

Graded Cohen–Macaulay Domains and Lattice Polytopes with Short *h*-Vector

Lukas Katthän¹ · Kohji Yanagawa²

Received: 2 September 2020 / Revised: 30 September 2021 / Accepted: 1 October 2021 / Published online: 9 November 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Let *P* be a lattice polytope with the h^* -vector $(1, h_1^*, \ldots, h_s^*)$. In this note we show that if $h_s^* \leq h_1^*$, then the Ehrhart ring $\mathbb{k}[P]$ is generated in degrees at most s - 1 as a \mathbb{k} -algebra. In particular, if s = 2 and $h_2^* \leq h_1^*$, then *P* is IDP. To see this, we show the corresponding statement for semi-standard graded Cohen–Macaulay domains over algebraically closed fields.

Keywords Lattice polytope $\cdot h^*$ -Vector \cdot Semi-standard graded ring \cdot Cohen–Macaulay domain

Mathematics Subject Classification $13H10\cdot52B20\cdot05E40$

1 Introduction

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a noetherian graded commutative ring. Throughout the paper, we assume that $\Bbbk := R_0$ is a field. If $R = \Bbbk[R_1]$, that is, R is generated by R_1 as a \Bbbk -algebra, we say R is *standard graded*. If R is finitely generated as a $\Bbbk[R_1]$ -module, we say R is *semi-standard graded*.

Editor in Charge: János Pach

Lukas Katthän katthaen@math.uni-frankfurt.de Kohji Yanagawa yanagawa@kansai-u.ac.jp

¹ Göttingen, Germany

² Department of Mathematics, Kansai University, Suita, Osaka 564-8680, Japan

This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 19K03456.

If R is a semi-standard graded ring of Krull dimension d, its Hilbert series is of the form

$$\sum_{i \in \mathbb{N}} (\dim_{\mathbb{K}} R_i) \cdot t^i = \frac{h_0 + h_1 t + \dots + h_s t^s}{(1-t)^d}$$

for some integers h_0, h_1, \ldots, h_s with $\sum_{i=0}^{s} h_i \neq 0$ and $h_s \neq 0$. We call the vector (h_0, h_1, \ldots, h_s) the *h*-vector of *R*. We always have $h_0 = 1$ and deg $R = \sum_{i=0}^{s} h_i$. If *R* is Cohen–Macaulay, then $h_i \geq 0$ for all *i*. We have the following.

Theorem 1.1 Let *R* be a semi-standard graded Cohen–Macaulay domain with the *h*-vector (h_0, h_1, h_2) . Assume that \Bbbk is algebraically closed. If $h_2 \leq h_1$, then *R* is standard graded. If further $h_2 < h_1$ and char $\Bbbk = 0$, then *R* is Koszul.

In fact, Theorem 2.1 states that, under the same situation, if the *h*-vector of *R* is (h_0, h_1, \ldots, h_s) with $h_s \leq h_1$, then *R* is generated in degrees at most s - 1 as a k-algebra. So the first statement of Theorem 1.1 follows. To see the latter statement, we can use [5, Thm. 5.2(1)], since we know *R* is standard graded now.

An important class of semi-standard graded Cohen–Macaulay domains are the Ehrhart rings of lattice polytopes, which we now recall. Let $P \subset \mathbb{R}^d$ be a lattice polytope. Its *Ehrhart ring* $\mathbb{k}[P]$ is the monoid algebra of the monoid of lattice points in the cone $C = \operatorname{cone}(\{1\} \times P) \subset \mathbb{R}^{d+1}$ over P. The additional coordinate in the construction of C yields a natural grading on $\mathbb{k}[P]$, such that $\mathbb{k}[P]$ is semi-standard graded, and its Hilbert series is the Ehrhart series of P. In particular, the h-vector of $\mathbb{k}[P]$ is the h^* -vector of P (for general information about this notion and its background, see [1]). Hence the Krull dimension dim $\mathbb{k}[P]$ equals dim P + 1.

It is well known that $\Bbbk[P]$ is a normal domain, and by Hochster's Theorem [12, Thm. 1], it is Cohen–Macaulay. We refer the reader to the monograph by Bruns and Gubeladze [2] for more information on Ehrhart rings. The index of the last non-zero entry of the h^* -vector is called the *degree* of P. We always have deg $P \le \dim P$. The h^* -vector of P is sometimes denoted by $(h_0^*, h_1^*, \ldots, h_{\dim P}^*)$, even if deg $P < \dim P$. In this case, $h_i^* = 0$ for all $i > \deg P$. We also remark that there is no direct relation between deg P and deg $\Bbbk[P] = \sum_{i=0}^{d} h_i^*$, the latter being the multiplicity of $\Bbbk[P]$, which also equals the normalized volume Vol P of P.

A lattice polytope *P* is called *IDP* (an abbreviation for "integer decomposition property") if for every $k \in \mathbb{N}$ and every lattice point $p \in kP \cap \mathbb{Z}^d$, there exist *k* lattice points $p_1, \ldots, p_k \in P \cap \mathbb{Z}^d$ with $p = \sum_i p_i$. Clearly, *P* is IDP if and only if $\Bbbk[P]$ is standard graded. Hence we obtain the following (here we do not have to assume that \Bbbk is algebraically closed, since we can replace $\Bbbk[P]$ by $\overline{\Bbbk}[P] \cong \overline{\Bbbk} \otimes_{\Bbbk} \Bbbk[P]$):

Corollary 1.2 Let $P \subset \mathbb{R}^d$ be a lattice polytope of degree 2 with h^* -vector $(1, h_1^*, h_2^*)$. If $h_2^* \leq h_1^*$, then P is IDP. If further $h_2^* < h_1^*$, the Ehrhart ring $\mathbb{K}[P]$ is Koszul for a filed \mathbb{k} of characteristic 0.

Note that if $P \subset \mathbb{R}^2$ is a lattice polygon, then it has degree at most 2, and it always satisfies $h_2^* \leq h_1^*$. Therefore, the former half of this corollary can be seen as an extension of the well-known fact that lattice polygons are IDP. See also Remark 3.3 (i) below. We give an example to show that the bound in Corollary 1.2 is sharp:

Example 1.3 Let *P* be the 3-simplex with vertices

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \text{ and } \begin{pmatrix} 1\\1\\2 \end{pmatrix}.$$

It is Reeve's simplex (cf. [1, Exam. 3.22]) and its h^* -vector is (1, 0, 1). It is not IDP, and hence the bound $h_2^* \le h_1^*$ is sharp.

In the latter part of the present paper, we take a more combinatorial approach. Especially, keeping Corollary 1.2 in mind, we analyze the results of [9], and give several (counter)examples of the related statements.

2 Proofs of the Main Results

Let $R = \bigoplus_{i \in \mathbb{N}} R_i$ be a noetherian graded commutative ring such that $\Bbbk := R_0$ is an algebraically closed field. We are going to regard R as a module over $S := \text{Sym}_{\Bbbk} R_1$. Note that S is isomorphic to the polynomial ring $\Bbbk[x_1, \ldots, x_n]$ with $n = \dim_{\Bbbk} R_1$. Moreover, R is standard graded if and only if R is a quotient ring of S, and R is semistandard graded if and only if R is finitely generated as an S-module. For a finitely generated graded S-module $M, i \in \mathbb{N}$ and $j \in \mathbb{Z}$, set

$$\beta_{i,j}^{S}(M) := \dim_{\mathbb{K}}[\operatorname{Tor}_{i}^{S}(\mathbb{k}, M)]_{j}.$$

In particular, $\beta_{0,i}^{S}(M)$ is the number of S-module generators for M in degree j.

2.1 A Bound on the Degrees of the Generators

Assume that *R* is semi-standard graded, and has the *h*-vector (h_0, h_1, \ldots, h_s) . The goal of this section is to obtain a bound on the degrees of the generators of *R* as an *S*-module. If *R* is Cohen–Macaulay, it is well known that the generators have degree at most *s*. Our result is a sufficient criterion when this bound can be improved by one:

Theorem 2.1 Let *R* be a semi-standard graded Cohen–Macaulay domain with *h*-vector $(h_0, h_1, h_2, ..., h_s)$, and $S := \text{Sym}_{\mathbb{k}} R_1$. Then it holds that

$$\beta_{p,p+s}^{S}(R) = 0 \quad for \quad 0 \le p \le h_1 - h_s.$$

In particular, if $h_s \leq h_1$, then R is generated by elements of degree $\leq s - 1$ as an S-module, and hence as a k-algebra.

Note that Theorem 1.1 amounts to the special case s = 2 and p = 0. This result and its proof have been inspired by Green's Theorem of the Top Row, [7, Thm. 4.a.4]. For the proof of Theorem 2.1, we are going to use the following version of Green's vanishing theorem:

Theorem 2.2 ([6, Thm. 1.1]) Let $\mathfrak{p} \subset S$ be a homogeneous prime ideal, which does not contain any linear forms. Let M be a torsion-free finitely generated graded S/\mathfrak{p} module and let $q \in \mathbb{Z}$ be the minimal integer such that $M_q \neq 0$. Then it holds that

$$\beta_{p,p+q}^{S}(M) = 0 \quad for \quad p \ge \dim_{\mathbb{K}} M_{q}$$

In addition, we need the following result:

Theorem 2.3 ([2, Thm. 6.18], [3, Thm. 4.4.5]) Let M be a finitely generated graded Cohen–Macaulay module over $S = \Bbbk[x_1, \ldots, x_n]$ with $d = \dim M$. Define $M' := \operatorname{Ext}_S^{n-d}(M, \omega_S)$. Then

(i) M' is also Cohen–Macaulay, Ann M' = Ann M, and $M'' \cong M$; (ii) $\beta_{p,q}^{S}(M') = \beta_{n-d-p,n-q}^{S}(M)$; (iii) $H_{M'}(t) = (-1)^{d} H_{M}(t^{-1})$.

Here, $\omega_S := S(-n)$ denotes the canonical module of *S*, and $H_M(t)$ denotes the Hilbert series $\sum_{i \in \mathbb{Z}} (\dim_{\mathbb{K}} M_i) \cdot t^i$ of *M*.

Proof of Theorem 2.1 Let $d := \dim R$. By [3, Prop. 3.6.12], $\omega_R := \operatorname{Ext}_S^{n-d}(R, \omega_S)$ is a canonical module for R. Using Theorem 2.3 with M = R and $M' = \omega_R$, we have

$$\beta_{p,p+q}^{S}(R) = \beta_{n-d-p,n-(p+q)}^{S}(\omega_{R}) = \beta_{n-d-p,(n-d-p)+(d-q)}^{S}(\omega_{R}).$$

and the Hilbert series of ω_R is

$$\frac{h_s t^{d-s} + h_{s-1} t^{d-s+1} + \dots + h_0 t^d}{(1-t)^d}.$$

In particular, ω_R has no elements in degrees below d - s and we have that $\dim_{\mathbb{K}}(\omega_R)_{d-s} = h_s$. Now, since *R* is a domain and ω_R is a canonical module, it is torsion-free over *R* by Theorem 2.3 (i), and thus it satisfies the hypothesis of Theorem 2.2. Applying that result to ω_R (note that q = d - s in the notation there) yields that

$$\beta_{p,p+s}^{S}(R) = \beta_{n-d-p,(n-d-p)+(d-s)}^{S}(\omega_{R}) = 0 \quad \text{if} \quad (n-d) - p \ge h_{s}.$$

Finally, note that $h_1 = n - d$, and the proof is completed.

Remark 2.4 Another important example of a semi-standard graded ring appearing in combinatorial commutative algebra is the *face ring* A_P of a simplicial poset *P*. See [15] for details. For the simplicial poset *P* given in Fig. 1, we have

$$A_P \cong \frac{\mathbb{K}[x, y, z, u, v]}{(xz, uz, vz, uv, xy - u - v)},$$

Deringer

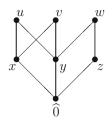


Fig. 1 The poset P of Remark 2.4

where deg x = deg y = deg z = 1 and deg u = deg v = 2, and $\widehat{0}, w \in P$ correspond to 1, $yz \in A_P$, respectively. It is easy to see that A_P is a 2-dimensional Cohen– Macaulay reduced semi-standard graded ring with the *h*-vector (1, 1, 1), but it is *not* standard graded. It means that Theorem 2.1 indeed requires the assumption that *R* is a domain.

3 Further Discussion on Ehrhart Rings

3.1 Direct Applications of Theorem 2.1

We now apply Theorem 2.1 in the setting of Ehrhart theory. Let $P \subset \mathbb{R}^n$ be a lattice polytope. We write $M(P) \subset \mathbb{Z}^{n+1}$ for the affine monoid generated by the lattice points in $\{1\} \times P \subset \mathbb{R}^{n+1}$, and $\widehat{M}(P) \subset \mathbb{Z}^{n+1}$ for its integral closure inside \mathbb{Z}^{n+1} . Let $R = \mathbb{k}[P]$ be the Ehrhart ring of P and $\mathbb{k}[R_1]$ its subalgebra generated by R_1 . Then R and $\mathbb{k}[R_1]$ are the monoid algebras of the monoids $\widehat{M}(P)$ and M(P), respectively. It is well known that $\widehat{M}(P)$ is generated by elements of degree at most min {deg P, dim P - 1} as a module over M(P) (cf. [2, Thm. 2.52]). Equivalently, $R = \mathbb{k}[P]$ is generated by elements of at most that degree as a $\mathbb{k}[R_1]$ -module, and hence in particular as a \mathbb{k} -algebra.

Since k[P] is always Cohen–Macaulay, Theorem 2.1 allows us to improve this bound under an additional assumption as follows. Clearly, this generalizes Corollary 1.2.

Corollary 3.1 Suppose $P \subset \mathbb{R}^n$ is a lattice polytope of degree *s* with h^* -vector $(1, h_1^*, \ldots, h_s^*)$. If $h_s^* \leq h_1^*$, then $\widehat{M}(P)$ is generated by elements of degrees $\leq s - 1$ as an M(P)-module.

Let P° be the relative interior of P. The lattice points in P° are closely related to the canonical module of $\Bbbk[P]$ (cf. [3, Thm. 6.3.5 (b)]). In general, it holds that $h^*_{\dim P} \le h^*_1$ (because $h^*_{\dim P} = \#(P^{\circ} \cap \mathbb{Z}^n) \le \#(P \cap \mathbb{Z}^n) - (\dim P + 1) = h^*_1$), therefore this corollary extends the above mentioned fact that $\widehat{M}(P)$ is generated in degrees at most min {deg P, dim P - 1}.

If *P* is IDP, then $R = \Bbbk[P]$ is the quotient ring of $S = \text{Sym}_{\Bbbk} R_1$ by a certain prime ideal $I \subseteq S$, which is called the *toric ideal* of *P*. It is known that *I* is generated by polynomials of degree at most deg $P + 1 \le \dim P + 1$ (Sturmfels, cf. [2, Cor. 7.27]), and again we can improve these bounds by one:

Corollary 3.2 Let P be an IDP lattice polytope and let $I \subset S$ be its toric ideal.

(i) If h_s^{*} ≤ h₁^{*} − 1, then I is generated in degrees ≤ deg P.
(ii) If P is not a clean simplex, then I is generated in degrees ≤ dim P.

Recall that a *clean simplex* is a lattice simplex where the only lattice points on its boundary are the vertices.

Proof

- (i) Apply Theorem 2.1 to $R = \Bbbk[P]$ with p = 1.
- (ii) If *I* has a generator in degree dim P + 1, then it holds that deg $P = \dim P$ by the above mentioned fact that *I* is generated in degrees at most deg $P + 1 \le \dim P + 1$. Moreover, the hypothesis of part (i) needs to be violated, hence it holds that $h^*_{\dim P} \ge h^*_1$. It follows that $h^*_{\dim P} = h^*_1$, which is equivalent to *P* being a clean simplex.

Remark 3.3

- (i) Let P ⊂ R² be a lattice polygon. Then we have deg P ≤ 2 and P is IDP. Moreover, Koelman [13] showed that the toric ideal of P is generated by quadrics if and only if h₂^{*} < h₁^{*}. Hence Corollary 3.2(i) is an extension of one implication of his result. In particular, the result of [13] shows that the bound h₂^{*} < h₁^{*} is sharp.
- (ii) In [14], Schenck also applied the theory of Green to the study of Ehrhart rings k[P]. However, the focus of [14] is different from ours. More precisely, he always assumed that k[P] is standard graded (i.e., P is IDP), and treated the case the toric ideal is generated by quadrics.

3.2 Combinatorial Proofs

Corollary 1.2 is a purely combinatorial statement, and hence one might hope for a combinatorial proof. As a first step, we prove a weak variant of Corollary 1.2 which admits an elementary proof.

We remind the reader that a lattice polytope $P \subset \mathbb{R}^n$ is called *spanning* [11], if $(\{1\} \times P) \cap \mathbb{Z}^{n+1}$ generates the lattice \mathbb{Z}^{n+1} . Every IDP polytope is spanning, but the converse is far from being true. Algebraically, for the Ehrhart ring $R = \Bbbk[P]$, P is spanning if and only if the field of fractions of R coincides with that of $\Bbbk[R_1]$.

Proposition 3.4 Let $P \subset \mathbb{R}^n$ be a d-dimensional lattice polytope with h^* -vector (h_0^*, h_1^*, \ldots) . If $h_1^* + h_d^* \ge \sum_{i=2}^{d-1} h_i^*$, then P is spanning.

Proof Let *L* be the lattice generated by the lattice points in *P*, and *q* the index of *L* in \mathbb{Z}^n . Further, let \widetilde{P} be the polytope *P* considered in the lattice *L* (see [11]). We write \widetilde{h}^* for the h^* -vector of \widetilde{P} . It holds that

$$\sum_{i=0}^{d} h_i^* = \operatorname{Vol} P = q \operatorname{Vol} \widetilde{P} = q \sum_{i=0}^{d} \widetilde{h}_i^*.$$
(1)

Moreover, it holds that $h_1^* = \tilde{h}_1^*$, $h_d^* = \tilde{h}_d^*$, and $h_i^* \ge \tilde{h}_i^*$ for $1 \le i \le d$ (see [11, Sect. 3.2]). Now (1) and the assumption that $\sum_{i=2}^{d-1} h_i^* \le h_1^* + h_d^*$ imply that

$$0 \le q \sum_{i=2}^{d-1} \tilde{h}_i^* = \sum_{i=2}^{d-1} h_i^* - (q-1)(1+h_1^*+h_d^*)$$

$$\le h_1^* + h_d^* - (q-1)(1+h_1^*+h_d^*) = (2-q)(1+h_1^*+h_d^*) - 1.$$

Since $1 + h_1^* + h_d^* \ge 1$, we have q = 1, and it means that P is spanning.

In the next corollary, (i) is just a weak version of Corollary 1.2, but (ii) and (iii) are new.

Corollary 3.5 *With the above notation, the following hold:*

- (i) If deg P = 2 and $h_1^* \ge h_2^*$, then P is spanning.
- (ii) If dim P = 3 and $h_1^* + h_3^* \ge h_2^*$, then P is spanning.
- (iii) If dim P = 4, deg $P \ge 3$, and $h_1^* + h_4^* \ge h_2^* + h_3^*$, then P is spanning. In this case, it holds that $h_1^* = h_2^* = h_3^* = h_4^*$.

Proof Only the very last statement is not immediate from Proposition 3.4. If dim P = 4, then $h_4^* \le h_1^*$. By assumption and Proposition 3.4, P is spanning, and hence by [10, Thm. 1.4] it holds that $h_1^* \le h_i^*$ for $1 \le i < \deg P$. As deg $P \ge 3$ it holds that $h_1^* \le h_2^*$ and $h_3^* > 0$, and thus $h_1^* < h_2^* + h_3^*$. It follows that $h_4^* \ne 0$, so deg P = 4. Hence we have that $h_4^* \le h_1^* \le h_2^*$ and $h_1^* \le h_2^*$ and $h_1^* \le h_2^*$. These inequalities, together with $h_1^* + h_4^* \ge h_2^* + h_3^*$, imply that $h_1^* = h_2^* = h_3^* = h_4^*$.

Unfortunately, these are the only cases where Proposition 3.4 can be applied, due to the following observation:

Proposition 3.6 If $d := \dim P \ge 5$ and $\deg P \ge 3$, then $h_1^* + h_d^* < \sum_{i=2}^{d-1} h_i^*$.

Proof Set $s := \deg P$. If $h_d^* = 0$ (i.e., s < d), then we have

$$h_1^* + h_d^* = h_1^* < h_0^* + h_1^* \le h_s^* + h_{s-1}^* \le \sum_{i=2}^{d-1} h_i^*,$$

where the first \leq follows from [16, Prop. 4.1] and the second follows from the assumption that $d \geq 5$ and $s \geq 3$. If $h_d^* \neq 0$, we have $h_i^* \geq h_1^*$ for all $1 \leq i \leq d - 1$ by [8, Thm. 1.1]. Hence

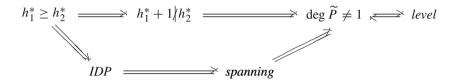
$$h_1^* + h_d^* \le 2h_1^* < h_2^* + h_3^* + h_4^* \le \sum_{i=2}^{d-1} h_i^*.$$

Here we use the assumption that $d \ge 5$.

3.3 About Polytopes of Degree 2

One can combine our Corollary 1.2 with the results of [9] to obtain the following web of implications for lattice polytopes of degree 2:

Theorem 3.7 Let $P \subset \mathbb{R}^n$ be a lattice polytope of degree 2 with h^* -vector $(1, h_1^*, h_2^*)$, and let \tilde{P} denote the polytope P considered as a lattice polytope inside the lattice generated by the lattice points in P. Then the following implications hold:



Here, we say that a lattice polytope P is *level* if its Ehrhart ring $R = \Bbbk[P]$ is level, that is, its canonical module ω_R is generated in a single degree as an *R*-module. The levelness of P is a combinatorial property of the monoid $\widehat{M}(P)$ (c.f. [9, Prop. 4.3]), and does not depend on the base field \Bbbk .

Proof

- $h_1^* \ge h_2^* \implies h_1^* + 1 \not| h_2^*$: This is elementary.
- $1+h_1^*/\tilde{h}_2^* \implies \deg \tilde{P} \neq 1$: We show the contrapositive. Assume that $\deg \tilde{P} = 1$. Denote the h^* -vector of \widetilde{P} by \widetilde{h}^* . The volume of \widetilde{P} divides the volume of P, since the latter is normalized with respect to a finer lattice. Thus we have that

$$(1 + \tilde{h}_1^* + \tilde{h}_2^*) \mid (1 + h_1^* + h_2^*).$$

On the other hand, we have that $\tilde{h}_1^* = h_1^*$ and by assumption, $\tilde{h}_2^* = 0$. It follows that $(1 + h_1^*) \mid h_2^*$.

- $h_1^* \ge h_2^* \implies \text{IDP:}$ This is Corollary 1.2.
- $IDP \Longrightarrow$ spanning: This is well known (and elementary), and it does not need the assumption deg $P \leq 2$.
- spanning $\Longrightarrow \deg \widetilde{P} \neq 1$: $\deg \widetilde{P} = \deg P = 2 \neq 1$.
- deg $\widetilde{P} \neq 1 \Longrightarrow$ level: Under this hypothesis, the degree of \widetilde{P} is either 0 or 2. We distinguish those cases:

- deg $\widetilde{P} = 0$: In this case $h_1^* = 0$, the claim follows from [9, Lem. 2.1]. deg $\widetilde{P} = 2$: Let R and \widetilde{R} denote the Ehrhart rings of P and \widetilde{P} , respectively. Then deg $\widetilde{R} = 1 + h_1^* + \tilde{h}_2^* > 1 + h_1^*$ by assumption, and thus R is level by [9, Prop. 3.4].
 - level \implies deg $\widetilde{P} \neq 1$: This follows from more general Lemma 3.8 below.

Lemma 3.8 Let $P \subset \mathbb{R}^n$ be a lattice polytope. If P is level, then deg $\widetilde{P} \neq \deg P - 1$.

Proof Let $c(P) := \min \{ \ell \in \mathbb{Z}_{>0} : \ell P^{\circ} \cap \mathbb{Z}^n \neq \emptyset \}$. It is well known that deg $P = \dim P + 1 - c(P)$.

We are going to use [9, Prop. 4.3], which we recall for convenience: If *P* is level, then for any $k \ge c(P)$ and $\alpha \in kP^{\circ} \cap \mathbb{Z}^n$, there exist $\beta \in c(P)P^{\circ} \cap \mathbb{Z}^n$ and $\gamma \in (k - c(P))P \cap \mathbb{Z}^n$ such that

$$\alpha = \beta + \gamma.$$

Now, assume that deg $\widetilde{P} = \deg P - 1$, and note that this implies $c(\widetilde{P}) = c(P) + 1$. Let $L \subset \mathbb{Z}^n$ be the sublattice spanned by the lattice points in P. As $P \neq \widetilde{P}$, this is a proper sublattice of \mathbb{Z}^n . Choose $\alpha \in c(\widetilde{P})P^\circ \cap L$. Then, if P were level, there would exist β and γ as above. As $\beta \in c(P)P^\circ \cap \mathbb{Z}^n$, it follows that $\beta \notin L$ (because $c(P)\widetilde{P}$ has no interior lattice points). Further, γ lies in $(c(\widetilde{P}) - c(P))P = P$ and thus $\gamma \in L$. But this contradicts $\beta + \gamma = \alpha \in L$.

We provide some examples to show that all the implications are strict and that there are no other implications. In each example, the claimed properties can conveniently be verified using normaliz [4].

Example 3.9 $(h_1^* + 1 | / h_2^* \not\Longrightarrow$ spanning, IDP, $h_1^* \ge h_2^*$). Consider the 4-polytope *P* with vertices

$$\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \text{ and } \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

Its h^* -vector is (1, 2, 5), so it satisfies $h_1^* + 1 \not\mid h_2^*$, but $h_1^* \not\geq h_2^*$. To see that it is not spanning (and thus not IDP), consider the vector

$$v := \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right).$$

It lies in $2P \cap \mathbb{Z}^4$, but the sum of its coordinates is odd, while the coordinate sum of each vertex of *P* is even. Hence *v* cannot lie in the lattice spanned by them.

Example 3.10 (IDP and spanning $\neq \Rightarrow h_1^* + 1 \not\mid h_2^*, h_1^* \ge h_2^*$). Let *P* be the 3-simplex with vertices

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\0 \end{pmatrix}, \text{ and } \begin{pmatrix} 1\\0\\3 \end{pmatrix}.$$

It is IDP and its h^* -vector is (1, 5, 6), so $h_1^* + 1 \mid h_2^*$ and $h_1^* \not\geq h_2^*$.

Example 3.11 (spanning $\neq \rightarrow$ IDP). It is well known that this implication does not hold in general. For an example with degree 2, see [2, Exe. 2.24]. This is a very-ample (and thus spanning) 3-polytope which is not IDP. Its h^* -vector is (1, 4, 5), so it has degree 2.

Example 3.12 (deg $\tilde{P} \neq 1 \implies h_1^* + 1 | / h_2^*$, spanning). Let *P* be the polytope of Example 1.3 with h^* -vector (1, 0, 1). In this case \tilde{P} is a unit simplex and thus deg $\tilde{P} = 0 \neq 1$. However, *P* is not spanning and it holds that $h_1^* + 1 | h_2^*$.

Example 3.13 $(h_1^* + 1 \not\mid h_2^* \text{ and IDP} \not\Longrightarrow h_1^* \ge h_2^*)$. Let *P* be the 3-simplex with vertices

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\0 \end{pmatrix}, \text{ and } \begin{pmatrix} 1\\0\\4 \end{pmatrix}.$$

Its h^* -vector is (1, 6, 9), so it satisfies $h_1^* + 1 \not\mid h_2^*$, but $h_1^* \not\geq h_2^*$. Moreover, it is IDP.

Acknowledgements The authors thank Kazuma Shimomoto for many inspiring discussions throughout this project. They also thank anonymous reviewers for their careful reading and valuable comments.

References

- Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts in Mathematics. Springer, New York (2007)
- 2. Bruns, W., Gubeladze, J.: Polytopes, Rings, and *K*-Theory. Springer Monographs in Mathematics. Springer, Dordrecht (2009)
- Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)
- 4. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, Ch.: Normaliz. Algorithms for Rational Cones and Affine Monoids. https://www.normaliz.uni-osnabrueck.de
- Conca, A., Iyengar, S.B., Nguyen, H.D., Römer, T.: Absolutely Koszul algebras and the Backelin–Roos property. Acta Math. Vietnam. 40(3), 353–374 (2015)
- 6. Eisenbud, D., Koh, J.: Some linear syzygy conjectures. Adv. Math. 90(1), 47–76 (1991)
- Green, M.L.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19(1), 125–171 (1984)
- Hibi, T.: A lower bound theorem for Ehrhart polynomials of convex polytopes. Adv. Math. 105(2), 162–165 (1994)
- Higashitani, A., Yanagawa, K.: Non-level semi-standard graded Cohen–Macaulay domain with *h*-vector (*h*₀, *h*₁, *h*₂). J. Pure Appl. Algebra 222(1), 191–201 (2018)
- Hofscheier, J., Katthän, L., Nill, B.: Spanning lattice polytopes and the uniform position principle (2017). arXiv:1711.09512
- Hofscheier, J., Katthän, L., Nill, B.: Ehrhart theory of spanning lattice polytopes. Int. Math. Res. Not. IMRN 2018(19), 5947–5973 (2018)
- Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 318–337 (1972)
- Koelman, R.J.: A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics. Beiträge Algebra Geom. 34(1), 57–62 (1993)
- 14. Schenck, H.: Lattice polygons and Green's theorem. Proc. Am. Math. Soc. 132(12), 3509–3512 (2004)
- Stanley, R.P.: f-vectors and h-vectors of simplicial posets. J. Pure Appl. Algebra 71(2–3), 319–331 (1991)
- Stanley, R.P.: On the Hilbert function of a graded Cohen–Macaulay domain. J. Pure Appl. Algebra 73(3), 307–314 (1991)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.