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Abstract
We investigate a class of linear error correcting codes in relation with the order poly-
topes. In particular we consider the order polytopes of tree posets and bipartite posets.
We calculate the parameters of the associated toric variety codes.

Keywords Toric code · Parameter · Poset polytope · Order polytope · Shrub ·
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1 Introduction

In the present articlewe are concernedwith a special class of algebraic-geometric codes
[14] that are defined on toric varieties. Building on a work of S.Hansen [5], J.Hansen
initiated the study of toric codes on polygons in [4]. This development quickly led
to numerous new results on the algebraic-geometric codes that are constructed on
higher dimensional toric varieties. The articles [9–12] amplified the importance of
combinatorial approach in determining the parameters of the toric codes. Our goal in
this article is to show that, the set of order polytopes form an interesting ground for
the applications of such work.

Let P be a poset whose elements are listed as ε1, . . . , εm . Let N denote the free Z-
module on P , N := ⊕m

i=1 Zεi . LetM denote the dual of N , that isM := HomZ(N , Z).
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The dual of the element εi , i ∈ {1, . . . ,m}, in M will be denoted by ei . Let 2P

denote the set of all subsets of P . We define the function ρ : 2P → N ⊗Z Q by
W �→ ∑

εi∈W εi . The order polytope of P , denoted by OP , is the convex hull of the
finite set

{ρ(W ) : W is an upper order ideal of P}.

The face lattice of the polytopeOP was first described byGeissinger [3], whose results
were amplified by Stanley in [13]. A concrete description of the edges of OP can be
found in [8]. Following [6], we now introduce a class of toric varieties that are closely
related to the order polytopes. The set of all order ideals of P , denoted by J (P), is a
distributive lattice with respect to inclusion. In particular, we have the joins (denoted
by∨) and themeets (denoted by∧) of the elements of J (P). LetY := {yα : α ∈ J (P)}
be a set of algebraically independent variables indexed by the order ideals. Then the
Hibi toric scheme associated with P is the projective scheme Proj k[Y ]/I , where I is
the homogeneous ideal

I = (yα yβ − yα∧β yα∨β : yα, yβ ∈ Y ).

It turns out that the fan of XP is the normal fan of the order polytope OP .
The purpose of our article is to investigate the parameters of the toric code of the

defining polytopeOP of XP . The parameters that we speak of are called the “length,”
the “dimension,” and the “minimum distance.” Although our method applies to all
finite posets, in this articlewe focus on theminimumdistance computation for the order
polytopes of the rooted trees only. Let P = {ε1, . . . , εm} be a rooted tree, where ε1 is
the root. We view P as a connected, graded poset with the unique minimal element as
the root. Our first main result (recorded as Theorem 4.4) states that minimum distance
of the toric code COP over a finite field Fq , where q > 3, is given by

d(COP ) = (q − 1)a(q − 2)b,

for some a and b such that a + b = m. In fact, we know precisely what a and b are.
Let P be a polytope. The length of the associated toric code CP over Fq is given by

(q − 1)dim P, where dim P is the dimension of the affine hull of P. Hence, in our case,
the length is given by (q − 1)dimOP = (q − 1)m , where m is the cardinality of the
poset P . On the other hand, the dimension of a toric code of P is given by the number
of lattice points in P. Therefore, in our case, it is given by the number of (upper)
order ideals of P . For a rooted tree with m vertices, this number (dimension) varies
in the range m + 1, . . . , 2m−1 + 1; it is equal to the number of order preserving maps
σ : P → {0, 1}. The unique rooted tree with m vertices that has m + 1 order ideals is
the chain with m vertices. The unique rooted tree with m vertices that has 2m−1 + 1
order ideals is the “m-th shrub” defined in Sect. 4.

Let Q be a graded poset with 2m elements (m ∈ Z
+). If Q has m minimum

elements, then we will call Q an (m,m)-bipartite poset. The second infinite family
of toric codes that we consider comes from the order polytopes of (m,m)-bipartite
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posets. Our second main result (recorded as Theorem 5.3) states that the minimum
distance of the toric code CQ over a finite field Fq , where q > 3, is given by

d(COP ) = (q − 1)m(q − 2)m .

The dimension of such a code varies in the range 2m+1 − 1, . . . , 3m .
Before closing this introduction, we want to mention a fact we inferred from our

calculations. In general, a preferable linear error correcting code is the one that has
a ratio of dimension/length fixed while the ratio minimum distance/length is as large
as possible. It is natural to wonder if it is possible to increase these ratios for a toric
code by switching to the polar polytope. In this article we pay a close attention to
the polar of the order polytope of a graded poset. It turns out that, by a result of Hibi
and Higashitani [7], the polar polytope of a suitable dilation of OP , called the poset
polytope of P , is reflexive and terminal. (We will explain these notions in the sequel.)
These properties essentially imply that the number of lattice points of a poset polytope
is much smaller compared to the number of lattice points of the order polytope. Hence,
as far as the parameters of linear codes are concerned, the order polytopes are better
than the poset polytopes.

The structure of our paper is as follows. In the next section we introduce our basic
notation regarding posets, polytopes, and toric codes. In the same section we briefly
review some results of Soprunov and Soprunova also. The purpose of Sect. 3 is to
compare the structures of the order polytopes and poset polytopes. We prove our first
main result about the toric codes defined by the rooted tree posets in Sect. 4. We prove
our second main result about the toric codes defined by the (m,m)-bipartite graphs in
Sect. 5. In addition, in this section, we observe that (Lemma 5.1) the free sum of two
order polytopes, OP ⊕OQ , is equivalent to the order polytope OP⊕Q , where P ⊕ Q
stands for the ordinal sum of P and Q. Here, the equivalence is defined by the change
of coordinates.

2 Preliminaries

In this article, by a poset we will always mean a finite poset. A lower order ideal in P
is a subposet I such that for every y ∈ I , if x ≤ y in P , then x ∈ I . An upper order
ideal in P is defined similarly where we replace the condition x ≤ y with y ≤ x .

The set of all lower order ideals of P is denoted by J (P). This is a distributive
latticewith respect to inclusion. The set of all upper order ideals also form a distributive
lattice, which is isomorphic to J (Popp), where Popp denotes the opposite poset to P .
An order reversing bijection between two posets will be called an anti-isomorphism. If
P and Q are two isomorphic (resp. anti-isomorphic) posets, then we will write P ∼= Q
(resp. P ∼=a Q).

Let x and y be two elements from P . If x ≤ y, and x ≤ z ≤ y implies that z = x
or z = y, then y is said to cover x . Customarily, the cover relation is denoted by
x � y. A chain is a poset C := {x1, . . . , xn} whose elements are linearly ordered,
x1 � x2 � . . . � xn . A maximal chain in a poset P is a chain C ⊆ P such that C is
not a subposet of any other chain in P . If C = {x1, . . . , xk} is a chain, then the length
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of C is defined as k − 1. An antichain is a poset whose elements are all incomparable.
The greatest possible size of an antichain in P is called the width of P . Dilworth’s
theorem [2] states that the width is equal to the minimal number of chains that cover
the set. A poset P is called a graded (or ranked) poset if every maximal chain in P
has the same length. In this case, a function � : P → Z which has the property that
�(y) = �(x) + 1 for every cover relation x � y in P is called a rank function for P .
Without loss of generality we assume that �(x) = 0 whenever x is a minimal element.
Then � is uniquely determined by P , so, we call it the rank function of P .

The Hasse diagram of a poset P is the directed graph whose vertex set is the set of
elements of P such that for x, y ∈ P there is a directed edge from x to y if x is covered
by y in P . A poset P is said to be connected if its Hasse diagram is connected. Clearly,
if a finite poset possesses a top element (denoted by 1̂) or a bottom element (denoted
by 0̂), then it is connected. A lattice is a poset L such that every pair of elements has
a least upper bound and a greatest lower bound.

The polar (or dual) of a polytope P ⊂ Q
m is the polytope P◦ defined by

P◦ := {y ∈ (Qm)∗ : 〈x, y〉 ≤ 1 for all x ∈ P}.

Here, 〈 · , · 〉 is the canonical evaluation pairing between Q
m and (Qm)∗.

Let x0 be a point in Q
m , and let H be a hyperplane in Q

m such that x0 /∈ H . Let P
be a polytope in H . The pyramid over Pwith apex at x0 is the convex hull conv(P, x0).
We will denote a pyramid over P by pyr P.

The vertex set of a polytope P will be denoted by V (P). Let Q and P be two
polytopes in Q

m and Q
n , respectively. The direct product (or simply the product) of

Q and P, denoted by Q × P, is defined as the convex hull,

Q × P := conv {(a, b) : a ∈ V (Q), b ∈ V (P)}.

We now assume that the origin of Q
m (resp. of Q

n) is contained inQ (resp. in P). The
free sum of Q and P, denoted by Q ⊕ P, is defined as follows:

Q ⊕ P := conv
(
Q × {0Qn }, {0Qm } × P

)
.

2.1 Toric Codes

The purpose of this subsection is to introduce toric codes by circumventing much of
the original definition of the algebraic-geometric codes. For a detailed introduction to
this important subject, we recommend the textbook [14].

Let N be a free abelian group of rank m, and let M denote its dual group. Let P
be a full dimensional lattice polytope in M ⊗Z Q. The lattice points in P ∩ M define
monomials that are regarded as polynomial functions on the m-dimensional torus
TN := Hom(N , F∗

q). Let H
0(TN (Fq),P) denote the Fq -vector space that is spanned

by these monomials. The toric code of P is then the image of the evaluation map

ev : H0(TN (Fq),P) → (F∗
q)

m, f �→ ( f (x))x∈TN (Fq ).
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More generally, the algebraic-geometric code associated with an ample line bundle
on a normal variety X that is defined over Fq is the image of the germ-evaluation map
on a set of Fq -rational points S ⊆ X(Fq). The toric codes from lattice polytopes are
defined by evaluating on the Fq -rational points of the open orbit of a normal toric
variety.

Hereafter, we denote by CP the toric code associated with a lattice polytope P. The
length of CP is defined as

length := (q − 1)m,

where m is the dimension of the toric variety. The dimension of CP is defined as the
vector space dimension of the space of sections,

dimension := dim H0(TN (Fq),P).

This number is given by the number of lattice points P ∩ M . Finally, the computation
of the minimum distance for the toric codes associated with an order polytope is
the main focus of the present article. It is calculated as follows. For a section f ∈
H0(TN (Fq),P), let Z( f ) denote the number of points in (F∗

q)
m where f vanishes.

Then the minimum distance of CP, denoted by d(CP), is given by

d(CP) = (q − 1)m − max
f ∈H0(TN (Fq ),P)\{0}

Z( f ).

We will make use of the following results which are due to Soprunov and Soprunova.

Lemma 2.1 [12, Thm. 2.1] Let P and Q be two lattice polytopes contained in the
boxes [0, q − 2]m ⊆ Q

m and [0, q − 2]n ⊆ Q
n, respectively. Then the minimum

distance of the code of the product P × Q is given by d(CP×Q) = d(CP)d(CQ).

Let Kn
q denote the n-dimensional cube [0, q − 2]n . Let Q be an n-dimensional

lattice polytope contained in Kn
q . Then the unit pyramid over Q is defined by

conv {en+1, (x, 0) : x ∈ Q}, where en+1 is the unit vector (0, . . . , 0, 1) ∈ R
n+1.

Lemma 2.2 [12, Thm. 2.3] LetQ be a lattice polytope of dimQ ≥ 1. If P denotes the
unit pyramid over Q, then we have d(CP) = (q − 1)d(CQ).

3 Order Polytopes, Poset Polytopes

Let P = {ε1, . . . , εm} be a finite poset and let N denote the free Z-module generated
by P . Let P̂ denote P ∪ {0̂, 1̂}, where 0̂ (resp. 1̂) is such that 0̂ � εi (resp. εi � 1̂) for
every i ∈ {1, . . . ,m}. Let M denote the dual of N , that is M := HomZ(N , Z), and let
{e1, . . . , em} be the basis of M that is dual to P . Let us temporarily denote 0̂ (resp. 1̂)
by ε0 (resp. εm+1). Then for each covering relation εi �ε j in P̂ , we introduce a vector
ρ(εi , ε j ) in M ⊗Z Q as follows:
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P

ε1

ε2 ε3

P̂

0̂

ε1

ε2 ε3

1̂

Fig. 1 Bounding P

ρ(εi , ε j ) :=

⎧
⎪⎨

⎪⎩

ei if ε j = 1̂,

ei − e j if εi , ε j ∈ P,

−e j if εi = 0̂.

(3.1)

The poset polytope of P , denoted byHP , is the convex hull of points ρ(εi , ε j ), where
εi � ε j is a cover in P̂ . A systematic study of these polytopes has been initiated by
Hibi and Higashitani in [7]. In this article, we construct linear error correcting codes
by using (the polars of the) poset polytopes.

Next, we will discuss poset polytopes and their relationship to the order polytopes.
Since it is already introduced (in the introduction), we will not repeat the definition of
a poset polytope here. In [7], Hibi and Higashitani showed that these polytopes have
some remarkable properties. We will summarize the relevant results from [7] in the
form of a single lemma to ease our referencing.

Lemma 3.1 For every poset P, the following statements hold:

(i) HP is a Fano polytope, that is, 0 is the unique integral interior point.
(ii) HP is terminal, that is, each integral point on the boundary of HP is a vertex.
(iii) HP is Gorenstein, that is, its dual polytope is integral.
(iv) If P is a graded poset of length l − 2, then the polar polytope of HP is the

dilated and translated order polytope lOP − v, where v is the unique lattice
point in lOP .

The items (i)–(iv) are Lemmas 1.3, 1.4, 1.5, and Remark 1.6 of [7], respectively. The
proof of (iv) follows from the definitions.

Remark 3.2 A Gorenstein and Fano polytope is known as the reflexive polytope. In
particular, the dual of a reflexive polytope is reflexive. The normal fan of a reflexive
polytope gives a “Gorenstein Fano toric variety” [1, Thm. 8.3.4]. (Such toric varieties
are always normal.) In particular, a reflexive polytope is very ample in the sense of
[1, Defn. 2.2.17].

Notation 3.3 If P is a graded poset of length l − 2, then the polytope lOP − v, where
v is the unique lattice point in lOP , will be denoted by OP (l).
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•

•

•

• •

ε1

ε2

ε3

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1,1) (1 , 1, 1)

Fig. 2 The order polytope of P

Example 3.4 Let P (resp. P̂) be the poset whose Hasse diagram is on the left (resp. on
the right) in Fig. 1. By fixing {ε1, ε2, ε3} as a basis for N ⊗Z Q, we will identify the
elements of N ⊗Z Q with their coordinate vectors. Then, the vertex set ofOP consists
of the following vectors in Q

3:

ρ(∅) = (0, 0, 0), ρ({ε2}) = ε2 = (0, 1, 0), ρ({ε3}) = ε3 = (0, 0, 1),

ρ({ε2, ε3}) = ε2 + ε3 = (0, 1, 1), ρ({ε1, ε2, ε3}) = ε1 + ε2 + ε3 = (1, 1, 1).

In Fig. 2, we depicted the order polytope of P . Finally, let us consider the dual polytope
for OP (3). It is easy to check that the vertices of the dual polytope HP are given by
−e1, e1 − e2, e1 − e3, e2, e3. We notice that the convex hull of e1 − e2, e1 − e3, e2, e3
is a rectangular plate, which we denote by A. ThenHP is a pyramid over A with apex
at −e1.

We close this subsection with two simple observations.

Lemma 3.5 Let P be a poset with connected components P1, . . . , Pr . Then we have

HP = HP1⊕ · · · ⊕ HPr .

Proof Let x be a vertex inHP . Then there is a covering relation εi �ε j in P̂ such that

x ∈ {ei , ei − e j ,−e j }.
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Since every covering relation in P̂ is a covering relation in one of the posets P̂i ,
i ∈ {1, . . . , r}, we see that the vertex set of HP is a disjoint union,

V (HP ) = V (HP1) � . . . � V (HPr ).

Note that the subpolytopes HPi for i ∈ {1, . . . , r} are contained in skew subspaces
in Q

m . Nevertheless, they all share the origin of Q
m . Therefore, we have

HP = conv V (HP ) = conv (V (HP1) � . . . � V (HPr ))

= conv V (HP1) � . . . � conv V (HPr ).

This finishes the proof of our assertion. ��
Our next observation is about the order polytopes.

Lemma 3.6 Let P be a poset with connected components P1, . . . , Pr . Then we have

OP = OP1 × · · · × OPr .

Proof Let x be a vertex in OP ⊆ Q
m , where m is the number of elements of P . Then

there is an upper order ideal I in P such that x = ρ(I ). Since P is the disjoint union
P1 � . . .� Pr , we see that I = I1 � . . .� Ir , where Ii , i ∈ {1, . . . , r}, is an upper order
ideal in Pi . It follows that x is of the form

x = x1 + · · · + xr ∈ Q
m1 ⊕ · · · ⊕ Q

mr , (3.2)

where xi = ρ(Ii ), and Q
mi is the vector subspace of Q

m that is spanned by the basis
vectors corresponding to the elements of Pi , i ∈ {1, . . . , r}. The decomposition in
(3.2) shows that the vertex set of OP is the product of the vertex sets of the order
polytopes OPi ,

V (OP ) = V (OP1) × · · · × V (OPr ).

This finishes the proof. ��
The decompositions that we observed in Lemmas 3.6 and 3.5 can be obtained from
each other by induction and the well-known polarity correspondence between the free
sums and direct products of polytopes.

Remark 3.7 As we mentioned in the introduction, a desirable code is the one with a
high transmission rate, that is, dimension/length. The construction of HP uses the
cover relations in P whereas the construction of OP uses all upper order ideals in P .
In general the vertices of the latter polytope are much more numerous. Therefore,
for a generic poset P , the transmission rate of CHP is very small compared to the
transmission rate of COP .
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4 Shrubs

We begin with a reduction result.

Proposition 4.1 Let P be a poset with r connected components P1, . . . , Pr . Let q be
a prime power such that q > 2. Then the minimum distance of the toric code COP is
given by

d(COP ) = d(COP1
) · . . . · d(COPr

).

Proof We know from Lemma 3.6 that OP decomposes as a direct product,

OP = OP1× · · · × OPr .

By applying induction with Lemma 2.1, we get d(COP ) = d(COP1
) · . . . · d(COPr

). ��
Next, we focus on the connected posets.

Proposition 4.2 Let P = {ε1, . . . , εm} be a connected poset with a unique minimal
element, ε1. If P ′ is the poset obtained from P by removing ε1, then we have

d(COP ) = (q − 1)d(COP ′ ).

Proof Since ε1 is the smallest element in P , the upper order ideal generated by ε1 is the
whole poset P . In particular, all coordinates of the corresponding vertex x0 := ρ(P)

in Q
m are 1,

x0 = (1, . . . , 1) ∈ Q
m .

For every other vertex x = (a1, . . . , am) ofOP such that x �= x0, we have a1 = 0. This
means that the line segment between vertices x0 and x is an edge of the polytopeOP .
(Note that this observation follows from [8, Lem. 1.1 (a)] as well.) It follows that OP

is a pyramid over OP ′ . Now, the rest of the proof follows from Lemma 2.2. ��
Let P be a poset. We call P a rooted tree poset if the following conditions hold:

1. the Hasse diagram of P is a rooted tree, where the smallest element of P is the
root;

2. the leaves of P are the maximal elements of P .

If P is the rooted tree poset whose Hasse diagram is as in Fig. 3, then we call it the
m-th shrub. The m-th shrub will be denoted by Sm . If the number m is understood
from the context, or if it is not relevant to the discussion, then we simply write “shrub”
instead of writing “the m-th shrub.”

Let I be an upper order ideal in Sm . If I contains the element ε1, then it is equal
to Sm . If ε1 /∈ I , then I can be any subset of {ε2, . . . , εm}. Therefore, J (Soppm ) is
isomorphic to Bm−1 ⊕ 1̂, where Bm−1 is the boolean algebra of rankm−1. The proof
of the following lemma is easy so we omit it.
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ε1

ε2 ε3 · · · εm−1 εm

Fig. 3 The m-th shrub, Sm

•
•

•
• • • •

•
•
•

•
• • •

•

• • • •

•
•

Fig. 4 The shrubbery of a tree

Lemma 4.3 Let m ≥ 2. Then the order polytope of the shrub Sm is a pyramid over the
unit cube of dimension m − 1.

Next, we introduce the notion of a shrubbery of a tree poset P . Clearly, every leaf in
P belongs to a unique shrub in P . For example, consider the tree poset in Fig. 4. The
tree poset in that figure has four subshrubs, whose Hasse diagrams are drawn in solid
black lines. The shrubbery of P is the collection of subshrubs of P that contain the
leaves of P .

Theorem 4.4 Let P = {ε1, . . . , εm} be a tree poset whose shrubbery consists of the
shrubs, Sm1 , . . . , Sms . Then the minimum distance of the code COP is given by

d(COP ) = (q − 1)m−∑s
i=1(mi−1)(q − 2)

∑s
i=1(mi−1).

Proof By Proposition 4.2, the minimum distance COP is equal to (q − 1)d(COP ′ ),
where P ′ is the rooted forest obtained from P by removing ε1. Let P1, . . . , Pr denote
the connected components of P ′. Then each Pi , i ∈ {1, . . . , r}, is a rooted tree. By
repeatedly applying Propositions 4.1 and 4.2, we reach the shrubberies of the Pi ’s for
all i ∈ {1, . . . , r}. The union of the shrubberies of the Pi ’s, i ∈ {1, . . . , r}, is equal to
the shrubbery of P , that is, Sm1 , . . . , Sms . For l ∈ {1, . . . , s}, the indexml is the number
of vertices in the shrub Sml . Let j denote the differencem−∑s

l=1 ml , which is equal to
the number of vertices that are removed from P to reach the shrubbery Sm1 , . . . , Sms .
In particular, we have the following formula for the minimum distance,

d(COP ) = (q − 1) j d
(COSm1

)
. . . d

(COSms

)
. (4.1)

We nowobserve that, for each l ∈ {1, . . . , s}, the order polytopeOSml
is a pyramid over

the unit cube of dimensionml −1. Therefore, by [12, Corr. 3.4], the minimum distance
of the corresponding code is given by (q − 1)(q − 2)ml−1. Thus, by substituting these
into (4.1) we obtain the asserted formula for the minimum distance COP . ��
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5 A Lemma on Ordinal Sums

Let P and Q be two posets. The ordinal sum of Pand Q, denoted by P ⊕ Q, is the
poset defined on the disjoint union P � Q as follows. Let a and b be two elements
from P � Q. Then

a ≤ b ⇐⇒

⎧
⎪⎨

⎪⎩

if both a and b are elements of P, and a ≤ b in P;
if both a and b are elements of Q, and a ≤ b in Q;
if a ∈ P and b ∈ Q.

The order polytope of the ordinal sum of two posets can be described in terms of the
order polytope of the summands. This relationship is expressed by the action of the
group of affine transformations of a lattice. To explain, let Z

k be a lattice, let u be an
element ofZ

k , and letM an element of GLk(Z). Themap TM,u : Q
k → Q

k , defined by
the formula T (v) := M ·v+u for v ∈ Z

k , is called an affine transformation ofZk . Now,
two polytopes P and Q in Z

k ⊗Z Q ∼= Q
k are called lattice equivalent if there exists

an affine transformation TM,u : Q
k → Q

k such that TM,u(P) = Q. Since the affine
transformations form a group, the lattice equivalence is an equivalence relation on the
collection of all polytopes in Q

k . An important fact regarding the lattice equivalence
is that two toric codes that are obtained from two lattice equivalent polytopes have the
same parameters. For a detailed explanation of this fact, we refer the reader to [10,
Sect. 4].

Lemma 5.1 Let P and Q be two posets. Then the order polytope of the ordinal sum
P ⊕ Q is lattice equivalent to the free sum of polytopes OP ⊕ OQ.

Proof Let n and m denote the cardinalities of P and Q respectively. Then OP ⊂ Q
n

and OQ ⊂ Q
m . Let I (resp. I ′) be an element of J (Popp) (resp. of J (Qopp)). By

abuse of notation, we will use the same notation I (resp. I ′) for the upper order ideal
generated by I (resp. I ′) in P ⊕ Q. In this notation, clearly, for every upper order
ideal I of P we have Q ≤ I in J ((P ⊕ Q)opp). In terms of cartesian coordinates on
Q

n × Q
m , this fact amounts to the fact that ρP⊕Q(I ) has 1’s on its last m coordinates.

In other words, in Q
n ×Q

m , the vector v0 := (0, . . . , 0, 1, . . . , 1) corresponds to both
1) the empty upper order ideal of P , and 2) the maximal upper order ideal of Q. We
now consider the affine translate OP⊕Q − v0 in Q

n × Q
m . Under this translation, the

vertices that correspond to the upper order ideal in P are mapped to the negatives of
the lower order ideals in P . Therefore, we have the following equality of polytopes:

OP⊕Q − v0 = (−OPopp) ⊕ OQ .

But the polytope−OPopp is lattice equivalent toOP , hence, we obtain the equivalence,

OP⊕Q − v0 ∼= OP ⊕ OQ .

This finishes the proof of our assertion. ��
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Recall that the minimum distance of the toric code that is obtained from the direct
product of two polytopes P (in Q

m) and Q (in Q
n) is given by the product of the

minimum distances of the codes that are associated with P and Q (Lemma 2.1).
Let h be a polynomial from H0(TN (Fq),P). The weight of h, denoted wt(h), is the
maximum number of nonzero coordinates in the image vector of the evaluation of
h on the points of TN (Fq). Let f be a polynomial from H0(TN (Fq),P) such that
wt( f ) = d(CP). Similarly, let g be a polynomial from H0(TN ′(Fq),Q) such that
wt(g) = d(CQ). In their proof of Lemma 2.1, Soprunov and Soprunova [12, Thm.
2.1] show that the weight of the polynomial f g is equal to d(CP×Q). Note that f
and g separately belong also to the space of sections H0(TN×N ′(Fq),P⊕Q). This in
particular gives us an upper bound for d(CP⊕Q) as follows. Clearly, the total number of
points in TN×N ′(Fq) (∼= (F∗

q)
m+n) where f (resp. g) vanishes is given by Z( f )(q−1)n

(resp. by Z(g)(q − 1)m). Thus, we have

d(CP⊕Q) ≤ max
{
(q − 1)m+n − Z( f )(q − 1)n, (q − 1)m+n − Z(g)(q − 1)m

}
.

Next, we apply this observation to an ordinal sum of posets.
Letm be a positive integer. Let us denote an antichain withm elements by Am . The

order polytope of Am is the m-dimensional unit cube. Note that an m-chain is given
by A1 ⊕ · · · ⊕ A1 (m copies), which we denote by Cm .

Lemma 5.2 Let m be a positive integer. Then the minimum distance of the toric code
associated with OAm⊕Am is given by (q − 1)m(q − 2)m.

Proof Webeginwith a slightlymore general setup. Letm ≤ n be two positive integers.
We consider the ordinal sum Am ⊕ An . In the light of Lemma 5.1, we may assume
that OAm⊕An = OAm ⊕ OAn . Let f be a polynomial in H0(TN (Fq),OAm ) such that
wt( f ) = d(COAm

). Then we know that

Z( f ) = (q − 1)m − d(COAm
) = (q − 1)m − (q − 2)m .

Similarly, let g be a polynomial in H0(TN ′(Fq),OAn ) such that wt(g) = d(COAn
).

Then we know that

Z(g) = (q − 1)n − d(COAn
) = (q − 1)n − (q − 2)n .

Therefore, the minimum distance of OAm⊕An is bounded by

d(COAm⊕OAn
) ≤ max

{
(q − 1)m+n − ((q − 1)m − (q − 2)m)(q − 1)n,

(q − 1)m+n − ((q − 1)n − (q − 2)n)(q − 1)m
}

= max {(q − 2)m(q − 1)n, (q − 2)n(q − 1)m} = (q − 2)m(q − 1)n .

In particular, if m = n, then we see that

d(COAm⊕OAn
) ≤ (q − 2)m(q − 1)m . (5.1)
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We notice that the poset Am ⊕ Am is covered by m 2-chains, Hm := ⊔m
i=1 C2. It is

easy to check the polytope containment

OAm⊕Am ⊆ OHm .

This means that the space of sections of the line bundle determined by OAm⊕Am

is contained in the space of sections of the line bundle determined by OHm . Since
these sections are evaluated on the same torus, the minimum distance of the code
COAm⊕OAm

is bounded from below by the minimum distance of COHm
, which is equal

to (q − 1)m(q − 2)m . The rest of the proof follows from (5.1). ��
Theorem 5.3 Let m be a positive integer. The minimum distance of a toric code asso-
ciated with an (m,m)-bipartite poset is given by (q − 1)m(q − 2)m.

Proof Let Hm denote
⊔m

i=1 C2. By the proof of Lemma 5.2, we know that

d(COAm⊕Am
) = d(COHm

) = (q − 1)m(q − 2)m .

It is easy to check (by computing the vertices of the order polytopes) that if P is
an (m,m)-bipartite poset, then OAm⊕Am ⊆ OP ⊆ OHm . These inclusions give the
following inequalities:

d(COAm⊕Am
) ≥ d(COP ) ≥ d(COHm

),

which are actually equalities. This finishes the proof of our theorem. ��
Proposition 5.4 Let m be a positive integer. Then we have the following formulas for
the dimensions of the toric codes associated with Am ⊕ Am and Hm := ⊔m

i=1 C2:

(i) dim COAm⊕Am
= 2m+1 − 1, and

(ii) dim COHm
= 3m.

Proof The dimension of a toric code defined by an order polytope is equal to the
number of vertices of the polytope. In the former case, we have the free sum of two
m-dimensional cubes. Therefore, the dimension in this case is given by 2m +2m −1 =
2m+1 − 1. In the latter case, the vertices of OHm are given by the upper order ideals
in Hm . Any such ideal is uniquely determined by a minimal elements 0̂i1 , . . . , 0̂ia
in Hm , and b maximal elements 1̂ j1 , . . . , 1̂ jb , where 1̂ jr , 1 ≤ r ≤ b, does not cover
any element from {0̂i1 , . . . , 0̂ia }. Therefore, the total number of such upper order ideals
is given by

∑m
a=0

∑m−a
b=0

(m
a

)(m−a
b

)
. By using the binomial theorem, we see that this

sum is equal to 3m . ��

Example 5.5 We consider the posets P1, P2, and P3 that are defined in Fig. 5. In Table 1
we listed their upper order ideals. The minimum distance of the toric code associated
with the order polytope of Pi , i ∈ {1, 2, 3}, equals

d(COPi
) = (q − 1)2(q − 2)2.

123



Discrete & Computational Geometry (2023) 69:834–848 847

Table 1 The upper order ideals of P1, P2, P3

J (P
opp
1 ) J (P

opp
2 ) J (P

opp
3 )

{ε1, ε2, ε3, ε4} {ε1, ε2, ε3, ε4} {ε1, ε2, ε3, ε4}
{ε1, ε3, ε4} {ε1, ε3, ε4} {ε1, ε3, ε4}
{ε2, ε3, ε4} {ε2, ε3, ε4} {ε2, ε3, ε4}
{ε3, ε4} {ε3, ε4} {ε3, ε4}
{ε3} {ε1, ε3} {ε1, ε3}
{ε4} {ε3} {ε2, ε4}
∅ {ε4} {ε3}

∅ {ε4}
∅

ε1 ε2

ε3 ε4

ε1 ε2

ε3 ε4

ε1 ε2

ε3 ε4

Fig. 5 The posets P1, P2, and P3 (from left to right)
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