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Abstract
Let P be a lattice polytope with the h∗-vector (1, h∗

1, . . . , h∗
s ). In this note we show

that if h∗
s ≤ h∗

1, then the Ehrhart ring k[P] is generated in degrees at most s − 1 as
a k-algebra. In particular, if s = 2 and h∗

2 ≤ h∗
1, then P is IDP. To see this, we show

the corresponding statement for semi-standard graded Cohen–Macaulay domains over
algebraically closed fields.

Keywords Lattice polytope · h∗-Vector · Semi-standard graded ring ·
Cohen–Macaulay domain

Mathematics Subject Classification 13H10 · 52B20 · 05E40

1 Introduction

Let R = ⊕
i∈N Ri be a noetherian graded commutative ring. Throughout the paper,

we assume that k := R0 is a field. If R = k[R1], that is, R is generated by R1 as a
k-algebra, we say R is standard graded. If R is finitely generated as a k[R1]-module,
we say R is semi-standard graded.
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If R is a semi-standard graded ring of Krull dimension d, its Hilbert series is of the
form

∑

i∈N
(dimk Ri ) · t i = h0 + h1t + · · · + hsts

(1 − t)d

for some integers h0, h1, . . . , hs with
∑s

i=0 hi �= 0 and hs �= 0. We call the vector
(h0, h1, . . . , hs) the h-vector of R. We always have h0 = 1 and deg R = ∑s

i=0 hi . If
R is Cohen–Macaulay, then hi ≥ 0 for all i . We have the following.

Theorem 1.1 Let R be a semi-standard graded Cohen–Macaulay domain with the
h-vector (h0, h1, h2). Assume that k is algebraically closed. If h2 ≤ h1, then R is
standard graded. If further h2 < h1 and char k = 0, then R is Koszul.

In fact, Theorem 2.1 states that, under the same situation, if the h-vector of R is
(h0, h1, . . . , hs) with hs ≤ h1, then R is generated in degrees at most s − 1 as a
k-algebra. So the first statement of Theorem 1.1 follows. To see the latter statement,
we can use [5, Thm. 5.2 (1)], since we know R is standard graded now.

An important class of semi-standard graded Cohen–Macaulay domains are the
Ehrhart rings of lattice polytopes, which we now recall. Let P ⊂ R

d be a lattice poly-
tope. Its Ehrhart ring k[P] is the monoid algebra of the monoid of lattice points in the
cone C = cone ({1} × P) ⊂ R

d+1 over P . The additional coordinate in the construc-
tion of C yields a natural grading on k[P], such that k[P] is semi-standard graded,
and its Hilbert series is the Ehrhart series of P . In particular, the h-vector of k[P] is
the h∗-vector of P (for general information about this notion and its background, see
[1]). Hence the Krull dimension dim k[P] equals dim P + 1.

It is well known that k[P] is a normal domain, and by Hochster’s Theorem [12,
Thm. 1], it is Cohen–Macaulay. We refer the reader to the monograph by Bruns and
Gubeladze [2] for more information on Ehrhart rings. The index of the last non-zero
entry of the h∗-vector is called the degree of P . We always have deg P ≤ dim P . The
h∗-vector of P is sometimes denoted by (h∗

0, h∗
1, . . . , h∗

dim P ), even if deg P < dim P .
In this case, h∗

i = 0 for all i > deg P . We also remark that there is no direct relation

between deg P and deg k[P] = ∑d
i=0 h∗

i , the latter being the multiplicity of k[P],
which also equals the normalized volume Vol P of P .

A lattice polytope P is called IDP (an abbreviation for “integer decomposition
property”) if for every k ∈ N and every lattice point p ∈ k P ∩ Z

d , there exist k lattice
points p1, . . . , pk ∈ P ∩ Z

d with p = ∑
i pi . Clearly, P is IDP if and only if k[P] is

standard graded. Hence we obtain the following (here we do not have to assume that
k is algebraically closed, since we can replace k[P] by k[P] ∼= k ⊗k k[P]):
Corollary 1.2 Let P ⊂ R

d be a lattice polytope of degree 2 with h∗-vector (1, h∗
1, h∗

2).
If h∗

2 ≤ h∗
1, then P is IDP. If further h∗

2 < h∗
1, the Ehrhart ring k[P] is Koszul for a

filed k of characteristic 0.

Note that if P ⊂ R
2 is a lattice polygon, then it has degree at most 2, and it

always satisfies h∗
2 ≤ h∗

1. Therefore, the former half of this corollary can be seen as an
extension of the well-known fact that lattice polygons are IDP. See also Remark 3.3 (i)
below. We give an example to show that the bound in Corollary 1.2 is sharp:
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Example 1.3 Let P be the 3-simplex with vertices

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ , and

⎛

⎝
1
1
2

⎞

⎠ .

It is Reeve’s simplex (cf. [1, Exam. 3.22]) and its h∗-vector is (1, 0, 1). It is not IDP,
and hence the bound h∗

2 ≤ h∗
1 is sharp.

In the latter part of the present paper, we take a more combinatorial approach.
Especially, keeping Corollary 1.2 in mind, we analyze the results of [9], and give
several (counter)examples of the related statements.

2 Proofs of theMain Results

Let R = ⊕
i∈N Ri be a noetherian graded commutative ring such that k := R0 is an

algebraically closed field. We are going to regard R as a module over S := Symk R1.
Note that S is isomorphic to the polynomial ring k[x1, . . . , xn] with n = dimk R1.
Moreover, R is standard graded if and only if R is a quotient ring of S, and R is semi-
standard graded if and only if R is finitely generated as an S-module. For a finitely
generated graded S-module M , i ∈ N and j ∈ Z, set

βS
i, j (M) := dimk[TorS

i (k, M)] j .

In particular, βS
0, j (M) is the number of S-module generators for M in degree j .

2.1 A Bound on the Degrees of the Generators

Assume that R is semi-standard graded, and has the h-vector (h0, h1, . . . , hs). The
goal of this section is to obtain a bound on the degrees of the generators of R as an
S-module. If R is Cohen–Macaulay, it is well known that the generators have degree
at most s. Our result is a sufficient criterion when this bound can be improved by one:

Theorem 2.1 Let R be a semi-standard graded Cohen–Macaulay domain with h-
vector (h0, h1, h2, . . . , hs), and S := Symk R1. Then it holds that

βS
p,p+s(R) = 0 for 0 ≤ p ≤ h1 − hs .

In particular, if hs ≤ h1, then R is generated by elements of degree ≤ s − 1 as an
S-module, and hence as a k-algebra.

Note that Theorem 1.1 amounts to the special case s = 2 and p = 0. This result
and its proof have been inspired by Green’s Theorem of the Top Row, [7, Thm. 4.a.4].
For the proof of Theorem 2.1, we are going to use the following version of Green’s
vanishing theorem:
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Theorem 2.2 ([6, Thm. 1.1]) Let p ⊂ S be a homogeneous prime ideal, which does
not contain any linear forms. Let M be a torsion-free finitely generated graded S/p-
module and let q ∈ Z be the minimal integer such that Mq �= 0. Then it holds that

βS
p,p+q(M) = 0 for p ≥ dimk Mq .

In addition, we need the following result:

Theorem 2.3 ([2, Thm. 6.18], [3, Thm. 4.4.5]) Let M be a finitely generated graded
Cohen–Macaulay module over S = k[x1, . . . , xn] with d = dim M. Define M ′ :=
Extn−d

S (M, ωS). Then

(i) M ′ is also Cohen–Macaulay, Ann M ′ = Ann M, and M ′′ ∼= M;
(ii) βS

p,q(M ′) = βS
n−d−p,n−q(M);

(iii) HM ′(t) = (−1)d HM (t−1).

Here,ωS := S(−n) denotes the canonical module of S, and HM (t) denotes the Hilbert
series

∑
i∈Z(dimk Mi ) · t i of M .

Proof of Theorem 2.1 Let d := dim R. By [3, Prop. 3.6.12], ωR := Extn−d
S (R, ωS) is

a canonical module for R. Using Theorem 2.3 with M = R and M ′ = ωR , we have

βS
p,p+q(R) = βS

n−d−p,n−(p+q)(ωR) = βS
n−d−p,(n−d−p)+(d−q)(ωR).

and the Hilbert series of ωR is

hstd−s + hs−1td−s+1 + · · · + h0td

(1 − t)d
.

In particular, ωR has no elements in degrees below d − s and we have that
dimk(ωR)d−s = hs . Now, since R is a domain and ωR is a canonical module, it
is torsion-free over R by Theorem 2.3 (i), and thus it satisfies the hypothesis of Theo-
rem 2.2. Applying that result to ωR (note that q = d − s in the notation there) yields
that

βS
p,p+s(R) = βS

n−d−p,(n−d−p)+(d−s)(ωR) = 0 if (n − d) − p ≥ hs .

Finally, note that h1 = n − d, and the proof is completed. �


Remark 2.4 Another important example of a semi-standard graded ring appearing in
combinatorial commutative algebra is the face ring AP of a simplicial poset P . See
[15] for details. For the simplicial poset P given in Fig. 1, we have

AP ∼= k[x, y, z, u, v]
(xz, uz, vz, uv, xy − u − v)

,
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u v w

x y z

0

Fig. 1 The poset P of Remark 2.4

where deg x = deg y = deg z = 1 and deg u = deg v = 2, and 0̂, w ∈ P correspond
to 1, yz ∈ AP , respectively. It is easy to see that AP is a 2-dimensional Cohen–
Macaulay reduced semi-standard graded ring with the h-vector (1, 1, 1), but it is not
standard graded. It means that Theorem 2.1 indeed requires the assumption that R is
a domain.

3 Further Discussion on Ehrhart Rings

3.1 Direct Applications of Theorem 2.1

We now apply Theorem 2.1 in the setting of Ehrhart theory. Let P ⊂ R
n be a lattice

polytope.Wewrite M(P) ⊂ Z
n+1 for the affinemonoid generated by the lattice points

in {1} × P ⊂ R
n+1, and M̂(P) ⊂ Z

n+1 for its integral closure inside Z
n+1. Let R =

k[P] be the Ehrhart ring of P and k[R1] its subalgebra generated by R1. Then R and
k[R1] are themonoid algebras of themonoids M̂(P) and M(P), respectively. It is well
known that M̂(P) is generated by elements of degree at most min {deg P, dim P − 1}
as a module over M(P) (cf. [2, Thm. 2.52]). Equivalently, R = k[P] is generated
by elements of at most that degree as a k[R1]-module, and hence in particular as a
k-algebra.

Since k[P] is always Cohen–Macaulay, Theorem 2.1 allows us to improve this
bound under an additional assumption as follows. Clearly, this generalizes Corol-
lary 1.2.

Corollary 3.1 Suppose P ⊂ R
n is a lattice polytope of degree s with h∗-vector

(1, h∗
1, . . . , h∗

s ). If h∗
s ≤ h∗

1, then M̂(P) is generated by elements of degrees ≤ s − 1
as an M(P)-module.

Let P◦ be the relative interior of P . The lattice points in P◦ are closely related to the
canonical module of k[P] (cf. [3, Thm. 6.3.5 (b)]). In general, it holds that h∗

dim P ≤ h∗
1

(because h∗
dim P = # (P◦ ∩ Z

n) ≤ # (P ∩ Z
n) − (dim P + 1) = h∗

1), therefore this
corollary extends the above mentioned fact that M̂(P) is generated in degrees at most
min {deg P, dim P − 1}.

If P is IDP, then R = k[P] is the quotient ring of S = Symk R1 by a certain prime
ideal I ⊆ S, which is called the toric ideal of P . It is known that I is generated by
polynomials of degree at most deg P + 1 ≤ dim P + 1 (Sturmfels, cf. [2, Cor. 7.27]),
and again we can improve these bounds by one:
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Corollary 3.2 Let P be an IDP lattice polytope and let I ⊂ S be its toric ideal.

(i) If h∗
s ≤ h∗

1 − 1, then I is generated in degrees ≤ deg P.
(ii) If P is not a clean simplex, then I is generated in degrees ≤ dim P.

Recall that a clean simplex is a lattice simplex where the only lattice points on its
boundary are the vertices.

Proof

(i) Apply Theorem 2.1 to R = k[P] with p = 1.
(ii) If I has a generator in degree dim P + 1, then it holds that deg P = dim P by

the above mentioned fact that I is generated in degrees at most deg P + 1 ≤
dim P +1. Moreover, the hypothesis of part (i) needs to be violated, hence it holds
that h∗

dim P ≥ h∗
1. It follows that h∗

dim P = h∗
1, which is equivalent to P being a

clean simplex. �


Remark 3.3

(i) Let P ⊂ R
2 be a lattice polygon. Thenwe have deg P ≤ 2 and P is IDP.Moreover,

Koelman [13] showed that the toric ideal of P is generated by quadrics if and only
if h∗

2 < h∗
1. Hence Corollary 3.2 (i) is an extension of one implication of his result.

In particular, the result of [13] shows that the bound h∗
2 < h∗

1 is sharp.
(ii) In [14], Schenck also applied the theory of Green to the study of Ehrhart rings

k[P]. However, the focus of [14] is different from ours. More precisely, he always
assumed that k[P] is standard graded (i.e., P is IDP), and treated the case the toric
ideal is generated by quadrics.

3.2 Combinatorial Proofs

Corollary 1.2 is a purely combinatorial statement, and hence one might hope for a
combinatorial proof. As a first step, we prove a weak variant of Corollary 1.2 which
admits an elementary proof.

We remind the reader that a lattice polytope P ⊂ R
n is called spanning [11], if

({1} × P) ∩ Z
n+1 generates the lattice Z

n+1. Every IDP polytope is spanning, but the
converse is far from being true. Algebraically, for the Ehrhart ring R = k[P], P is
spanning if and only if the field of fractions of R coincides with that of k[R1].
Proposition 3.4 Let P ⊂ R

n be a d-dimensional lattice polytope with h∗-vector
(h∗

0, h∗
1, . . . ). If h∗

1 + h∗
d ≥ ∑d−1

i=2 h∗
i , then P is spanning.

Proof Let L be the lattice generated by the lattice points in P , and q the index of L
in Z

n . Further, let P̃ be the polytope P considered in the lattice L (see [11]). We write
h̃∗ for the h∗-vector of P̃ . It holds that

d∑

i=0

h∗
i = Vol P = q Vol P̃ = q

d∑

i=0

h̃∗
i . (1)
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Moreover, it holds that h∗
1 = h̃∗

1, h∗
d = h̃∗

d , and h∗
i ≥ h̃∗

i for 1 ≤ i ≤ d (see [11,

Sect. 3.2]). Now (1) and the assumption that
∑d−1

i=2 h∗
i ≤ h∗

1 + h∗
d imply that

0 ≤ q
d−1∑

i=2

h̃∗
i =

d−1∑

i=2

h∗
i − (q − 1)(1 + h∗

1 + h∗
d)

≤ h∗
1 + h∗

d − (q − 1)(1 + h∗
1 + h∗

d) = (2 − q)(1 + h∗
1 + h∗

d) − 1.

Since 1 + h∗
1 + h∗

d ≥ 1, we have q = 1, and it means that P is spanning. �

In the next corollary, (i) is just a weak version of Corollary 1.2, but (ii) and (iii) are

new.

Corollary 3.5 With the above notation, the following hold:

(i) If deg P = 2 and h∗
1 ≥ h∗

2, then P is spanning.
(ii) If dim P = 3 and h∗

1 + h∗
3 ≥ h∗

2, then P is spanning.
(iii) If dim P = 4, deg P ≥ 3, and h∗

1 + h∗
4 ≥ h∗

2 + h∗
3, then P is spanning. In this

case, it holds that h∗
1 = h∗

2 = h∗
3 = h∗

4.

Proof Only the very last statement is not immediate from Proposition 3.4. If dim P =
4, then h∗

4 ≤ h∗
1. By assumption and Proposition 3.4, P is spanning, and hence by

[10, Thm. 1.4] it holds that h∗
1 ≤ h∗

i for 1 ≤ i < deg P . As deg P ≥ 3 it holds that
h∗
1 ≤ h∗

2 and h∗
3 > 0, and thus h∗

1 < h∗
2 + h∗

3. It follows that h∗
4 �= 0, so deg P = 4.

Hence we have that h∗
4 ≤ h∗

1 ≤ h∗
2 and h∗

1 ≤ h∗
3. These inequalities, together with

h∗
1 + h∗

4 ≥ h∗
2 + h∗

3, imply that h∗
1 = h∗

2 = h∗
3 = h∗

4. �

Unfortunately, these are the only cases where Proposition 3.4 can be applied, due

to the following observation:

Proposition 3.6 If d := dim P ≥ 5 and deg P ≥ 3, then h∗
1 + h∗

d <
∑d−1

i=2 h∗
i .

Proof Set s := deg P . If h∗
d = 0 (i.e., s < d), then we have

h∗
1 + h∗

d = h∗
1 < h∗

0 + h∗
1 ≤ h∗

s + h∗
s−1 ≤

d−1∑

i=2

h∗
i ,

where the first≤ follows from [16, Prop. 4.1] and the second follows from the assump-
tion that d ≥ 5 and s ≥ 3. If h∗

d �= 0, we have h∗
i ≥ h∗

1 for all 1 ≤ i ≤ d − 1 by [8,
Thm. 1.1]. Hence

h∗
1 + h∗

d ≤ 2h∗
1 < h∗

2 + h∗
3 + h∗

4 ≤
d−1∑

i=2

h∗
i .

Here we use the assumption that d ≥ 5. �
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3.3 About Polytopes of Degree 2

One can combine our Corollary 1.2 with the results of [9] to obtain the following web
of implications for lattice polytopes of degree 2:

Theorem 3.7 Let P ⊂ R
n be a lattice polytope of degree 2 with h∗-vector (1, h∗

1, h∗
2),

and let P̃ denote the polytope P considered as a lattice polytope inside the lattice
generated by the lattice points in P. Then the following implications hold:

h∗
1 ≥ h∗

2 h∗
1 + 1

∣
∣/h∗

2 deg P̃ �= 1 level

IDP spanningspanning

�
��

�
�� �����

�����

Here, we say that a lattice polytope P is level if its Ehrhart ring R = k[P] is level,
that is, its canonical module ωR is generated in a single degree as an R-module. The
levelness of P is a combinatorial property of the monoid M̂(P) (c.f. [9, Prop. 4.3]),
and does not depend on the base field k.

Proof

• h∗
1 ≥ h∗

2 �⇒ h∗
1 + 1

∣
∣/h∗

2: This is elementary.
• 1+h∗

1

∣
∣/h∗

2 �⇒ deg P̃ �= 1: We show the contrapositive. Assume that deg P̃ = 1.
Denote the h∗-vector of P̃ by h̃∗. The volume of P̃ divides the volume of P , since
the latter is normalized with respect to a finer lattice. Thus we have that

(1 + h̃∗
1 + h̃∗

2) | (1 + h∗
1 + h∗

2).

On the other hand, we have that h̃∗
1 = h∗

1 and by assumption, h̃∗
2 = 0. It follows

that (1 + h∗
1) | h∗

2.• h∗
1 ≥ h∗

2 �⇒ IDP: This is Corollary 1.2.
• IDP �⇒ spanning: This is well known (and elementary), and it does not need
the assumption deg P ≤ 2.

• spanning �⇒ deg P̃ �= 1: deg P̃ = deg P = 2 �= 1.
• deg P̃ �= 1�⇒ level: Under this hypothesis, the degree of P̃ is either 0 or 2. We
distinguish those cases:

deg P̃ = 0: In this case h∗
1 = 0, the claim follows from [9, Lem. 2.1].

deg P̃ = 2: Let R and R̃ denote the Ehrhart rings of P and P̃ , respectively. Then
deg R̃ = 1 + h∗

1 + h̃∗
2 > 1 + h∗

1 by assumption, and thus R is level by [9,
Prop. 3.4].

• level �⇒ deg P̃ �= 1: This follows from more general Lemma 3.8 below. �


Lemma 3.8 Let P ⊂ R
n be a lattice polytope. If P is level, then deg P̃ �= deg P − 1.
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Proof Let c(P) := min {� ∈ Z>0 : �P◦ ∩ Z
n �= ∅}. It is well known that deg P =

dim P + 1 − c(P).
We are going to use [9, Prop. 4.3], which we recall for convenience: If P is level,

then for any k ≥ c(P) and α ∈ k P◦ ∩ Z
n , there exist β ∈ c(P)P◦ ∩ Z

n and
γ ∈ (k − c(P))P ∩ Z

n such that

α = β + γ.

Now, assume that deg P̃ = deg P − 1, and note that this implies c(P̃) = c(P) + 1.
Let L ⊂ Z

n be the sublattice spanned by the lattice points in P . As P �= P̃ , this is a
proper sublattice of Z

n . Choose α ∈ c(P̃)P◦ ∩ L . Then, if P were level, there would
exist β and γ as above. As β ∈ c(P)P◦ ∩ Z

n , it follows that β /∈ L (because c(P) P̃
has no interior lattice points). Further, γ lies in (c(P̃)− c(P))P = P and thus γ ∈ L .
But this contradicts β + γ = α ∈ L . �


We provide some examples to show that all the implications are strict and that there
are no other implications. In each example, the claimed properties can conveniently
be verified using normaliz [4].

Example 3.9 (h∗
1 + 1

∣
∣/h∗

2 ��⇒ spanning, IDP, h∗
1 ≥ h∗

2). Consider the 4-polytope P
with vertices

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
1
0
1

⎞

⎟
⎟
⎠ , and

⎛

⎜
⎜
⎝

0
0
1
1

⎞

⎟
⎟
⎠ .

Its h∗-vector is (1, 2, 5), so it satisfies h∗
1 + 1

∣
∣/h∗

2, but h∗
1 � h∗

2. To see that it is not
spanning (and thus not IDP), consider the vector

v :=

⎛

⎜
⎜
⎝

1
1
1
0

⎞

⎟
⎟
⎠ = 1

2

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

It lies in 2P ∩ Z
4, but the sum of its coordinates is odd, while the coordinate sum of

each vertex of P is even. Hence v cannot lie in the lattice spanned by them.

Example 3.10 (IDP and spanning ��⇒h∗
1 + 1

∣
∣/h∗

2, h∗
1 ≥ h∗

2). Let P be the 3-simplex
with vertices

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
4
0

⎞

⎠ , and

⎛

⎝
1
0
3

⎞

⎠ .

It is IDP and its h∗-vector is (1, 5, 6), so h∗
1 + 1 | h∗

2 and h∗
1 � h∗

2.
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Example 3.11 (spanning ��⇒ IDP). It is well known that this implication does not hold
in general. For an example with degree 2, see [2, Exe. 2.24]. This is a very-ample (and
thus spanning) 3-polytopewhich is not IDP. Its h∗-vector is (1, 4, 5), so it has degree 2.

Example 3.12 (deg P̃ �= 1 ��⇒ h∗
1 + 1

∣
∣/h∗

2, spanning). Let P be the polytope of
Example 1.3 with h∗-vector (1, 0, 1). In this case P̃ is a unit simplex and thus deg P̃ =
0 �= 1. However, P is not spanning and it holds that h∗

1 + 1 | h∗
2.

Example 3.13 (h∗
1 +1

∣
∣/h∗

2 and IDP ��⇒h∗
1 ≥ h∗

2). Let P be the 3-simplex with vertices

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
4
0

⎞

⎠ , and

⎛

⎝
1
0
4

⎞

⎠ .

Its h∗-vector is (1, 6, 9), so it satisfies h∗
1 + 1

∣
∣/h∗

2, but h∗
1 � h∗

2. Moreover, it is IDP.
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