ACE example. Monsky++ implies that
we may take the f and f̃ computed already for the honest case and plug in B = D =
F = 0, giving

f = A2 + C2 + E2 + 2AE + 2CE, f̃ = 2AC .

The area polynomial p = (A + C + E)2 − 4AC is likewise obtained by plugging
in B = D = F = 0 from Example 10.4. We check f + f̃ = (A + C + E)2 and
f − f̃ = p.

There is a reason that we assume honesty in the positivity conjecture. The next example
shows a classical dissection D whose T (D) has an area polynomial that is not small.

Example 11.5 (failure of positivity) We return to the second figure in this paper,
reproduced in Fig. 16. The constrained triangulation T = T (D) = (T , C) has ten
triangles and four constraints; there are six living triangles. The area polynomial pT for
the honest triangulation T has degree six, and is small. However, the area polynomial
pT for the constrained triangulation has degree four and has a total of 70 terms, one
of which is −40ABCD, where A, B,C, D denote the areas of the four triangles that
touch the corners. Therefore pT is not small. Of course, this term does not occur in
the degree six polynomial pT . Curiously, of the 70 terms of pT , only one violates
smallness. Likewise, of the 104 terms of f and the 122 terms of f̃ , just one of them
has a negative coefficient, namely −8ABCD.

12 Equidissections

Monsky’s original equidissection theorem leaves open the question of which dissec-
tions can be deformed to be equiareal. (It is easy to see that for each even n, there exist
such dissections with n triangles.) Observe that if D is a dissection with n triangles
and p(1, 1, . . . , 1) �= 0, or equivalently the sum of the coefficients of f is not equal to
nd/2, then D cannot be deformed to an equidissection without killing triangles. This
is the case, for instance, with the dissection shown in Fig. 17: there are 8 triangles, and
the polynomial p has degree 3, so plugging in all 1’s to σ d gives the value 83 = 512.
However plugging in all 1’s in f and f̃ gives the values 260 and 252, which are not
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Fig. 17 This dissection cannot be deformed to an equidissection

equal (and p(1, . . . , 1) is the difference, ±8). There is no drawing of this triangula-
tion in which all triangles have area 1/8. In this case, this is also easily proved using
elementary Euclidean geometry.

Question 5 Given a dissection or generalized dissection D, can one predict from the
combinatorics of T (D) whether or not D can be deformed to an equidissection?
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