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Abstract
Given a periodic graph,wewish to determine via combinatorialmethodswhether it has
periodic embeddings in the plane that—via motions that preserve edge-lengths and
periodicity—can be continuously deformed into another non-congruent embedding
of the graph. By introducing NBAC-colourings for the corresponding quotient gain
graphs, we identify which periodic graphs have flexible embeddings in the plane
when the lattice of periodicity is fixed.We further characterise with NBAC-colourings
which 1-periodic graphs have flexible embeddings in the plane with a flexible lattice
of periodicity, and characterise in special cases which 2-periodic graphs have flexible
embeddings in the plane with a flexible lattice of periodicity.

Keywords Periodic frameworks · Flexibility · Linkages · Gain graphs

Mathematics Subject Classification 52C25 · 13A18

1 Introduction

A (bar-joint) framework in the plane is a pair (G,P), where G is a simple graph and
P (the placement of G) is a map from V (G) to R

2.1 By considering each edge vw

as a rigid bar that restricts the distance between v and w, a natural question to ask
is whether or not the structure is flexible, i.e., does there exist a continuous path in
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Fig. 1 (Left): A rigid placement of K2 × K3 in the plane. As K2 × K3 is a Laman graph, almost all
placements will give a rigid framework. (Right): A flexible placement of the same graph

the space of placements of G that preserves the edge distances but is not a rigid body
motion? If the vertex set of G is finite and the coordinates of the vector (P(v))v∈V (G)

are algebraically independent over Q, then it has been proved (first by Pollaczek–
Geiringer [18] and later by Laman independently [12]) that (G,P) is rigid (i.e., not
flexible) in the plane if and only if G contains a (somewhat erroneously named) Laman
graph; a graphH where |E(H)| = 2|V (H)| − 3 and |E(H′)| ≤ 2|V (H′)| − 3 for all
subgraphs H′ of H with |V (H′)| ≥ 2. Given a graph that contains a Laman graph,
there can however still exist non-generic placements that are flexible; see Fig. 1.

This raises a new question; can we use combinatorial methods to determine if a
graph G has any placement that defines a flexible framework (G,P)? This question
was answered in the positive in [7], where it was proved that a finite simple graph will
have flexible placements in the plane if and only if it has anNAC-colouring, a surjective
red-blue edge colouring where no cycle has exactly one red edge or exactly one blue
edge. Detecting whether graphs have flexible placements via NAC-colourings is a
very recent area of research which utilises many different areas of algebraic geometry,
including valuation theory [5–8].

We now wish to extend the method using NAC-colourings to frameworks in the
plane with k-periodic symmetry, i.e., frameworks (G,P) where there exist a matrix
L ∈ M2×k(R) and a free group action θ of Zk on G via graph automorphisms, such
that G has a finite set of vertex orbits under θ and P(θ(γ )v) = P(v) + L · γ for
all v ∈ V (G) and γ ∈ Z

k ; we call L the lattice of P , θ the symmetry of G, and P a
k-periodic placement of (G, θ). Specifically, we wish to be able to determine if a graph
G with symmetry θ has a k-periodic placement P where (G,P) can be deformed by
a motion that preserves the periodic structure of (G,P), and if such a placement does
exist, be able to also determine in advance whether the motion will preserve the lattice
structure of (G,P).

Research into the rigidity of periodic frameworks has seen much interest in the
last decade. Some of the main areas of research include combinatorial characterisa-
tions of rigid periodic graphs [2,3,13,16,21], periodic graphs with unique realisations
[11], rigid unit modes of periodic frameworks [17,19], and rigidity under infinitesimal
motions where the periodicity is relaxed somewhat [1,4,10,14,23].

Each k-periodic framework (G,P) in the plane with a given symmetry θ defines
a family of gain-equivalent triples (G, p, L), where G is a Z

k-gain graph and
p : V (G) → R

2 is a placement of G (see Sects. 2.2 and 2.3 for definitions), and
likewise, each such triple (G, p, L) will define a framework (G,P) with k-periodic
symmetry; see [21, Sect. 2.2] for more details. AsZk-gain graphs have a finite amount
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Fig. 2 (Left): A framework (G,P) with 2-periodic symmetry. (Right): A corresponding triple (G, p, L)

with L := 2I2, where I2 is the 2 × 2 identity matrix

of vertices but still encode all the required information needed for working with
motions that preserve periodicity, we shall define a k-periodic framework in the plane
to be a triple (G, p, L) for someZk-gain graphG, and the pair (p, L) to be aplacement-
lattice of G; for example, see Fig. 2.

Using the gain graph description of k-periodic frameworks, our question is now
the following; can we use combinatorial methods to determine if a Z

k-gain graph
G has any placement-lattice that defines a flexible k-periodic framework (G, p, L)?
We shall answer this in the positive for 1-periodic frameworks where the lattice is
allowed to deform (see Theorem 5.1) and k-periodic frameworks where the lattice
is fixed (see Theorem 4.1). We also obtain partial results for the more difficult case
of 2-periodic frameworks where the lattice is allowed to deform (see Lemma 6.4,
Theorems 7.5 and 7.10). To do this we shall introduce NBAC-colourings (“NBAC”
being an acronym for “NoBalancedAlmost Circuit”), an analogue of NAC-colourings
for Zk-gain graphs. We shall also characterise the various types of NBAC-colourings
that are generated by different motions of a given k-periodic framework.

The outline of the paper is as follows. In Sect. 2,we shall layout somebackground on
valuation theory, gain graphs, and periodic frameworks in both Rd and Cd . In Sect. 3,
we shall defineNBAC-colourings and their various sub-types, including activeNBAC-
colourings, and utilise valuations to prove that flexibility will imply the existence of an
NBAC-colouring. In Sects. 4–6, we shall apply our methods using NBAC-colourings
to fixed lattice k-periodic frameworks, flexible lattice 1-periodic frameworks, and
flexible lattice 2-periodic frameworks respectively, with partial results in the latter
case. In Sect. 7, we shall prove that a full characterisation of Z2-gain graphs with a
flexible placement-lattice is possible if we assume that our graph has at least a single
loop.

2 Preliminaries

2.1 Function Fields andValuations

We shall refer to all affine algebraic sets over C as algebraic sets, and we shall call
any irreducible algebraic set a variety. For an algebraic set V in C

n , we define I (V )
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to be the ideal of Cn that defines V . We recall that the dimension of an algebraic set
is the maximal length of chains of distinct nonempty subvarieties of A. An algebraic
curve is an affine variety of dimension 1.

Definition 2.1 Let V be a variety in the polynomial ringC[X1, . . . , Xn].We define the
coordinate ringofV to be the quotientC[V ] := C[X1, . . . , Xn]/I (V ) and the function
field of V to be the field of fractions of C[V ], denoted by C(V ). Each f̂ /ĝ ∈ C(V )

can, for any f ∈ f̂ and g ∈ ĝ, be considered to be a partially defined function

f /g : V → C, x �→ f (x)/g(x),

and this function is independent of the choice of f , g.

We recall that for a field extension K/k, an element a ∈ K is transcendental over k
if there is no polynomial p ∈ k[X ] with p(a) = 0, and algebraic over k otherwise.
The following useful result stems from the observation that any rational function must
either be constant on a variety or take an infinite amount of values; indeed if this was
not true, we would be able to construct a non-invertible element of the function field.

Lemma 2.2 Let C be an algebraic curve inC[X1, . . . , Xn] and let f ∈ C[x1, . . . , xn].
Then one of the following holds:

(i) f takes an infinite amount of values on C and is transcendental over C when
considered as an element of C(C).

(ii) f is constant on C.
Definition 2.3 For a function fieldC(C), a function ν : C(C) → Z∪{∞} is a valuation
if

(i) ν(x) = ∞ if and only if x = 0;
(ii) ν(xy) = ν(x) + ν(y);
(iii) ν(x + y) ≥ min {ν(x), ν(y)}, with equality if ν(x) 
= ν(y);
(iv) ν(x) = 0 if x ∈ C \ {0}.
The following is a useful rewording of [22, Cor. 1.1.20].

Proposition 2.4 LetC(C) be a function field and suppose f ∈ C(C) is transcendental
over C. Then there exists a valuation ν of C(C) with ν( f ) > 0.

2.2 Gain Graphs

We shall briefly cover the topic of gain graphs. For a more in depth analysis of the
topic for general groups, we refer the reader to [9]. We will be mainly be interested in
the case when the group is an abelian free group; for more discussion on techniques
often used for this specific topic, we refer the reader to [20].

Definition 2.5 A �-gain graph is a triple G := (V (G), E(G), �), where:

(i) V (G) is a finite set of vertices.
(ii) � is an additive abelian group with identity 0.
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Fig. 3 A �-gain graph with a, b, c, d ∈ �. We represent any edge (v, w, γ ) by an arrow from v to w with
a label γ , and we represent any edge (v, w, 0) by an undirected and unlabelled edge from v to w

Fig. 4 A switching operation at u by μ

(iii) K (V (G)) := (V (G)2 × �)/R, where R is the equivalence relation with
(a, b, γ ) R (c, d, μ) if and only if either a = c, b = d, and γ = μ, or a = d,
b = c, and γ = −μ.

(iv) E(G) ⊂ K (V (G)) is a set of edges. We shall assume that there is no edge of the
form (v, v, 0); we shall, however, allow E(G) to be an infinite set.

While the edges of a gain graph are not orientated, we often find it easier to assume
that there is some orientation on the edges, i.e., G is directed. We may then define the
gain of an edge (v,w, γ ) to be γ . We refer the reader to Fig. 3 for an example.

A switching operation at u by μ is the map φ
μ
u : K (V (G)) → K (V (G)) where

φμ
u (v,w, γ ) =

⎧
⎪⎨

⎪⎩

(u, w, γ + μ) if v = u, w 
= u,

(v, u, γ − μ) if v 
= u, w = u,

(v,w, γ ) if v,w 
= u or v = w = u.

See Fig. 4 for an example of a gain switching operation at a vertex.
Given the switching operations φ

μ1
u1 , . . . , φ

μn
un (where the vertices u1, . . . , un and

elements μ1, . . . , μn need not be distinct), we define φ := φ
μn
un ◦ · · · ◦φ

μ1
u1 to be a gain

equivalence. We say�-gain graphsG,G ′ are gain-equivalent (orG ≈ G ′) ifG andG ′
are �-gain graphs with the same vertex set and G ′ = φ(G) := (V (G), φ(E(G)), �)

for some gain equivalence φ. If H ⊂ G and H ′ := φ(H), then we say H ′ is the
corresponding subgraph of H in G ′. The relation≈ is an equivalence relation for gain
graphs.

A walk in G is an ordered set C := (e1, . . . , en) of edges of G where ei =
(vi , vi+1, γi ) (with vn+1 = v1) for some γi ; we note that we orientate each edge so
we have a directed walk from v1 to vn . The length of a walk is the amount of edges
it contains (including any repetitions). If v1 = vn then C is a circuit. Unless specified
otherwise, all walks and circuits of length n will be of the form described above. For
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a circuit C , we define

ψ(C) := γ1 + γ2 + · · · + γn

to be the gain of C . A circuit is balanced if ψ(C) = 0, and unbalanced otherwise.
For a connected subgraph H ⊂ G, we define the span of H to be the subgroup

span H := {ψ(C) : C is a circuit in H}.

If � ∼= Z
k for some k ∈ N, then we define rank H to be the rank of span H . A

connected subgraph H is balanced if span H is the trivial group, and unbalanced
otherwise; likewise, a subgraph is balanced if every connected component is balanced
and unbalanced otherwise.

Proposition 2.6 Let G,G ′ be gain-equivalent �-gain graphs and H ⊂ G be a con-
nected subgraph. If H ′ is the corresponding subgraph of H in G, then span H ′ =
span H.

Proof This follows from noting that switching operations will not change the span of
a circuit. ��
Proposition 2.7 Let G be a �-gain graph and {H1, . . . , Hn} a set of connected sub-
graphs with pairwise disjoint vertex sets. Then there exists G ′ ≈ G such that for each
i ∈ {1, . . . , n}, all the edges of the corresponding subgraph H ′

i of Hi in G ′ have gain
in span Hi .

Proof Choose a spanning tree Ti for each i ∈ {1, . . . , n}. We note that we may choose
G ′ ≈ G so that each corresponding subgraph T ′

i of Ti in G ′ has only trivial gain for
its edges; see [21, Sect. 2.4] for a description of the method. Fix i ∈ {1, . . . , n} and
choose any e = (v,w, γ ) ∈ E(H ′

i ). Let W be the unique walk from w to v in Ti , and
define C to be the circuit formed by the travelling along the edge e and then following
thewalkW . Asψ(C) = γ , then γ ∈ span H ′

i . By Proposition 2.6, span Hi = span H ′
i ,

hence γ ∈ span Hi as required. ��

2.3 Rigidity and Flexibility for k-Periodic Frameworks

Let d ∈ N andK := R orC. We shall define ‖ · ‖2 : Kd → K to be the quadratic form
with

∥
∥(xi )

d
i=1

∥
∥2 :=

d∑

i=1

x2i

for all (xi )di=1 ∈ K
d . For K = R, the quadratic form ‖ · ‖2 is in fact the square of the

Euclidean norm, however this is not true for K = C. The isometries of (Kd , ‖ · ‖2)
are exactly the affine maps x �→ Mx + y, where y ∈ K

d and M ∈ Mn(K) is a d × d
matrix where MT M = Id .
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Remark 2.8 For any matrix M ∈ Mm×n(K) and x := (x1, . . . , xn) ∈ K
n , we shall

denote by M · x the matrix multiplication M [x1 . . . xn]T .
We shall be using the definition of periodic frameworks, originally stated by Ross,
which utilises gain graphs (see [20]), although many of our results can be adapted to
fit the terminology used byBorcea andStreinu (see [2]). These twodiffering definitions
can be seen to be identical; we refer the reader to [20, Sect. 3.1] for more details.

Definition 2.9 Let d ∈ N and G be a Zk-gain graph for some 1 ≤ k ≤ d. A k-periodic
framework inKd is a triple (G, p, L) such thatG is aZk-gain graph, p : V (G) → K

d ,
and L ∈ Md×k(K), with the assumption that if (v,w, γ ) ∈ E(G) then p(v) 
=
p(w)+ L ·γ . We shall define p to be a placement, L to be a lattice, and the pair (p, L)

to be a placement-lattice. If L is also injective then (G, p, L) is full, and if K = R

then we simply refer to (G, p, L) as a k-periodic framework.

For a given Z
k-gain graph G, we define Vd

K
(G) to be the space of placement-lattices

of G, which we shall consider to be a subspace of Kd|V (G)|+dk . We immediately note
that Vd

K
(G) is an open non-empty subset in the Zariski topology, and if G has an edge,

it is a proper subset.

Definition 2.10 Let (G, p, L) and (G, p′, L ′) be k-periodic frameworks in Kd . Then
(G, p, L) ∼ (G, p′, L ′) (or (G, p, L) and (G, p′, L ′) are equivalent) if for all
(v,w, γ ) ∈ E(G),

‖p(v) − p(w) − L · γ ‖2 = ‖p′(v) − p′(w) − L ′ · γ ‖2, (1)

and (p, L) ∼ (p′, L ′) (or (p, L) and (p′, L ′) are congruent) if (1) holds for all
v,w ∈ V (G) and γ ∈ Z

k ; equivalently, we may define (p, L) ∼ (p′, L ′) if and only
if there exist a linear isometryM ∈ Md(K) and y ∈ K

d such that p′(v) = M · p(v)+ y
for all v ∈ V (G) and L ′ = ML . For any L, L ′ ∈ Md×k(K), we define L and L ′ to be
orthogonally equivalent (or L ∼ L ′) if for any γ, μ ∈ Z

k ,

(L · γ ) · (L · μ) = (L ′ · γ ) · (L ′ · μ). (2)

We note that, by linearity, if (2) holds for all pairs of some basis of Zk , then it holds
for all γ, μ ∈ Z

k . Furthermore, if (p, L) ∼ (p′, L ′) then (G, p, L) ∼ (G, p′, L ′) and
L ∼ L ′.

Definition 2.11 For a k-periodic framework (G, p, L) we define the algebraic subsets

VK(G, p, L) := {(p′, L ′) ∈ Vd
K
(G) : (G, p′, L ′) ∼ (G, p, L)},

V f
K

(G, p, L) := {(p′, L ′) ∈ Vd
K
(G) : (G, p′, L ′) ∼ (G, p, L), L ′ ∼ L}.

Definition 2.12 Let (G, p, L) be a k-periodic framework inKd . A flex of (G, p, L) is
a continuous path t �→ (pt , Lt ), t ∈ [0, 1], inVK(G, p, L). If (pt , Lt ) ∈ V f

K
(G, p, L)

for all t ∈ [0, 1] then (pt , Lt ) is a fixed lattice flex. If (pt , Lt ) ∼ (p, L) for all t ∈ [0, 1]
then (pt , Lt ) is trivial.
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Remark 2.13 An equivalent definition for a trivial finite flex is as follows: (pt , Lt ) is
a trivial flex of (G, p, L) if and only (pt , Lt ) is a trivial flex of (K , p, L), where K is
Z
k-gain graph with vertex set V (G) and edge set K (V (G)) \ {(v, v, 0) : v ∈ V (G)}.

Definition 2.14 Let (G, p, L) be a k-periodic framework. Then we define the follow-
ing:

(i) (G, p, L) is rigid if all flexes of (G, p, L) are trivial, and flexible otherwise.
(ii) (G, p, L) is fixed lattice rigid if all fixed lattice flexes of (G, p, L) are trivial,

and fixed lattice flexible otherwise.

Let φμ
u be a switching operation ofG. We define the framework switching operation at

u by μ to be (by abuse of notation) the linear map φ
μ
u : Kd|V (G)|+dk → K

d|V (G)|+dk ,
where, given (p′, L ′) = φ

μ
u (p, L), we have L ′ = L and

p′(v) =
{
p(u) + L · μ if v = u,

p(v) otherwise,

for all v ∈ V d
K

(G).We define any compositionφ := φ
μn
un ◦· · ·◦φ

μ1
u1 to be a gain equiva-

lence, and define φ(G, p, L) := (φ
μ
u (G), φ

μ
u (p, L)). If there exists a gain equivalence

such that (G ′, p′, L) = φ(G, p, L), then we say (G, p, L) and (G ′, p′, L) are gain-
equivalent; we denote that two k-periodic frameworks (G, p, L) and (G ′, p′, L) are
gain equivalent by (G, p, L) ≈ (G ′, p′, L).

As each gain equivalence φ is a linear isomorphism and φ(Vd
K
(G, p, L)) =

Vd
K
(φ(G, p, L)), then the sets VK(G, p, L) and VK(φ(G, p, L)) are isomorphic as

algebraic sets. It follows that, given (G, p, L) ≈ (G ′, p′, L), we have that (G, p, L)

is (fixed lattice) rigid if and only if (G ′, p′, L) is (fixed lattice) rigid.

3 NBAC-Colourings and Flexibility in the Plane

3.1 NBAC-Colourings

Definition 3.1 Let G be a �-gain graph with edge colouring δ : E(G) → {red, blue}.
We define the following:

(i) Gδ
red := (V (G), {e ∈ E(G) : δ(e) = red}).

(ii) A red component is a connected component of Gδ
red.

(iii) A red walk (respectively, red circuit) is a walk (respectively, circuit) where every
edge is red.

(iv) An almost red circuit is a circuit with exactly one blue edge.
(v) Gδ

blue, blue components, blue walks, blue circuits, and almost blue circuits are
defined analogously.

(vi) We define a component/walk/circuit to be monochromatic if it is either red or
blue, and we define an almost monochromatic circuit to be any circuit that is
either almost red or almost blue.
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Fig. 5 A surjective colouring δ of a �-gain graph. If α /∈ 〈β〉, β /∈ 〈α − γ 〉, and γ 
= 0, then δ is an
NBAC-colouring

Fig. 6 All three possible NBAC-colourings of a Z-gain graph up to switching the colours red and blue. The
left is a fixed lattice NBAC-colouring but not a flexible 1-lattice NBAC-colouring, while the middle and
right are flexible 1-lattice NBAC-colourings but not fixed lattice NBAC-colourings

A colouring δ is an NBAC-colouring (No Balanced Almost Circuits) if it is surjective,
and there are no balanced almost red circuits and no balanced almost blue circuits; see
Fig. 5 for an example of an NBAC-colouring.

If δ is a colouring of G and G ′ ≈ G, then by abuse of notation we shall also define
δ to be a colouring for G ′. We note that if δ is an NBAC-colouring of G, then δ is an
NBAC-colouring of G ′.

Definition 3.2 Let G be a Z
k-gain graph for some k ∈ {1, 2}, with an NBAC-

colouring δ. If either Gδ
red is balanced and G has no almost blue circuits, or Gδ

blue
is balanced and G has no almost red circuits, then δ is a fixed lattice NBAC-colouring.

Definition 3.3 Let G be a Z-gain graph with an NBAC-colouring δ. If both Gδ
red and

Gδ
blue are balanced, then δ is a flexible 1-lattice NBAC-colouring.

Remark 3.4 We note that if G is a Z-gain graph with NBAC-colouring δ, then δ can be
either both a fixed lattice NBAC-colouring and a flexible 1-lattice NBAC-colouring,
one or the other, or neither. We can even have that G has no NBAC-colouring that is
both, but has both fixed lattice and flexible 1-lattice NBAC-colourings; see Fig. 6 for
an example.

Definition 3.5 Let G be a Z
2-gain graph with an NBAC-colouring δ. We define the

following (see Fig. 7 for examples of each colouring):

(i) If both Gδ
red and Gδ

blue are balanced, then δ is a type 1 flexible 2-lattice NBAC-
colouring.

(ii) If there exist α, β ∈ Z
2 such that

– either α, β are linearly independent or exactly one of α, β is equal to (0, 0),
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Fig. 7 (Left): A Z
2-gain graph with a type 1 flexible 2-lattice NBAC-colouring. (Middle): A Z

2-gain graph
with a type 2 flexible 2-lattice NBAC-colouring (α = (1, 0), β = (0, 1)). (Right): A Z

2-gain graph with a
type 3 flexible 2-lattice NBAC-colouring (α = (1, 0))

– spanGδ
red is a non-trivial subgroup ofZα, or α = (0, 0) andGδ

red is balanced,
– spanGδ

blue is a non-trivial subgroup of Zβ, or β = (0, 0) and Gδ
blue is bal-

anced,
– there are no almost red circuits with gain in Zα, and
– there are no almost blue circuits with gain in Zβ,

then δ is a type 2 flexible 2-lattice NBAC-colouring.
(iii) If there exists α ∈ Z

2 \ {(0, 0)} such that

– spanGδ
red and spanGδ

red are non-trivial subgroups of Zα, and
– there are no almost monochromatic circuits with gain in Zα,

then δ is a type 3 flexible 2-lattice NBAC-colouring; see Fig. 7.

Remark 3.6 We note that if G is a Z
2-gain graph with NBAC-colouring δ, then the

following holds:

– For distinct i, j ∈ {1, 2, 3}, δ cannot be both a type i and type j flexible 2-lattice
NBAC-colouring.

– Similarly, δ cannot be both a fixed lattice NBAC-colouring and type 3 flexible
2-lattice NBAC-colouring.

– The colouring δ can, however, be both a fixed lattice NBAC-colouring and either
a type 1 or 2 flexible 2-lattice NBAC-colouring; see Fig. 8 for an example of an
NBAC-colouring that is both fixed lattice and type 2.

– If H ⊂ G is notmonochromatic and δ is a type k flexible 2-latticeNBAC-colouring
for some k ∈ {1, 2, 3}, then δ restricted to H is a type k′ flexible 2-lattice NBAC-
colouring for some 1 ≤ k′ ≤ k; furthermore, if k′ = 1 < k then δ restricted to H
will also be a fixed lattice NBAC-colouring.

3.2 k-Periodic Frameworks in the Plane

Let G be a Zk-gain graph for k ∈ {1, 2}, with placement p : V (G) → R
2 and lattice

L ∈ M2×k(R); if k = 1 we shall define L1 := L · 1 and if k = 2 we shall define
L1 := L · (1, 0) and L2 := L · (0, 1). For each e = (v,w, γ ) with γ := (γ j )

k
j=1, we
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Fig. 8 A Z
2-gain graph with a colouring that is both a fixed lattice NBAC-colouring and a type 2 flexible

2-lattice NBAC-colouring (α = (1, 0), β = (0, 0))

define

λ(e) :=
∥
∥
∥
∥
∥
∥
p(v) − p(w) −

k∑

j=1

γ j L j

∥
∥
∥
∥
∥
∥

(we note that this is well defined as (G, p, L) is a k-periodic framework in R
2). We

further define for each 1 ≤ j, l ≤ k,

λ( j, l) := L j · Ll .

We shall consider each point (q, M) ∈ V2
C
(G) to be a point

(
(xv, yv)v∈V (G), (x j , y j )

k
j=1

)
,

where xv, yv, x j , y j ∈ C; the points (xv, yv) will correspond to the coordinates of qv ,
and the points (x j , y j ) will correspond to the coordinates of L j . To help simplify
things later on, we will first wish to quotient out V2

C
(G) by the orientation-preserving

isometries by fixing an edge ẽ = (ṽ, w̃, γ̃ ). To do so, we define the algebraic set
Vẽ(G, p, L) ⊂ V2

C
(G) of all points where

xṽ = yṽ = 0, yw̃ +
k∑

j=1

γ̃ j y j = 0,

and for all e = (v,w, γ ) ∈ E(G),

⎛

⎝xv − xw −
k∑

j=1

γ j x j

⎞

⎠

2

+
⎛

⎝yv − yw −
k∑

j=1

γ j y j

⎞

⎠

2

= λ(e)2. (3)

We further define V f
ẽ (G, p, L) to be the algebraic subset of Vẽ(G, p, L)where x j xl +

y j yl = λ( j, l)2, for each 1 ≤ j, l ≤ k.
We note that the placement-lattice (p, L) may not be contained in Vẽ(G, p, L).

However, the unique k-periodic framework obtained by translating and rotating
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(G, p, L) so that pṽ lies at the origin and pw̃ + L · γ̃ lies on the x-axis, will be
contained in Vẽ(G, p, L). Hence, the set VC(G, p, L) is homeomorphic to

Vẽ(G, p, L) × SO(2,C) × C
2

as Vẽ(G, p, L) is the set of frameworks equivalent to (G, p, L) in C2 where the edge
ẽ is fixed to lie on the x-axis. Similarly, V f

C
(G, p, L) is homeomorphic to

V f
ẽ (G, p, L) × SO(2,C) × C

2.

It follows that, if we require it, we may assume (p, L) ∈ Vẽ(G, p, L).

Given an algebraic curve C ⊂ Vẽ(G, p, L) and any v,w ∈ V (G), γ ∈ Z
k , we

define the maps

W γ
v,w,|C, Zγ

v,w|C : C → C

by the polynomials

W γ
v,w|C :=

⎛

⎝xv − xw −
k∑

j=1

γ j x j

⎞

⎠ + i

⎛

⎝yv − yw −
k∑

j=1

γ j y j

⎞

⎠ ,

Zγ
v,w|C :=

⎛

⎝xv − xw −
k∑

j=1

γ j x j

⎞

⎠ − i

⎛

⎝yv − yw −
k∑

j=1

γ j y j

⎞

⎠ .

We further define the maps Wj |C, Z j |C : C → C for 1 ≤ j ≤ k as the polynomials

Wj |C := x j + iy j , Z j |C := x j − iy j .

For the case of k = 2, we shall define for each γ := (a, b) ∈ Z
2 the maps

γW |C := aW1|C + bW2|C, γ Z |C := aZ1|C + bZ2|C .

When there is no ambiguity regardingwhich algebraic curvewe are observing,we shall
for brevity drop the notation “|C”; for example, W γ

v,w|C shall be shortened to W γ
v,w.

We first observe that W−γ
w,v = −W γ

v,w and Z−γ
w,v = −Zγ

v,w. Furthermore, we note
that if e = (v,w, γ ) ∈ E(G),

W γ
v,wZγ

v,w = λ(e)2,

and if C ⊂ V f
ẽ (G, p, L) then

Wj · Z j = λ( j, j)2, Wj · Zl + Wl · Z j = 2λ( j, l)2,

for all 1 ≤ j, l ≤ k.
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3.3 Active NBAC-Colourings

Active NAC-colourings for finite simple graphs were first introduced in [8]. We shall
now give an analogue of them for Zk-gain graphs.

Definition 3.7 Let (G, p, L) be a k-periodic framework inR2, C ⊂ Vẽ(G, p, L) be an
algebraic curve, and δ an NBAC-colouring of G. We define δ to be an active NBAC-
colouring of C if there exist a valuation ν of C(C) and α ∈ R such that for each
e ∈ E(G),

δ(e) =
{
red if ν(W γ

v,w) > α,

blue if ν(W γ
v,w) ≤ α;

if this is the case, we shall say that δ is the NBAC-colouring generated by ν and α. For
a k-periodic framework (G, p, L) in R2, we define δ to be an active NBAC-colouring
of (G, p, L) if it is an active NBAC-colouring of an algebraic curve C ⊂ Vẽ(G, p, L).
We define δ to be an active NBAC-colouring of G if it is an active NBAC-colouring
of a full k-periodic framework (G, p, L) in R2.

Remark 3.8 If δ is an active NBAC-colouring of an algebraic curve C ⊂ Vẽ(G, p, L)

and δ′ is an NBAC-colouring with δ′(e) 
= δ(e) for all e ∈ E(G), then δ′ is also
an active NBAC-colouring of C; this can be shown in a similar way to the proof of
[8, Lem. 1.13].

Lemma 3.9 Let (G, p, L) be a k-periodic framework in R
2 and e1, e2 ∈ E(G), with

e1 = (v1, w1, γ1) and e2 = (v2, w2, γ2). Then the map

fe1,e2 : Ve1(G, p, L) → Ve2(G, p, L),

(q, M) �→ (
(Re2 · (q(v) − q(v2)))v∈V (G), Re2M

)

is biregular, where

Re2 := 1

λ(e2)

[
xw2 − xv2 yw2 − yv2

−(yw2 − yv2) xw2 − xv2

]

.

Furthermore, for any algebraic curve C ⊂ Ve1(G, p, L) and any v,w ∈ V (G),
γ ∈ Z

k , we have that C′ := fe1,e2(C) is an algebraic curve and

W γ
v,w|C′ ◦ fe1,e2 = 1

λ(e2)
W γ

v,w|C Zγ2
v2,w2

|C,

Zγ
v,w|C′ ◦ fe1,e2 = 1

λ(e2)
Zγ

v,w|C W γ2
v2,w2

|C .

(4)

Proof We note that the transform z �→ Re2 · (z − q(v2)) will preserve distance under
‖ · ‖2 in C

2. It follows that (G, fe1,e2(q, M)) will be an equivalent framework to
(G, q, M), except now the edge e2 (not e1) has been fixed, with v2 at the origin and
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w2 on the y-axis, Hence fe1,e2(q, M) ∈ Ve2(G, p, L) for all (q, M) ∈ Ve1(G, p, L),
i.e., the map fe1,e2 is well defined. It is clear that the map fe1,e2 is regular. To see that
fe1,e2 is biregular, we note that the map fe2,e1 is the inverse of fe1,e2 . Since fe1,e2 is
biregular, C′ will be an algebraic curve. Equation (4) now holds by direct computation.

��
Proposition 3.10 Let (G, p, L) be a k-periodic framework in R2, e1, e2 ∈ E(G) with
e1 = (v1, w1, γ1) and e2 = (v2, w2, γ2), and C ⊂ Ve1(G, p, L). If δ is an active
NBAC-colouring of C then there exists an algebraic curve C′ ⊂ Ve2(G, p, L) such
that δ is an active NBAC-colouring of C′.

Proof Let C′ := fe1,e2(C), where fe1,e2 is the map defined in Lemma 3.9. Let ν be the
valuation of C(C) and α ∈ R be chosen so that they generate δ. Define ν′ to be the
valuation of C(C′) where ν′( f ) := ν( f ◦ fe1,e2) for each f ∈ C(C′). By Lemma 3.9,

ν′(W γ
v,w|C′

) = ν
(
W γ

v,w|C′ ◦ fe1,e2
) = ν

(
1

λ(e2)
W γ

v,w|C Zγ2
v2,w2

|C
)

= ν
(
W γ

v,w|C
) + ν

(
Zγ2

v2,w2
|C

)
.

If we define α′ := α + ν
(
Zγ2

v2,w2 |C
)
, then ν′ and α′ will generate δ. ��

Lemma 3.11 Let (G, p, L) and (G ′, p′, L) be gain equivalent frameworks with gain
equivalence φ : Vd

K
(G) → Vd

K
(G ′). If ẽ ∈ E(G) and ẽ′ := φ(ẽ), then φ is a biregular

map with φ(Vẽ(G, p, L)) = Vẽ′(G ′, p′, L). Furthermore, for any algebraic curve
C ⊂ Ve1(G, p, L) and any v,w ∈ V (G), γ ∈ Z

k , we have that C′ := φ(C) is an
algebraic curve and

W γ
v,w|C′ ◦ φ = W γ

v,w|C, Zγ
v,w|C′ ◦ φ = Zγ

v,w|C . (5)

Proof As φ is a bijective map that is the restriction of an invertible linear map, it is a
biregular map; hence, φ(C) is an algebraic curve. Equation (5) now follows by direct
computation. ��
Proposition 3.12 Let G and G ′ be gain equivalentZk-gain graphs. Then δ is an active
NBAC-colouring of G if and only if δ is an active NBAC-colouring of G ′.

Proof Let δ be an active NBAC-colouring of C ⊂ Vẽ(G, p, L) generated by the
valuation ν of C(C) and α ∈ R. Let φ be the gain equivalence from G to G ′. We
define the gain equivalent framework (G ′, p′, L) := φ(G, p, L), the algebraic curve
C′ := φ(C) (Lemma 3.11), and the valuation ν′ of C(C′) where ν′( f ) := ν( f ◦ φ) for
each f ∈ C(C′). By Lemma 3.11,

ν′(W γ
v,w|C′

) = ν
(
W γ

v,w|C′ ◦ φ
) = ν

(
W γ

v,w|C
)
,

thus ν′ and α generate δ for G ′. ��
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3.4 Key Tools

We are now ready to outline the key tools that shall help us throughout the rest of the
paper.

Lemma 3.13 Let (G, p, L) be a k-periodic framework inR2. Then the following holds:

(i) If (G, p, L) is flexible, there exists an algebraic curve C ⊂ Vẽ(G, p, L).
(ii) If (G, p, L) is fixed lattice flexible, there exists an algebraic curve C ⊂

V f
ẽ (G, p, L).

Proof (i): If (G, p) is flexible then Vẽ(G, p, L) cannot be finite. As every algebraic
set that is not finite contains a variety with positive dimension and every variety with
positive dimension contains an algebraic curve, the result holds. (ii): This follows by
a similar method. ��
Lemma 3.14 Let (G, p, L) be k-periodic and C ⊂ Vẽ(G, p, L) be an algebraic curve.
Suppose G contains a spanning tree T that contains ẽ and has trivial gain for all of
its edges. If rank G = k, then there exists (v,w, γ ) ∈ E(G) such that W γ

v,w takes an
infinite amount of values on C.
Proof Suppose that for each (v,w, γ ) ∈ E(G), the map W γ

v,w takes a finite amount
of values. By Lemma 2.2, each mapW γ

v,w is constant. AsW γ
v,wZγ

v,w is constant, Zγ
v,w

is also constant. Choose any two vertices v,w ∈ V (G) with v 
= w. Then there exists
a unique walk v1, . . . , vn from v to w in T . As

W 0
v,w =

n−1∑

j=1

W 0
v j ,v j+1

, Z0
v,w =

n−1∑

j=1

Z0
v j ,v j+1

,

both W 0
v,w and Z0

v,w are constant; furthermore, as

xv − xw = 1

2
(W 0

v,w + Z0
v,w), yv − yw = i

2
(Z0

v,w − W 0
v,w),

then xv − xw and yv − yw are also constant on C. Since xṽ , yw̃, xw̃, yṽ are constant on
C and both ṽ and w̃ are contained in T , both xv, yv are constant on C for every v ∈ V
also.

Suppose k = 1 and let e = (v,w, γ ) be any edge with γ 
= 0. By observing the
mapsW γ

v,w and Zγ
v,w, we note that x1 and y1 are constant on C (since xv, xw, yv, yw are

all constant on C). It now follows that C is a single point, contradicting that dim C > 0.
Now suppose k = 2. As rank G = k, there exist edges (v,w, γ ) and (v′, w′, γ ′)

such that γ, γ ′ are independent. By observing the maps W γ
v,w, Zγ

v,w,W γ ′
v′,w′ , Z

γ ′
v′,w′ ,

we note that the polynomials

f := γ1x1 + γ2x2, g := γ1y1 + γ2y2,
f ′ := γ ′

1x1 + γ ′
2x2, g′ := γ ′

1y1 + γ ′
2y2
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are constant on C. As both x1 and x2 can be formed by linear combinations of f , f ′,
both are constant on C; similarly, as both y1 and y2 can be formed by linear combi-
nations of g, g′ then both y1 and y2 are also constant on C. It now follows that C is a
single point, contradicting that dim C > 0. ��
Lemma 3.15 Let (G, p, L) be a full k-periodic framework in R

2, rank G = k for
k ∈ {1, 2}, and C ⊂ Vẽ(G, p, L) be an algebraic curve. Suppose there exists a :=
(a1, a2, α) ∈ E(G) such that Wα

a1,a2 takes an infinite amount of values on C. Then
there exists a valuation ν of C(C) such that the colouring δ : E(G) → {red, blue}
given by

δ(e) :=
{
red if ν(W γ

v,w) > 0,

blue if ν(W γ
v,w) ≤ 0,

for each e = (v,w, γ ), is an NBAC-colouring of G; furthermore, δ(ẽ) = blue and
δ(a) = red.

Proof By Lemma 2.2, Wα
a1,a2 is transcendental over C, thus, by Proposition 2.4, there

exists a valuation ν of C(C) such that ν(Wα
a1,a2) > 0. As ẽ is fixed and λ(ẽ) 
= 0, we

have ν
(
W γ̃

ṽ,w̃

) = 0. We note that ν
(
W γ

v,wZγ
v,w

) = 0 for each (v,w, γ ) ∈ E(G) since

W γ
v,wZγ

v,w is constant, hence ν(W γ
v,w) = −ν(Zγ

v,w).
Let δ : E(G) → {red, blue} be as described in the statement of the lemma for the

valuation ν. It follows that a is red and ẽ is blue, thus δ is surjective. Suppose there
exists a balanced almost red circuit C of length n in G with δ(en) = blue. Then

ν(W γn
v1,vn

) = ν

⎛

⎝
n−1∑

j=1

W
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
W

γ j
v j ,v j+1

) : j = 1, . . . , n − 1
}

> 0,

however this contradicts that ν
(
W γn

v1,vn

) ≤ 0. Now suppose instead thatC is a balanced
almost blue circuit with δ(en) = red. Then

ν
(
Zγn

v1,vn

) = ν

⎛

⎝
n−1∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : j = 1, . . . , n − 1
} ≥ 0,

however this contradicts that ν
(
Zγn

v1,vn

)
< 0. ��

Definition 3.16 For any two edges e1, e2 of a k-periodic framework (G, p, L) in R
2

with ei := (vi , wi , γi ) for each i ∈ {1, 2}, we define the angle function of e1, e2 to be
the map

Ae1,e2 : V2
C(G) → C,

(p′, L ′) �→ (p′(v1) − p′(w1) − L ′ · γ1) · (p′(v2) − p′(w2) − L ′ · γ2).
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Remark 3.17 For any ẽ ∈ E(G) and any algebraic curve C ⊂ Vẽ(G, p, L),

Ae1,e2 |C = 1

2

(
W γ1

v1,w1
Zγ2

v2,w2
+ Zγ1

v1,w1
W γ2

v2,w2

)
.

Furthermore, if (p, L) ∼ (p′, L ′), then Ae1,e2(p, L) = Ae1,e2(p
′, L ′); this is since

linear isometries of (C2, ‖ · ‖2) will preserve the bilinear form associated to ‖ · ‖2.
Lemma 3.18 Let (G, p, L) be a k-periodic framework in R

2 for k ∈ {1, 2}, C ⊂
Vẽ(G, p, L) be an algebraic curve, and e1, e2 ∈ E(G), with e j := (v j , w j , γ j ) for
j ∈ {1, 2}. If δ(e1) = δ(e2) for all active NBAC-colourings of C, then Ae1,e2 |C is
constant.

Proof As Ae1,e2 is invariant for congruent placement-lattices, by Proposition 3.10, we
may assume ẽ = e1. We note the map

(p′, L ′) �→ p′(v1) − p′(w1) − L ′ · γ1 (6)

is constant on C, and W γ1
v1,w1 is constant also. Suppose Ae1,e2 |C is not constant, then

as (6) is constant,

(p′, L ′) �→ p′(v2) − p′(w2) − L ′ · γ2

is not constant on C. This in turn implies that W γ2
v2,w2 takes an infinite amount of

values over C. By Lemma 3.15, there exists an active NBAC-colouring δ of C with
δ(e1) 
= δ(e2). ��
Lemma 3.19 Let (G, p, L) be a k-periodic framework in R

2 for k ∈ {1, 2} and
ẽ, e1, e2 ∈ E(G). If Ae1,e2 takes an infinite amount of values on Vẽ(G, p, L) then
there exists an algebraic curve C ⊂ Vẽ(G, p, L) such that Ae1,e2 |C is not constant.

Proof As Ae1,e2 takes an infinite amount of values on Vẽ(G, p, L), there exists a
variety V ⊂ Vẽ(G, p, L) and points (p′, L ′), (p′′, L ′′) ∈ Vẽ(G, p, L) such that
Ae1,e2(p

′, L ′) 
= Ae1,e2(p
′′, L ′′). By [15, Lem., p. 56], there exists an algebraic curve

C that contains (p′, L ′) and (p′′, L ′′). ��
Proposition 3.20 Let (G, p, L) be a k-periodic framework in R

2 for k ∈ {1, 2} and
ẽ, e1, e2 ∈ E(G). Then δ(e1) = δ(e2) for all active NBAC-colourings δ of (G, p, L)

if and only if Ae1,e2 takes only finitely many values on Vẽ(G, p, L).

Proof Suppose δ(e1) = δ(e2) for all active NBAC-colourings δ of (G, p, L). By
Lemma 3.18, Ae1,e2 |C is constant for any algebraic curve C ⊂ Vẽ(G, p, L). By
Lemma 3.19, it follows that Ae1,e2 takes only a finite amount of values onVẽ(G, p, L).

Suppose there exist an algebraic curve C and active NBAC-colouring δ of C gen-
erated by ν, α, such that δ(e1) 
= δ(e2). Let e j = (v j , w j , γ j ) for j ∈ {1, 2}. Without
loss of generality we may assume ν

(
W γ1

v1,w1

) ≤ α < ν
(
W γ2

v2,w2

)
. We now note

ν(Ae1,e2 |C) = ν
(
W γ1

v1,w1
Zγ2

v2,w2
+ Zγ1

v1,w1
W γ2

v2,w2

) = ν
(
W γ1

v1,w1

) − ν
(
W γ2

v2,w2

)
< 0,
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Fig. 9 A vertex addition of (G, p, L) at v1 by γ

thus Ae1,e2 |C must be transcendental over C when considered as an element of C(C).
It follows from Proposition 2.4 that Ae1,e2 takes an infinite amount of values on
Vẽ(G, p, L) as required. ��
We shall end this section by defining a graph operation we shall use later in Lemmas
5.4 and 6.4.

Definition 3.21 Let (G, p, L) be a k-periodic framework in R
2 and γ ∈ Z

k be a
non-zero element. We define a k-periodic framework (G ′, p′, L) in R

2 to be a vertex
addition of (G, p, L) at v1 by γ if

V (G ′) := V (G) ∪ {v0}, E(G ′) := E(G) ∪ {(v0, v1, 0), (v0, v1, γ )}

and p′(v) = p(v) for all v ∈ V (G); see Fig. 9.

Remark 3.22 The graph operation that takes G to G ′ in the vertex addition described
above is the first of the two gain-preserving Henneberg moves; we refer the reader to
[16] for more information.

Lemma 3.23 Let (G, p, L) be a k-periodic framework in R
2 with non-trivial flex

(pt , Lt ), t ∈ [0, 1]. Assume that ‖Lt · γ ‖ 
= 0 for all t ∈ [0, 1]. Then there exists a
vertex addition (G ′, p′, L) of (G, p, L) at v1 by γ with non-trivial flex (p′

t , Lt ) such
that p′

t restricted to V (G) is the placement pt for each t ∈ [0, 1].
Proof As [0, 1] is compact, we may choose r > 0 such that r > ‖Lt · γ ‖/2 for all
t ∈ [0, 1]. By our choice of r , there exist for each t ∈ [0, 1] exactly two points that
satisfy the equation

‖z − pt (v1)‖2 = ‖z − pt (v1) + L · γ ‖2 = r2. (7)

As (pt , Lt ) is continuous, it follows that there exists a continuous path zt : [0, 1] → R
2

that satisfies (7). We now set p′
t (v) := pt for all v ∈ V (G) and p′

v0
:= zt (v0). ��

4 Characterising Fixed Lattice Flexible Frameworks

In this section we shall prove the following result.

123



1304 Discrete & Computational Geometry (2021) 66:1286–1329

Theorem 4.1 Let G be a connected Z
k-gain graph for k ∈ {1, 2}. Then there exists a

placement-lattice (p, L) of G in R
2 such that (G, p, L) is a fixed lattice flexible full

k-periodic framework if and only if either

(i) G has a fixed lattice NBAC-colouring, or
(ii) G is balanced.

We shall first need to prove four results: Lemma 4.3 for k = 1, Lemma 4.6 for k = 2,
and Lemmas 4.7 and 4.8 for any k ∈ {1, 2}. The latter two will also explicitly show
how to construct a fixed lattice flexible framework when either G has a fixed lattice
NBAC-colouring or is balanced.

4.1 Necessary Conditions for Fixed Lattice Flexibility

Lemma 4.2 Let (G, p, L) be a full 1-periodic framework in R2 where G is connected
and unbalanced, and let C ⊂ V f

ẽ (G, p, L) be an algebraic curve. Then every active
NBAC-colouring of C is a fixed lattice NBAC-colouring.

Proof Let δ be an activeNBAC-colouring of C generated by the valuation ν andα ∈ R.
As C ⊂ V f

ẽ (G, p, L), we have W1Z1 = ‖L · 1‖2. Since W1Z1 is constant, then
ν(W1) = −ν(Z1). We shall assume ν(W1) > α as the proof for the case ν(W1) ≤ α

follows by a similar method.
Suppose there exists an almost red circuit C of length n in G with δ(en) = blue.

As δ is an NBAC-colouring, we must have that γ := ψ(C) 
= 0. It then follows that

ν(W γn
v1,vn

) = ν

⎛

⎝
n−1∑

j=1

W
γ j
v j ,v j+1 + γW1

⎞

⎠

≥ min
{
ν
(
W

γ j
v j ,v j+1

)
, ν(W1) : j = 1, . . . , n − 1

}
> α,

however this contradicts that ν
(
W γn

v1,vn

) ≤ α. Now suppose there exists an unbalanced
blue circuit C of length n in G with γ := ψ(C). We note

ν(−γ Z1) = ν

⎛

⎝
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : j = 1, . . . , n
} ≥ α,

contradicting that ν(Z1) < α. ��
We are now ready to prove our first necessity lemma.

Lemma 4.3 Let (G, p, L) be a full 1-periodic framework in R
2. If (G, p, L) is fixed

lattice flexible then either G has an active fixed lattice NBAC-colouring, G is balanced,
or G is disconnected.

Proof Suppose G is unbalanced and connected. It follows from Proposition 2.7 that
we may assume G contains a spanning tree T where every edge has trivial gain
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and ẽ ∈ T , since by Proposition 3.12, if an equivalent graph to G has an active
NBAC-colouring then so does G. By Lemma 3.13 (ii), there exists an algebraic curve
C ⊂ V f

ẽ (G, p, L). By Lemma 3.14, there exists a := (a1, a2, α) ∈ E(G) such that
Wα

a1,a2 is not constant on C. By Lemma 3.15, there exists an active NBAC-colouring
δ of C, thus by Lemma 4.2, δ is a fixed lattice NBAC-colouring as required. ��
Lemma 4.4 Let (G, p, L) be a full 2-periodic framework in R

2, C ⊂ V f
ẽ (G, p, L)

be an algebraic curve, and suppose the function field C(C) has valuation ν. Then the
following holds:

(i) ν(W1) = −ν(Z1), ν(W2) = −ν(Z2), and ν(W1 · Z2 + W2 · Z1) = 0.
(ii) ν(W1) = ν(W2) and ν(Z1) = ν(Z2).
(iii) For all γ ∈ Z

2, ν(γ Z) = −ν(γW ).
(iv) For any γ ∈ Z

2 and α ∈ R, if ν(W1) > α, then ν(γW ) > α, and if ν(W1) ≤ α,
then ν(γW ) ≤ α.

Proof (i): As C ⊂ V f
ẽ (G, p, L) then

W1Z1 = λ(1, 1)2, W2Z2 = λ(2, 2)2, W1 · Z2 + W2 · Z1 = 2λ(1, 2)2,

thus all are non-zero and constant. Since ν( f ) = 0 for all non-zero and constant
f ∈ C(C), the result follows.

(ii): We see that

ν(W1 · Z2 + W2 · Z1) ≥ min {ν(W1) − ν(W2), ν(W2) − ν(W1)}

with equality if ν(W1) 
= ν(W2). If ν(W1) 
= ν(W2), then ν(W1 · Z2 + W2 · Z1) < 0,
contradicting that ν(W1 · Z2 + W2 · Z1) = 0, thus ν(W1) = ν(W2) (and similarly
ν(Z1) = ν(Z2)).

(iii): Let γ := (γ1, γ2) and define

g := (γ1W1 + γ2W2)(γ1Z1 + γ2Z2) = γ 2
1 W1Z1 + γ 2

2 W2Z2 + γ1γ2(W1Z2 + W2Z1)

= (γ1x1 + γ2x2)
2 + (γ1y1 + γ2y2)

2.

As W1Z1, W2Z2, and W1Z2 + W2Z1 are all constant (since C ⊂ V f
ẽ (G, p, L)), then

g is constant. We further note that if g = 0 then the vectors (x1, y1) and (x2, y2) are
linearly dependent for all points in C. As this would contradict that (G, p, L) is full,
we have ν(g) = 0. The required equality will now follow.

(iv): Let γ := (γ1, γ2). By (i) and (ii), ν(W1) = ν(W2). If ν(W1) > α, then

ν(γ1W1 + γ2W2) ≥ min {ν(W1), ν(W2)} > α,

while if ν(W1) ≤ α, then by (iii),

ν(γ1W1 + γ2W2) = −ν(γ1Z1 + γ2Z2) ≤ −min {ν(Z1), ν(Z2)}
= max {ν(W1), ν(W2)} ≤ α. ��
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Lemma 4.5 Let (G, p, L) be a full 2-periodic framework in R2 where G is connected
graph with rank G = 2, and let C ⊂ V f

ẽ (G, p, L) be an algebraic curve. Then every
active NBAC-colouring of C is a fixed lattice NBAC-colouring.

Proof Let δ be an active NBAC-colouring of C with corresponding valuation ν and
non-zero α ∈ R. By Lemma 4.4, (i) and (ii), ν(W1) = ν(W2), ν(Z1) = −ν(W1), and
ν(Z2) = −ν(W2). We shall assume ν(W1) > α as the proof for the case ν(W1) ≤ α

follows by a similar method.
Suppose there exists an almost red circuit C of length n in G with γ := ψ(C) and

δ(en) = blue. Then

W γn
v1,vn

=
n−1∑

j=1

W
γ j
v j ,v j+1 + γW .

By Lemma 4.4 (iv),

ν(W γn
v1,vn

) ≥ min
{
ν
(
W

γ j
v j ,v j+1

)
, γW : j = 1, . . . , n − 1

}
> α,

however this contradicts that ν
(
W γn

v1,vn

) ≤ α. Now suppose there exists an unbalanced
blue circuit C of length n in G with γ := ψ(C). We note

ν(−γ Z) = ν

⎛

⎝
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : j = 1, . . . , n
} ≥ α.

However, by Lemma 4.4, (iii) and (iv), we have ν(−γ Z) < α, a contradiction. ��

We are now ready to prove our final necessity lemma.

Lemma 4.6 Let (G, p, L) be a full 2-periodic framework in R
2. If (G, p, L) is fixed

lattice flexible then either G has an active fixed lattice NBAC-colouring, G is balanced,
or G is disconnected.

Proof Suppose rank G = 1 andG is connected.Wenote that any2-periodic framework
with rank 1 is fixed lattice flexible if and only if it is fixed lattice flexible when
considered as a 1-periodic framework. By Lemma 4.3, G has an active fixed lattice
NBAC-colouring.

Suppose rank G = 2 and G is connected. It follows from Propositions 2.7 and 3.12
that we may assume G contains a spanning tree T where every edge has trivial gain
and ẽ ∈ T . By Lemma 3.13 (ii), there exists an algebraic curve C ⊂ V f

ẽ (G, p, L). By
Lemma 3.14, there exists a := (a1, a2, α) ∈ E(G) such that Wα

a1,a2 is not constant
onC. ByLemma3.15, there exists an activeNBAC-colouring δ ofC, andbyLemma4.5,
δ is a fixed lattice NBAC-colouring as required. ��
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4.2 Constructing Fixed Lattice Flexible Frameworks

Lemma 4.7 Let G be a connectedZk-gain graph for k ∈ {1, 2}. If G has a fixed lattice
NBAC-colouring δ, then there exists a full placement-lattice (p, L) of G in R

2 such
that (G, p, L) is fixed lattice flexible.

Proof The proof for k = 1 is identical to that for k = 2 except we have L := [c 0]T
for some irrational c > 0. Due to this, we shall only prove the case for k = 2.

We may assume without loss of generality that Gδ
red is balanced; furthermore, by

Proposition 2.7, we may assume all edges of Gδ
red have trivial gain. Let R1, . . . , Rn

be the red connected components and B1, . . . , Bm be the blue connected components.
As δ is an NBAC-colouring, there exists a blue edge ẽ ∈ E(G); by reordering the blue
components we may assume the end points of ẽ lie in B1.

Choose any two points c1, c2 > 0 so that Ac1 + Bc2 /∈ Z for all A, B ∈ Z \ {0};
it is sufficient that the set {c1, c2} is algebraically independent over Q. We define the
placement-lattice (p, L) of G with

p(v) := (x, y), L :=
[
c1 0
0 c2

]

for v ∈ V (Rx ) ∩ V (By). We shall now prove (G, p, L) is a well-defined k-periodic
framework.

Suppose there exists a red edge e := (v,w, γ ) ∈ E(G) such that p(v) = p(w) +
L · γ . As e is red then γ = (0, 0), thus p(v) = p(w). It follows that for some
1 ≤ x ≤ n and 1 ≤ y ≤ m, we have v,w ∈ V (Rx ) ∩ V (By), thus there exists a blue
path (e1, . . . , en) that starts at w and ends at v. We note, however, that (e1, . . . , en, e)
is an almost blue circuit, contradicting that δ is a fixed-lattice NBAC-colouring.

Now suppose there exists a blue edge e := (v,w, γ ) ∈ E(G) with γ = (γ1, γ2)

such that p(v) = p(w) + L · γ , then p(v) = p(w) + (γ1c1, γ2c2). By our choice
of c1, c2 we must have γ1 = γ2 = 0, thus p(v) = p(w). This implies that for some
1 ≤ x ≤ n and 1 ≤ y ≤ m, we have v,w ∈ V (Rx ) ∩ V (By), and there exists a red
path (e1, . . . , en) that starts at w and ends at v. We note, however, that (e1, . . . , en, e)
is a balanced almost red circuit (since all red edges have trivial gain), contradicting that
δ is an NBAC-colouring. It now follows that (G, p, L) is a full k-periodic framework.

Define the motion (pt , Lt ), t ∈ [0, 1], where for p(v) = (x, y),

pt (v) := (x + y sin t, y cos t),

and Lt = L . Choose any t ∈ [0, 1] and e = (v,w, γ ) ∈ E(G), with γ = (γ1, γ2),
p(v) = (x, y) and p(w) = (x ′, y′). Suppose δ(e) = red. Then x ′ = x and γ = (0, 0)
(as all red edges have trivial gain), and it follows that

‖pt (v) − pt (w) − Lt · γ ‖2 = ((y − y′) sin t)2 + ((y − y′) cos t)2 = (y − y′)2.

Now suppose δ(e) = blue. Then y′ = y and we note that

‖pt (v) − pt (w) − Lt · γ ‖2 = (x − x ′ + γ1c1)
2 + (γ2c2)

2.
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Fig. 10 (Left): A Z
2-gain graph G with a fixed lattice NBAC-colouring. (Right): The constructed full

2-periodic framework (G, p, L) in R
2. We note that even though we place (2) and (7) at the same point

in R2, p(2) 
= p(7) + L · (1, 1)

It follows that (G, pt , Lt ) ∼ (G, p, L) for all t ∈ [0, 1], thus (pt , Lt ) is a fixed lattice
flex of (G, p, L). As the edge ẽ is fixed then (pt , Lt ) is non-trivial, thus (G, p, L) is
fixed lattice flexible as required. We refer the reader to Fig. 10 for an example of the
construction described. ��

Lemma 4.8 Let G be aZk-gain graph for k ∈ {1, 2}. If G is balanced, then there exists
a full placement-lattice (p, L) of G in R2 such that (G, p, L) is fixed lattice flexible.

Proof By Proposition 2.7, we may assume every edge of G has trivial gain. Choose
any injective map p and any full lattice L . We may now define the fixed lattice flex
(pt , Lt ) for t ∈ [0, 1], where pt = p and

Lt =
[
cos t − sin t
sin t cos t

]

L. ��
We may now combine the results of this section to prove Theorem 4.1

Proof of Theorem 4.1 If (G, p, L) is a fixed lattice flexible full k-periodic framework,
then by Lemma 4.3 if k = 1 or Lemma 4.6 if k = 2, either G has a fixed lattice
NBAC-colouring or G is balanced.

If G has a fixed lattice NBAC-colouring, then by Lemma 4.7, there exists a fixed
lattice flexible full k-periodic framework (G, p, L) in R

2. If G is balanced, then by
Lemma 4.8, there exists a fixed lattice flexible full k-periodic framework (G, p, L)

in R2. ��

5 Characterising Flexible 1-Periodic Frameworks

In this section we shall prove the following theorem.

Theorem 5.1 Let G be a connected Z-gain graph. Then there exists a full placement-
lattice (p, L) of G in R2 such that (G, p, L) is a flexible full 1-periodic framework if
and only if either:
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(i) G has a fixed lattice NBAC-colouring,
(ii) G has a flexible 1-lattice NBAC-colouring, or
(iii) G is balanced.

Fortunately,much of the requiredwork has been dealt with in Sect. 4, since fixed lattice
flexible 1-periodic frameworks are a subclass of flexible 1-periodic frameworks. Due
to this, we only need to prove two results: a necessity lemma that proves a flexible
1-periodic framework will have one of the required properties (see Lemma 5.2), and
a construction lemma to prove that we can construct a flexible 1-periodic framework
given a graph with a flexible 1-lattice NBAC-colouring (see Lemma 5.7).

5.1 Necessary Conditions for 1-Periodic Flexibility

Lemma 5.2 Let (G, p, L) be a 1-periodic framework in R
2 with edge (v,w, γ ) ∈

E(G) for some γ 
= 0, C ⊂ Vẽ(G, p, L) be an algebraic curve, and ν a valuation of
C(C). Suppose xv − xw and yv − yw are constant on C. Then W γ

v,w is constant if and

only if C ⊂ V f
ẽ (G, p, L).

Proof We note that W γ
v,w is constant if and only if Zγ

v,w is also constant as W γ
v,wZγ

v,w

is constant. As xv − xw and yv − yw are constant then W γ
v,w and Zγ

v,w are constant if
and only if both x1 + iy1 and x1 − iy1 are constant, which in turn is equivalent to both
x1, y1 being constant. The result now follows. ��
Lemma 5.3 Let (G, p, L)bea full1-periodic framework inR2. Suppose that (G, p, L)

is flexible, G is connected and unbalanced, and G contains a pair of parallel edges
ẽ, f̃ . Then G either has an active fixed lattice NBAC-colouring where ẽ, f̃ are of the
same colour, or G has an active flexible 1-lattice NBAC-colouring where ẽ, f̃ are of
opposite colours.

Proof We may assume ẽ and f̃ are the pair of parallel edges on ṽ, w̃, with ψ( f̃ ) =
μ 
= 0. It follows from Propositions 2.7 and 3.12 that we may assume G contains a
spanning tree T where every edge has trivial gain and ẽ ∈ T . By Lemma 3.13 (ii),
there exists an algebraic curve C ⊂ Vẽ(G, p, L).

Suppose C ⊂ V f
ẽ (G, p, L). By Lemma 4.3, G has an active fixed lattice NBAC-

colouring δ. By Lemma 5.2, we note that we must have δ(ẽ) = δ( f̃ ). Now suppose
C 
⊂ V f

ẽ (G, p, L). By Lemma 5.2,Wμ

ṽ,w̃
is not constant onC(C). Let ν be the valuation

of C(C) and δ the NBAC-colouring given by Lemma 3.15 with a := f̃ . By our
choice of valuation, ν(W 0

ṽ,w̃
) = 0 and ν(Wμ

ṽ,w̃
) > 0; it follows immediately that

ν(Z0
ṽ,w̃

) = 0 and ν(Zμ

ṽ,w̃
) < 0 as both W 0

ṽ,w̃
Z0

ṽ,w̃
and Wμ

ṽ,w̃
Zμ

ṽ,w̃
are constant. As

μW1 = W 0
ṽ,w̃

−Wμ

ṽ,w̃
then ν(W1) = ν(W 0

ṽ,w̃
) = 0. Similarly, as μZ1 = Z0

ṽ,w̃
− Zμ

ṽ,w̃

then ν(Z1) = ν(Zμ

ṽ,w̃
) < 0.

Suppose G has an unbalanced monochromatic circuit C of length n. If C is red,
then

ν(W1) = ν(−ψ(C)W1) = ν

⎛

⎝
n∑

j=1

W
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
}

> 0,
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contradicting that ν(W1) = 0. If C is blue, then

ν(Z1) = ν(−ψ(C)Z1) = ν

⎛

⎝
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
} ≥ 0,

contradicting that ν(Z1) < 0. It now follows that δ is an active flexible 1-lattice
NBAC-colouring. ��
We are now ready to state our necessity lemma.

Lemma 5.4 Let (G, p, L) be a full 1-periodic framework inR2. If (G, p, L) is flexible
then G either has an active fixed lattice NBAC-colouring, an active flexible 1-lattice
NBAC-colouring, G is balanced, or G is disconnected.

Proof Wemay supposeG is connected and unbalanced. IfG contains a pair of parallel
edges then the result holds by Lemma 5.3, thus we shall also assume that G does not
contain a pair of parallel edges.

By Lemma 3.23, there exists a vertex addition (G ′, p′, L) of (G, p, L) at v1 by 1
such that (G ′, p′, L) has a non-trivial not fixed lattice flex; we shall define these new
edges by ẽ, f̃ , with ψ(ẽ) = 0 and ψ( f̃ ) = 1. As G ′ contains a pair of parallel edges
then by Lemma 5.3, either G ′ has an active flexible 1-lattice NBAC-colouring δ′ with
δ′(ẽ) = blue and δ′( f̃ ) = red, or G ′ has an active fixed lattice NBAC-colouring δ′′
with δ′′(ẽ) = δ′′( f̃ ) = blue.

Suppose G ′ has a colouring δ′ as described above. Let δ be the colouring of G with
δ(e) := δ′(e) for all e ∈ E(G). We note that δ is a flexible 1-lattice NBAC-colouring
if and only if δ′ is not monochromatic on the subgraph G of G ′. As G is unbalanced,
δ′ cannot be monochromatic on G, thus δ is a flexible 1-lattice NBAC-colouring of G.

Now suppose G ′ has a colouring δ′′ as described above. Let δ be the colouring of G
with δ(e) := δ′′(e) for all e ∈ E(G). We note that δ is a fixed lattice NBAC-colouring
if and only if δ′ is not monochromatic on the subgraphG ofG ′. If δ′ is monochromatic
on G, then as δ′(ẽ) = δ′( f̃ ) = blue and G is unbalanced, we must have δ(G) = blue,
however this would contradict that δ′(G ′) = {red, blue}. It now follows that δ is a
fixed lattice NBAC-colouring of G. ��

5.2 Constructing Flexible Frameworks from Flexible 1-Lattice NBAC-Colourings

Lemma 5.5 Let G be a Z-gain graph with a flexible 1-lattice NBAC-colouring. Then
there exists G ′ ≈ G such that each blue edge has trivial gain and no red edge has
trivial gain.

Proof As Gδ
blue is balanced, by Proposition 2.7, we may suppose all blue edges of G

have trivial gain. Let B1, . . . , Bn be the blue components of G and chooseμ ∈ N such
that μ > |γ | for all (v,w, γ ) ∈ E(G). We now define

G ′ :=
⎛

⎝
n∏

i=1

∏

v∈Bi
φiμ

v

⎞

⎠ (G).
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We first note that any blue edge of G ′ will have trivial gain since both of its ends will
lie in the same blue component. Choose a red edge (v,w, γ ) ∈ E(G) and suppose
v ∈ Bi and w ∈ Bj . We note that

⎛

⎝
n∏

i=1

∏

v∈Bi
φiμ

v

⎞

⎠ (v,w, γ ) = φiμ
v ◦ φ jμ

w (v,w, γ ) = (v,w, γ + (i − j)μ).

As μ > |γ | and i − j ∈ Z, then γ + (i − j)μ = 0 if and only if γ = 0 and
i = j . If v,w ∈ Bi and γ = 0 then there would exist a balanced almost blue circuit
as v,w are connected by a blue path and all blue edges of G have trivial gain, thus
γ + (i − j)μ 
= 0 as required. ��
Lemma 5.6 Let H be a balanced Z-gain graph. Then there exists a placement q of H
in Z such that for all (v,w, γ ) ∈ E(H), q(w) − q(v) = 2γ .

Proof We may suppose without loss of generality that H is connected. Choose a
spanning tree T of H . It is immediate that we may choose a placement q of T that
satisfies the condition q(w) − q(v) = 2γ for all (v,w, γ ) ∈ E(T ). Choose an edge
e = (a, b, μ) ∈ E(H) \ E(T ), then there exists a path (e1, . . . , en−1) in T with
ei = (vi , vi+1, γi ), v1 = b and vn = a. As H is balanced, ψ(e1, . . . , en−1) = −μ,
thus by our choice of q,

q(b) − q(a) = −
(

n−1∑

i=1

q(vi+1) − q(vi )

)

= −2ψ(e1, . . . , en−1) = 2μ.
��

We our now ready to prove our construction lemma.

Lemma 5.7 Let G be a Z-gain graph with a flexible 1-lattice NBAC-colouring δ. Then
there exists a full placement-lattice (p, L) of G in R2 such that (G, p, L) is a flexible
full 1-periodic framework. ��
Proof By Lemma 5.5, we may assume all blue edges of G have trivial gain and all red
edges have non-trivial gain. Let R1, . . . , Rn be the red components of G and define
E j to be the set of edges (v,w, γ ) in Gδ

red with v,w ∈ R j . By Lemma 5.6, for each
R j there exists a placement q j inRwhere q j (w)−q j (v) = 2γ for all (v,w, γ ) ∈ E j .
We now define for each t ∈ [0, 2π ] the full placement-lattice (pt , Lt ) of G in R

2,
with

pt (v) := (q j (v), j), Lt · 1 := (−2 + cos t, sin t)

for v ∈ R j and t ∈ [0, 2π ]. We shall denote (p, L) := (p0, L0).
To see that (p, L) is a well-defined placement-lattice, choose any e = (v,w, γ ) and

suppose that p(v) = p(w)+L ·γ . It follows that v,w ∈ R j and q j (v)−q j (w) = γ . If
δ(e) = red then γ 
= 0, however this contradicts that q j (v)−q j (w) = −2γ . Suppose
δ(e) = blue. Since every blue edge has trivial gain, γ = 0. As v,w ∈ R j , there exists
a red path (e1, . . . , en−1) with e j = (v j , v j+1, γ j ) ∈ E j , v1 = w and vn = v. Since
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Fig. 11 (Left): A Z-gain graph with a flexible 1-lattice NBAC-colouring. (Right): The constructed full
1-periodic framework in R

2

q j (v) = q j (w), we have
∑n−1

j=1 γ j = 0. However, this implies (e1, . . . , en−1, e) is a
balanced almost red circuit, contradicting that δ is an NBAC-colouring.

Choose any e = (v,w, γ ). If δ(e) = blue then γ = 0. As pt = p then for each
t ∈ [0, 2π ],

‖pt (v) − pt (w) − Lt · γ ‖2 = ‖p(v) − p(v)‖2.

If δ(e) = red then v,w ∈ R j , thus for each t ∈ [0, 2π ],

‖pt (v) − pt (w) − Lt · γ ‖2 = (−(q j (w) − q j (v)) + 2γ − γ cos t)2 + (γ sin t)2

= γ 2.

It follows that (pt , Lt ) is a flex of (G, p, L) as required. We refer the reader to Fig. 11
for an example of the construction. ��

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.1 Suppose (G, p, L) is flexible. By Lemma 5.4, either G is
balanced,G has a fixed lattice NBAC-colouring, orG has a flexible 1-periodic NBAC-
colouring. IfG is balanced, then by Lemma 4.8,G has a flexible full placement-lattice
in R

2. If G has a fixed lattice NBAC-colouring, then by Lemma 4.7, G has a flexible
full placement-lattice in R

2. If G has a flexible 1-lattice NBAC-colouring, then by
Lemma 5.7, G has a flexible full placement-lattice in R2. ��

6 Characterising Flexible 2-Periodic Frameworks

Unlike with 1-periodic frameworks, a full characterisation of Z2-gain graphs with
flexible 2-periodic full placements in the plane via NBAC-colourings is unknown. We
would conjecture the following.

Conjecture 1 Let G be a connected Z2-gain graph. Then there exists a full placement-
lattice (p, L) of G in R2 such that (G, p, L) is a flexible full 2-periodic framework if
and only if either:

(i) G has a type 1 flexible 2-lattice NBAC-colouring,
(ii) G has a type 2 flexible 2-lattice NBAC-colouring,
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(iii) G has a type 3 flexible 2-lattice NBAC-colouring,
(iv) G has a fixed lattice NBAC-colouring, or
(v) rank G < 2.

We are able to obtain the required necessity lemma and most of the required construc-
tion lemmas, however a construction of a flexible full 2-periodic framework from a
type 3 flexible 2-lattice NBAC-colouring is still currently unknown. In this section
we shall, however, outline some partial results regarding Z2-gain graphs, in particular,
Lemmas 6.4, 6.5, 6.8, and 6.11. We shall discuss some other possible conjectures at
the end of the section, and later in Sect. 7 we shall obtain analogues of Theorem 5.1
for certain types of graphs; see Theorems 7.5 and 7.8.

6.1 Necessary Conditions for 2-Periodic Flexibility

For any γ = (a, b) ∈ Z
2, we recall the notation γW := aW1 + bW2 and γ Z :=

aZ1 + bZ2.

Lemma 6.1 Let (G, p, L) be a 2-periodic framework in R
2 with edge (v,w, γ ) ∈

E(G) for some γ = (γ1, γ2) 
= (0, 0), C ⊂ Vẽ(G, p, L) be an algebraic curve, and
ν a valuation of C(C). Suppose xv − xw and yv − yw are constant on C. If W γ

v,w is
constant then

(γ1x1 + γ2x2)
2 + (γ1y1 + γ2y2)

2

is constant.

Proof We note that W γ
v,w is constant if and only if Zγ

v,w is also constant as W γ
v,wZγ

v,w

is constant. As xv − xw and yv − yw are constant, both (γ1x1+γ2x2)+ i (γ1y1+γ2y2)
and (γ1x1 + γ2x2) − i (γ1y1 + γ2y2) are constant. The result now follows from the
observation that (a + ib)(a − ib) = a2 + b2. ��
Lemma 6.2 Let (G, p, L) be a full 2-periodic framework in R2 and C ⊂ Vẽ(G, p, L)

be an algebraic curve. Suppose the function field C(C) has valuation ν and for some
μ ∈ Z

2 \ {(0, 0)},

ν(μW ) = 0, ν(μZ) < 0.

Then one of the following cases holds:

(i) For all γ ∈ Z
2 \ {(0, 0)},

ν(γW ) ≤ 0, ν(γ Z) < 0.

(ii) There exist α, β ∈ Z
2, at least one non-zero, such that for all γ ∈ Z

2\(Zα∪Zβ),

ν(γW ) ≤ 0, ν(γ Z) < 0,
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for all γ ∈ Zα \ {(0, 0)},

ν(γW ) > 0, ν(γ Z) < 0,

and for all γ ∈ Zβ \ {(0, 0)},

ν(γW ) ≤ 0, ν(γ Z) ≥ 0.

(iii) There exists α ∈ Z
2 \ {(0, 0)} such that for all γ ∈ Z

2 \ Zα,

ν(γW ) ≤ 0, ν(γ Z) < 0,

and for all γ ∈ Zα \ {(0, 0)},

ν(γW ) > 0, ν(γ Z) ≥ 0.

Proof Choose λ ∈ Z
2 so that μ and λ are linearly independent.

If ν(μW ) 
= ν(λW ), then we note that for all γ ∈ Z
2 \ {(0, 0)} with γ = aμ+bλ,

ν(γW ) = ν((aμ + bλ)W ) = min {ν(μW ), ν(λW )} ≤ 0;

similarly, if ν(μZ) 
= ν(λZ), then ν(γ Z) < 0 for all γ ∈ Z
2.

If ν(μW ) = ν(λW ), then there can exist α ∈ Z
2 \ {(0, 0)} that is pairwise inde-

pendent with μ and λ such that ν(αW ) > 0. We note that α is unique up to scalar
multiplication, as if there exists γ ∈ Z

2 \Zα such that ν(γW ) > 0 also, then we may
choose A, B ∈ R such that Aα + Bγ = μ, and note

ν(μW ) ≥ min {ν(αW ), ν(γW )} > 0,

contradicting that ν(μW ) = 0. Likewise, if ν(μZ) = ν(λZ), then there can exist at
most one β ∈ Z

2 \ {0} such that ν(βZ) ≥ 0.

We now check the cases:

– Suppose ν(μW ) 
= ν(λW ) and ν(μZ) 
= ν(λZ).

– Case (i) holds if ν(λW ), ν(λZ) < 0.
– Case (ii) holds if ν(λW ) < 0 < ν(λZ) or ν(λZ) < 0 < ν(λW ).
– Case (iii) holds if ν(λW ), ν(λZ) > 0.

– Suppose ν(μW ) = ν(λW ) and ν(μZ) 
= ν(λZ).

– Case (i) holds if α does not exist and ν(μZ) < 0.
– Case (ii) holds otherwise.

– Suppose ν(μW ) 
= ν(λW ) and ν(μZ) = ν(λZ).

– Case (i) holds if ν(μW ) < 0 and β does not exist.
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– Case (ii) holds otherwise.

– Suppose ν(μW ) = ν(λW ) and ν(μZ) = ν(λZ).

– Case (i) holds if α, β do not exist.
– Case (ii) holds if α exists and β does not exist, α does not exist and β exists,
or if α, β exist and α 
= β.

– Case (iii) holds if α, β exist and α = β. ��

Lemma 6.3 Let (G, p, L) be a full 2-periodic framework in R2 and C ⊂ Vẽ(G, p, L)

be an algebraic curve. Further, suppose G contains a pair of parallel edges (v,w, γ )

and (v,w, γ ′) such that γ − γ ′ = (λ1, λ2) and

(λ1x1 + λ2x2)
2 + (λ1y1 + λ2y2)

2

is not constant on C. Then one of the following holds:

(i) G has an active type 1 flexible 2-lattice NBAC-colouring,
(ii) G has an active type 2 flexible 2-lattice NBAC-colouring, or
(iii) G has an active type 3 flexible 2-lattice NBAC-colouring.

Proof By our choice of ẽ, wemay assume ẽ and f̃ are the pair of parallel edges on ṽ, w̃,
with ψ( f̃ ) = μ for some μ = (μ1, μ2) ∈ Z

2 \ {(0, 0)}. It follows from Propositions
2.7 and 3.12 that we also may assume G contains a spanning tree T where every edge
has trivial gain and ẽ ∈ T . Since μ is the difference in gains of ẽ, f̃ , then

(μ1x1 + μ2x2)
2 + (μ1y1 + μ2y2)

2

is not constant. By Lemma 6.1, Wμ

ṽ,w̃
is not constant on C(C). Let ν be the valuation

of C(C) and δ be the active NBAC-colouring given by Lemma 3.15 with a := f̃ .

We note that ν(W 0
ṽ,w̃

) = 0 and ν(Wμ

ṽ,w̃
) > 0. As μW = W 0

ṽ,w̃
− Wμ

ṽ,w̃
,

ν(μW ) = ν(W 0
ṽ,w̃) = 0.

Similarly, as μZ = Z0
ṽ,w̃

− Zμ

ṽ,w̃
then

ν(μZ) = ν(Zμ

ṽ,w̃
) < 0.

Let case (i), case (ii), and case (iii) refer to the three possibilities given by Lemma 6.2.
We shall now proceed to prove that case (i) implies G has a type 1 flexible 2-lattice
NBAC-colouring, case (ii) implies G has either a type 1 or type 2 flexible 2-lattice
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NBAC-colouring, and case (iii) implies G has either a type 1, type 2, or a type 3
flexible 2-lattice NBAC-colouring.

(Case (i) holds): SupposeG has an unbalancedmonochromatic circuitC of length n
and define γ := ψ(C). If C is red, then

ν(γW ) = ν

⎛

⎝−
n∑

j=1

W
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
}

> 0,

contradicting that ν(γW ) ≤ 0. If C is blue, then

ν(γ Z) = ν

⎛

⎝−
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
} ≥ 0,

contradicting that ν(γ Z) < 0. It now follows that δ is a type 1 flexible 2-lattice
NBAC-colouring.

(Case (ii) holds): Let C be an unbalanced monochromatic circuit of length n with
γ := ψ(C). If C is red and γ /∈ Zα, then

ν(γW ) = ν

⎛

⎝−
n∑

j=1

W
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
}

> 0,

contradicting that ν(γW ) ≤ 0. Likewise, if C is blue and γ /∈ Zβ, then

ν(γ Z) = ν

⎛

⎝−
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
} ≥ 0,

contradicting that ν(γ Z) < 0.

Now let C be an almost monochromatic circuit of length n where δ(en) 
= δ(ei )
for all i ∈ {1, . . . , n − 1}. If C is almost red and ψ(C) = cα for some c ∈ Z, then

ν
(
W γn

v1,vn

) = ν

⎛

⎝
n−1∑

j=1

W
γ j
v j ,v j+1 + cαW

⎞

⎠

≥ min
{
ν
(
αW ), ν(W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n − 1
}

> 0,

contradicting that ν
(
W γn

v1,vn

) ≤ 0. Similarly, if C is almost blue and ψ(C) = cβ for
some c ∈ Z, then

ν
(
Zγn

v1,vn

) = ν

⎛

⎝
n−1∑

j=1

Z
γ j
v j ,v j+1 + cβZ

⎞

⎠
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≥ min
{
ν(βZ), ν

(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n − 1
}

> 0,

contradicting that ν
(
Zγn

v1,vn

) ≤ 0.
It now follows that ifG has no unbalancedmonochromatic circuits then δ is a type 1

flexible 2-lattice NBAC-colouring, and ifG has an unbalanced monochromatic circuit
then δ is a type 2 flexible 2-lattice NBAC-colouring.

(Case (iii) holds): Let C be an unbalanced monochromatic circuit of length n with
γ := ψ(C) /∈ Zα. If C is red, then

ν(γW ) = ν

⎛

⎝−
n∑

j=1

W
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
}

> 0,

contradicting that ν(γW ) ≤ 0. Likewise, if C is blue, then

ν(γ Z) = ν

⎛

⎝−
n∑

j=1

Z
γ j
v j ,v j+1

⎞

⎠ ≥ min
{
ν
(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n
} ≥ 0,

contradicting that ν(γ Z) < 0.

Now let C be an almost monochromatic circuit of length n where ψ(C) := cα for
some c ∈ Z and δ(en) 
= δ(ei ) for all i ∈ {1, . . . , n − 1}. If C is almost red, then

ν
(
W γn

v1,vn

) = ν

⎛

⎝
n−1∑

j=1

W
γ j
v j ,v j+1 + cαW

⎞

⎠

≥ min
{
ν(αW ), ν

(
W

γ j
v j ,v j+1

) : 1 ≤ j ≤ n − 1
}

> 0,

contradicting that ν
(
W γn

v1,vn

) ≤ 0. Similarly, if C is almost blue, then

ν
(
Zγn

v1,vn

) = ν

⎛

⎝
n−1∑

j=1

Z
γ j
v j ,v j+1 + cαZ

⎞

⎠

≥ min
{
ν(αZ), ν

(
Z

γ j
v j ,v j+1

) : 1 ≤ j ≤ n − 1
}

> 0,

contradicting that ν
(
Zγn

v1,vn

) ≤ 0.

It now follows that ifG has no unbalancedmonochromatic circuits then δ is a type 1
flexible 2-lattice NBAC-colouring, if G only has unbalanced monochromatic circuits
for a single colour then δ is a type 2 flexible 2-lattice NBAC-colouring, and if G has
unbalanced monochromatic circuits for both colours then δ is a type 3 flexible 2-lattice
NBAC-colouring. ��
We are now ready for our necessity lemma.
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Lemma 6.4 Let (G, p, L) be a full 2-periodic framework inR2. If (G, p, L) is flexible
then one of the following holds:

(i) G has an active type 1 flexible 2-lattice NBAC-colouring,
(ii) G has an active type 2 flexible 2-lattice NBAC-colouring,
(iii) G has an active type 3 flexible 2-lattice NBAC-colouring,
(iv) G has an active fixed lattice NBAC-colouring,
(v) rank G < 2, or
(vi) G is disconnected.

Proof Suppose rank G = 2 and G is connected. Choose any ẽ ∈ E(G). By Lemma
3.13 (ii), there exists an algebraic curve C ⊂ Vẽ(G, p, L). We now have three possible
outcomes:

(a) C ⊂ V f
ẽ (G, p, L).

(b) G contains a pair of parallel edges (v,w, γ ) and (v,w, γ ′) such that γ − γ ′ =
(λ1, λ2) and

(λ1x1 + λ2x2)
2 + (λ1y1 + λ2y2)

2

is not constant on C.
(c) Possibilities (a) and (b) do not hold.

(Possibility (a) holds): If C ⊂ V f
ẽ (G, p, L) then by Lemma 4.3, G has an active fixed

lattice NBAC-colouring.
(Possibility (b) holds): By Lemma 6.3, G has either an active type 1, type 2, or type 3
flexible 2-lattice NBAC-colouring.
(Possibility (c) holds): As C 
⊂ V f

ẽ (G, p, L), we may choose μ := (μ1, μ2) ∈ Z
2

such that

(λ1x1 + λ2x2)
2 + (λ1y1 + λ2y2)

2

is not constant. By Lemma 3.23, there exists a vertex addition (G ′, p′, L) of (G, p, L)

at v1 by λ such that (G ′, p′, L) has a non-trivial not fixed lattice flex. As (b) holds
for (G ′, p′, L), then by Lemma 6.3, G ′ has an active type k flexible 1-lattice NBAC-
colouring δ′ for some k ∈ {1, 2, 3}.

Suppose G ′ has a colouring δ′ as described above. Let δ be the colouring of G with
δ(e) := δ′(e) for all e ∈ E(G). We note that δ is an active type k′ flexible 2-lattice
NBAC-colouring for some k′ ∈ {1, 2, 3} if and only if δ′ is not monochromatic on
the subgraph G of G ′. As rank G = 2 and δ′ is a type k flexible 2-lattice NBAC-
colouring, δ′ is not monochromatic onG, thusG has an active type k′ flexible 2-lattice
NBAC-colouring for some k′ ∈ {1, 2, 3}. ��

6.2 Constructing Flexible Frameworks: Low Rank Graphs

Our first construction lemma is the simplest one, as the framework is not connected.
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Lemma 6.5 Let G be aZ2-gain graph. If rank G < 2 then there exists a full placement-
lattice (p, L) of G in R2 such that (G, p, L) is flexible.

Proof If rank G = 0 then this holds by Lemma 4.7, so we may suppose rank G = 1,
i.e., spanG = Zα for some non-zero α ∈ Z

2. By Proposition 2.7, we may assume
every edge of G has gain in Zα. Choose any injective map p, any full lattice L , and
any element β ∈ Z

2 that is linearly independent of α. We may now define the fixed
lattice flex (pt , Lt ) for t ∈ [0, 2π ], where pt = p and

Lt · α := L · α, Lt · β := (1 + t)L · β. ��

6.3 Constructing Flexible Frameworks: Type 1 Flexible 2-Lattice NBAC-Colourings

We recall that a type 1 flexible 2-lattice NBAC-colouring is an NBAC-colouring δ

where all monochromatic circuits are balanced.

Lemma 6.6 Let G be aZ2-gain graph with a type 1 flexible 2-lattice NBAC-colouring.
Then there exists G ′ ≈ G such that each blue edge has trivial gain and no red edge
has trivial gain.

Proof The proof follows a similar method as Lemma 5.5. ��
Lemma 6.7 Let H be a balanced Z2-gain graph with no multiple edges and no loops.
Then there exists a placement q of H in Z

2 such that for all (v,w, γ ) ∈ E(H),
q(w) − q(v) = 2γ .

Proof The proof follows the same method as Lemma 5.6. ��
We are now ready for our construction lemma for type 1 flexible 2-lattice NBAC-
colourings. We note that it is essentially the same as the construction given in
Lemma 5.7.

Lemma 6.8 Let G be a Z
2-gain graph with a type 1 flexible 2-lattice NBAC-

colouring δ. Then there exists a full placement-lattice (p, L) of G in R
2 such that

(G, p, L) is a flexible full 2-periodic framework.

Proof By Lemma 6.6, we may assume all blue edges of G have trivial gain and all red
edges have non-trivial gain. Let R1, . . . , Rn be the red components ofG and define E j

to be the set of edges (v,w, γ ) in Gδ
red with v,w ∈ R j . By Lemma 6.7, for each R j

there exists a placement q j in R
2 where q j (w) − q j (v) = 2γ for all (v,w, γ ) ∈ E j .

By applying translations to each of the placements q j , we may assume that for any
blue edge (v,w, 0) ∈ E(G)with v ∈ R j ,w ∈ Rk and j 
= k, we have q j (v) 
= qk(w).
We now define for each t ∈ [0, 2π ] the full placement-lattice (pt , Lt ) of G in R

2,
with

Lt · (1, 0) := (−2 + cos t, sin t), Lt · (0, 1) := (sin t,−2 − cos t)

and pt (v) := q j (v) for v ∈ R j . We shall denote (p, L) := (p0, L0).
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Fig. 12 (Left): A Z
2-gain graph with a type 1 flexible 2-lattice NBAC-colouring. (Right): The constructed

full 2-periodic framework in R
2

To see that (p, L) is a well-defined placement-lattice, choose any e = (v,w, γ )

with γ = (γ1, γ2) and suppose that p(v) = p(w) + L · γ . If δ(e) = red, then
γ 
= (0, 0) and v,w ∈ R j for some j . It follows that

−L · γ = q j (w) − q j (v) = 2γ.

However as −L · γ = (γ1, 3γ2), then −L · γ = 2γ if and only if γ = (0, 0),
contradicting that all red edges have non-trivial gain. If δ(e) = blue, then γ = (0, 0).
By our choice of placements {qi : 1 ≤ i ≤ n}, we must have v,w ∈ R j for some j ;
furthermore, as γ = (0, 0) then q j (v) = q j (w). Let (e1, . . . , en−1) be a red path from
w to v with e j = (v j , v j+1, γ j ) ∈ E j , v1 = w and vn = v. Since q j (v) = q j (w), we
have

∑n−1
j=1 γ j = 0. However, this implies (e1, . . . , en−1, e) is a balanced almost red

circuit, contradicting that δ is a type 1 flexible 2-lattice NBAC-colouring.
Choose any edge e = (v,w, γ ) with γ = (γ1, γ2). If δ(e) = blue then γ = 0. As

pt = p then for each t ∈ [0, 2π ],

‖pt (v) − pt (w) − Lt · γ ‖2 = ‖p(v) − p(v) − L · γ ‖2.

If δ(e) = red then v,w ∈ R j , thus for each t ∈ [0, 2π ],

‖pt (v) − pt (w) − Lt · γ ‖2 = (γ1 cos t + γ2 sin t)
2 + (γ1 sin t − γ2 cos t)

2

= γ 2
1 + γ 2

2

It follows that (pt , Lt ) is a flex of (G, p, L), as required. We refer the reader to Fig. 12
for an example of the construction. ��

6.4 Constructing Flexible Frameworks: Type 2 Flexible 2-Lattice NBAC-Colourings

We recall that a type 2 flexible 2-lattice NBAC-colouring is an NBAC-colouring δ

where there exist α, β ∈ Z
2 such that:
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– either α, β are linearly independent or exactly one of α, β is equal to (0, 0),
– spanGδ

red is a non-trivial subgroup of Zα, or α = (0, 0) and Gδ
red is balanced,

– spanGδ
blue is a non-trivial subgroup of Zβ, or β = (0, 0) and Gδ

blue is balanced,
– there are no almost red circuits with gain in Zα, and
– there are no almost blue circuits with gain in Zβ.

Lemma 6.9 Let G be aZ2-gain graph and δ a type 2 flexible 2-lattice NBAC-colouring
of G with α, β as described previously. Suppose α 
= (0, 0). Then there exists G ′ ≈ G
such that each red edge has gain aα + bβ for some a, b ∈ Z with a 
= 0, and each
blue edge has gain cβ for some c ∈ Z.

Proof As spanGδ
blue = Zβ, by Proposition 2.7, we may suppose all blue edges of G

have gain in Zβ. Let B1, . . . , Bn be the blue components of G and choose N ∈ N

such that N > |a| for all (v,w, γ ) ∈ E(G) with γ = aα + bβ. We now define the
gain equivalent graph

G ′ :=
⎛

⎝
n∏

i=1

∏

v∈Bi
φi Nα

v

⎞

⎠ (G).

Wefirst note that any blue edge ofG ′ will have gain inZβ since both of its ends will lie
in the same blue component. Choose a red edge (v,w, γ ) ∈ E(G) with γ = aα + bβ
and suppose v ∈ Bi and w ∈ Bj . We note that

⎛

⎝
n∏

i=1

∏

v∈Bi
φi Nα

v

⎞

⎠ (v,w, γ ) = φi Nα
v ◦ φ j Nα

w (v,w, γ )

= (v,w, (N (i − j) + a)α + bβ).

As N > |a| and i − j ∈ Z, we have N (i − j) + a = 0 if and only if a = 0 and i = j .
If this holds, then as v,w ∈ Bi , we can define an almost blue circuit containing v with
red edge (v,w, bβ) and gain in Zβ (as every blue edge has gain in Zβ), contradicting
that δ is a type 2 flexible 2-lattice NBAC-colouring. It now follows that a 
= 0 as
required. ��
Lemma 6.10 Let α, β ∈ Z

2 be linearly independent and let H be a Z
2-gain graph

where span H is a subgroup of Zα. Then there exists a placement q of H in Z such
that for all (v,w, aα + bβ) ∈ E(H), q(v) − q(w) = b.

Proof Define the Z-gain graph H ′ with vertex set V (H ′) := V (H) and edge set

E(H ′) := {(v,w, bβ) : (v,w, aα + bβ) ∈ E(H)};

we delete any loops with trivial gain that may arrive, and note that multiple edges may
become a single edge. By Lemma 5.6, we may define a placement q ′ of H ′ in Z such
that q ′(v) − q ′(w) = −2b for all (v,w, bβ) ∈ E(H ′). We now define q to be the
placement of H where q(v) := −q ′(v)/2. ��
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We are now ready for our construction lemma for type 2 flexible 2-lattice NBAC-
colourings.

Lemma 6.11 Let G be a Z
2-gain graph with a type 2 flexible 2-lattice NBAC-

colouring δ. Then there exists a full placement-lattice (p, L) of G in R
2 such that

(G, p, L) is a flexible full 2-periodic framework.

Proof Without loss of generality we may assume spanGδ
red = Zα and spanGδ

blue =
Zβ, with α 
= (0, 0). If β = (0, 0) then δ is a fixed-lattice NBAC-colouring and the
result holds by Lemma 4.6, thus we may assume α, β are linearly independent.

By Lemma 6.9, we may assume all red edges have gain aα +bβ for some a, b ∈ Z

with a 
= 0, and all blue edges have gain cβ for some c ∈ Z. Let R1, . . . , Rn be
the red components of G and define E j to be the set of edges (v,w, γ ) in Gδ

red with
v,w ∈ R j . By Lemma 6.10, for each R j there exists a placement q j in R where
q j (v)−q j (w) = b for all (v,w, γ ) ∈ E j with γ = aα +bβ. We now define for each
t ∈ [0, 2π ] the full placement-lattice (pt , Lt ) of G in R2 with

Lt · α := (sin t, cos t), Lt · β := (1, 0)

and pt (v) := (q j (v), j) for v ∈ R j . We shall denote (p, L) := (p0, L0).
To see that (p, L) is a well-defined placement-lattice, choose any e = (v,w, γ )

and suppose that p(v) = p(w) + L · γ . If δ(e) = red, then γ = aα + bβ for some
a, b ∈ Z \ {0} and v,w ∈ R j for some j . We note

p(v) = (q j (v), j) = (q j (w) + b, j + a) = p(w) + L · γ,

which implies a = 0, a contradiction. If δ(e) = blue, then γ = bβ for some b ∈ Z.
If v ∈ R j and w ∈ Rk then

p(v) = (q j (v), j) = (qk(w) + b, k) = p(w) + L · γ,

therefore j = k. Let P := (e1, . . . , en−1) be a red path from w to v with ei =
(vi , vi+1, γi ) ∈ E j , v1 = w, vn = v, γi = aiα + biβ. Define C := (e1, . . . , en−1, e).
As

b = q j (v) − q j (w) =
n−1∑

i=1

(q j (vi+1) − q j (vi )) = −
n−1∑

i=1

bi ,

we have ψ(C) = aα for some a ∈ Z. This contradicts that δ is a type 2 flexible
2-lattice NBAC-colouring, as C is an almost red circuit with ψ(C) ∈ Zα.

Choose any edge e = (v,w, γ ) with γ = aα + bβ. If δ(e) = blue then a = 0. As
pt = p and Lt · β = (1, 0), ‖pt (v) − pt (w) − Lt · γ ‖2 is constant. If δ(e) = red then
v,w ∈ R j , thus for each t ∈ [0, 2π ],

‖pt (v) − pt (w) − Lt · γ ‖2 = (q j (v) − q j (w) − b − a cos t)2 + (a sin t)2 = a2.
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Fig. 13 (Left): A Z
2-gain graph with a type 2 flexible 2-lattice NBAC-colouring (α = (1, 0), β = (0, 1)).

(Right): The constructed full 2-periodic framework in R
2

It follows that (pt , Lt ) is a flex of (G, p, L) as required. We refer the reader to Fig. 13
for an example of the construction. ��

6.5 Conjectures Regarding Type 3 Flexible 2-Lattice NBAC-Colourings

We recall that an NBAC-colouring δ of a Z2-gain graph G is a type 3 flexible 2-lattice
NBAC-colouring if there exists α ∈ Z

2 \ {(0, 0)} such that

– spanGδ
red and spanGδ

red are non-trivial subgroups of Zα, and
– there are no almost monochromatic circuits with gain in Zα.

It is an open question whether the existence of a type 3 flexible 2-lattice NBAC-
colouring implies the existence of a flexible placement of a Z2-gain graph in R

2. As
this is the case for all other types of flexible 2-lattice NBAC-colourings, we would
conjecture the following.

Conjecture 2 Let G be aZ2-gain graph with type 3 flexible 2-lattice NBAC-colouring.
Then there exists a full placement-lattice (p, L) of G in R

2 such that (G, p, L) is a
flexible full 2-periodic framework.

All examples of Z2-gain graphs with a type 3 flexible 2-lattice NBAC-colouring dis-
covered so farwill also have either a type 1 or type 2 flexible 2-latticeNBAC-colouring,
a fixed lattice NBAC-colouring, or have a low rank. Due to this, we would also con-
jecture the following.

Conjecture 3 Let G be aZ2-gain graph with type 3 flexible 2-lattice NBAC-colouring.
Then G has either a type 1 or type 2 flexible 2-lattice NBAC-colouring, G has a fixed
lattice NBAC-colouring, or rank G < 2.

If Conjecture 2 is true, then by Lemmas 6.4, 6.8, 6.11, 4.7, and 6.5, we can deduce that
Conjecture 1 would be also true. If Conjecture 3 is true, then we obtain the slightly
stronger result.

Conjecture 4 Let G be a connected Z2-gain graph. Then there exists a full placement-
lattice (p, L) of G in R2 such that (G, p, L) is a flexible full 2-periodic framework if
and only if either:

(i) G has a type 1 flexible 2-lattice NBAC-colouring,
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(ii) G has a type 2 flexible 2-lattice NBAC-colouring,
(iii) G has a fixed lattice NBAC-colouring, or
(iv) rank G < 2.

7 Special Cases of Flexible 2-Periodic Frameworks

We shall now focus on 2-periodic frameworks with loops.With this added assumption,
we can fully characterise whether a Z2-gain graph has a flexible placement-lattice by
observing the graph’s NBAC-colourings.

7.1 2-Periodic Frameworks with Loops

Lemma 7.1 Let (G, p, L) be a k-periodic framework inKd and suppose G has a loop
(w,w, α). If G ′ is the Zk-gain graph with

V (G ′) := V (G), E(G ′) := E(G) ∪ {(v, v, cα) : v ∈ V (G), c ∈ N},

then

VK(G ′, p, L) = VK(G, p, L).

Proof First note that VK(G ′, p, L) ⊂ VK(G, p, L). Choose any placement-lattice
(p′, L ′) ∈ VK(G, p, L). As (w,w, α) ∈ E(G), then

‖L ′ · α‖2 = ‖p′(w) − p′(w) − L ′ · α‖2 = ‖p(w) − p(w) − L · α‖2 = ‖L · α‖2.

We note that for any v ∈ V (G) and non-zero c ∈ Z,

‖p′(v) − p′(v) − L ′ · cα‖2 = c2‖L ′ · α‖2 = c2‖L · α‖2
= ‖p(v) − p(v) − L · cα‖2,

thus (p′, L ′) ∈ VK(G ′, p, L) as required. ��
Lemma 7.2 Let G be a connected Z

2-gain graph and suppose that there exists some
α ∈ Z

2 \{(0, 0)} such that for every vertex v ∈ V (G) and c ∈ N, we have (v, v, cα) ∈
E(G). If δ is an NBAC-colouring of G, then every loop with gain cα for some c ∈ N

is of the same colour.

Proof We first note that every loop at a vertex must have the same colour. To see this,
suppose there exists a loop (v, v, cα) for some integer c > 1, where δ(v, v, nα) 
=
δ(v, v, α). This would imply the circuit

(
c times

︷ ︸︸ ︷
(v, v,−α), . . . , (v, v,−α), (v, v, cα)

)
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is balanced and almost monochromatic, contradicting that δ is an NBAC-colouring.
Suppose not all loops are of the same colour. As G is connected, there must exist

distinct vertices v,w ∈ V (G) connected by an edge (v,w, γ ) where δ(v, v, α) 
=
δ(w,w, α). Without loss of generality we may assume δ(v, v, α) = δ(v,w, γ ). The
circuit

((v,w, γ ), (w,w, α), (w, v,−γ ), (v, v,−α))

is balanced and almost monochromatic, contradicting that δ is an NBAC-colouring. ��
Lemma 7.3 Let G be a connected Z

2-gain graph. Suppose that there exists some
α ∈ Z

2 \{(0, 0)} such that for every vertex v ∈ V (G) and c ∈ N, we have (v, v, cα) ∈
E(G). Then there are no type 1 or type 3 flexible 2-lattice NBAC-colourings of G.

Proof Suppose there exists an NBAC-colouring δ of G that is either a type 1 or
type 3 flexible 2-lattice NBAC-colouring. As one of Gδ

red or G
δ
blue must contain a loop

(and thus be unbalanced), δ must be a type 3 flexible 2-lattice NBAC-colouring. By
Lemma 7.3, every loop of the form (v, v, cγ ) has the same colour, and without loss
of generality we shall assume they are all red. We note immediately that there cannot
be any unbalanced blue circuits; indeed, if C was a blue circuit containing v with gain
cα, then the circuit formed by C followed by (v, v,−cα) will be balanced and almost
blue. However this implies rank Gδ

blue = 0, contradicting that δ is a type 3 flexible
2-lattice NBAC-colouring. ��
Lemma 7.4 Let G be a connected Z2-gain graph with a loop. Then there are no active
type 1 or type 3 flexible 2-lattice NBAC-colourings of G.

Proof Let (w,w, α) be a loop of G. By Lemma 7.1, we may assume that for every
vertex v ∈ V (G) and c ∈ N, we have (v, v, cα) ∈ E(G). The result now follows from
Lemma 7.3. ��
We may now prove a special case of Conjecture 2.

Theorem 7.5 Let G be a connected Z2-gain graph with a loop. Then there exists a full
placement-lattice (p, L) of G in R

2 such that (G, p, L) is a flexible full 2-periodic
framework if and only if either:

(i) G has a type 2 flexible 2-lattice NBAC-colouring,
(ii) G has a fixed lattice NBAC-colouring,
(iii) rank G = 1.

Proof Suppose there exists a full placement-lattice (p, L) of G in R
2 such that

(G, p, L) is a flexible full 2-periodic framework. SinceG contains a loop, rank G ≥ 1.
By Lemmas 6.4 and 7.4, either G has an active type 2 flexible 2-lattice NBAC-
colouring, G has an active fixed lattice NBAC-colouring, or rank G = 1.

Now suppose that either G has a type 2 flexible 2-lattice NBAC-colouring, G has
a fixed lattice NBAC-colouring, or rank G = 1. Then by Lemmas 6.11, 4.7, or 6.5,
there exists a full placement-lattice (p, L) of G in R2 such that (G, p, L) is a flexible
full 2-periodic framework. ��
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7.2 Scissor Flexes

We now define a special class of flexes.

Definition 7.6 Let (pt , Lt ) be a flex of a 2-periodic framework (G, p, L) in R
2. If

there exist linearly independent α, β ∈ Z
2 such that ‖Lt · α‖2 and ‖Lt · β‖2 are

constant but (Lt · α) · (Lt · β) is not constant, then (pt , Lt ) is a scissor flex.

If rank G < 2, then it can be seen that some placement-lattice of G will have a scissor
flex. We shall show in Theorem 7.10 that we can characterise the Z2-gain graphs with
scissor flexes by their NBAC-colouring. We first prove the following lemmas.

Lemma 7.7 Let G be a connected Z
2-gain graph and α, β ∈ Z

2 be linearly indepen-
dent. Suppose that (v, v, cα), (v, v, cβ) ∈ E(G) for all v ∈ V (G) and c ∈ N. If δ is
an NBAC-colouring of G then either:

(i) All loops of G are in the same colour.
(ii) All loops of G with gain in Zα are red (respectively, blue), all loops of G with

gain in Zβ are blue (respectively, red), and all loops of G have gain in Zα ∪Zβ.

Proof By Lemma 7.2 we have (without loss of generality) two possibilities:

(a) All loops with gain in Zα ∪ Zβ are red.
(b) All loops with gain in Zα are red and all loops with gain in Zβ are blue.

Suppose (a) holds. IfG only has loops with gain γ ∈ Zα∪Zβ, then (i) holds. Suppose
G has a loop l := (v, v, γ ) with γ /∈ Zα ∪ Zβ. Let a, b ∈ Z \ {0} be any pair where
cγ = aα + bβ for some c > 0. If δ(l) = blue then we note that the circuit

(
(v, v,−aα), (v, v,−aβ),

c times
︷ ︸︸ ︷
l, . . . , l

)

is balanced and almost red, contradicting that δ is an NBAC-colouring. Hence δ(l) =
red and (i) holds.

Suppose (b) holds but G has a loop l := (v, v, γ ) with γ /∈ Zα ∪ Zβ. Choose
a, b ∈ Z such that cγ = aα + bβ for some c > 0. If δ(l) = blue then the circuit

C := (
(v, v,−aα), (v, v,−aβ),

c times
︷ ︸︸ ︷
l, . . . , l

)

is balanced and almost blue, while if δ(l) = red then C is balanced and almost red.
As both possibilities contradict that δ is an NBAC-colouring, then no such loop may
exist and (ii) holds. ��
Lemma 7.8 Let G be a connected Z

2-gain graph with loops lα := (v, v, α), lβ :=
(v, v, β), where α and β are linearly independent. Then all active NBAC-colourings
of G with δ(lα) 
= δ(lβ) are type 2 flexible 2-lattice NBAC-colourings.
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Proof Let δ be an active NBAC-colouring of G with δ(lα) 
= δ(lβ). Without loss of
generality, we may assume δ(lα) = red and δ(lβ) = blue. By Lemma 7.1, we may
assume that (v, v, cγ ) ∈ E(G) for all v ∈ V (G) and c ∈ N, where γ ∈ {α, β}. By
Lemma 7.7, all loops with gain in Zα are red, all loops with gain in Zβ are blue, and
there are no loops with gain γ /∈ Zα ∪ Zβ.

Suppose there exists a red circuitC containing v withψ(C) = aα+bβ. If a, b 
= 0,
then the circuit formed from C followed by (v, v,−aα), (v, v,−aβ) is balanced and
almost red, while if a = 0, b 
= 0, then the circuit formed from C followed by
(v, v,−aβ) is balanced and almost red.As both contradict that δ is anNBAC-colouring
of G, then ψ(C) ∈ Zα. We similarly note that for any blue circuit C ′, ψ(C ′) ∈ Zβ.

Let C be an almost monochromatic circuit of length n where δ(en) 
= δ(ei ) for all
i ∈ {1, . . . , n − 1}. If C is almost red and ψ(C) = cα for some c ∈ Z, then

(e1, . . . , en, (v1, v1,−cα))

is a balanced almost red circuit, contradicting that δ is an NBAC-colouring. If C is
almost blue and ψ(C) = cβ for some c ∈ Z, then

(e1, . . . , en, (v1, v1,−cβ))

is a balanced almost blue circuit, contradicting that δ is an NBAC-colouring. It now
follows that δ is a type 2 flexible 2-lattice as required. ��
Lemma 7.9 Let G be a connected Z

2-gain graph with loops lα := (v, v, α), lβ :=
(v, v, β), whereα andβ are linearly independent. If δ(lα) = δ(lβ) for all activeNBAC-
colourings of G, then for any 2-periodic framework (G, p, L), every non-trivial flex
of (G, p, L) is a fixed-lattice flex.

Proof Let (G, p, L) be a flexible 2-periodic framework with a flex (pt , Lt ), t ∈ [0, 1].
Sincewe have loops lα, lβ ∈ E(G), it follows that ‖Lt ·α‖2 = ‖L ·α‖2 and ‖Lt ·β‖2 =
‖L · β‖2 for all t ∈ [0, 1]. For each t ∈ [0, 1] we have

(L · α) · (L · β) = (p(v) − p(v) − L · α) · (p(v) − p(v) − L · β),

(Lt · α) · (Lt · β) = (pt (v) − pt (v) − Lt · α) · (pt (v) − pt (v) − Lt · β).

By Proposition 3.20 and the continuity of the flex (pt , Lt ), we must have (L · α) ·
(L · β) = (Lt · α) · (Lt · β) for all t ∈ [0, 1]. It now follows that Lt ∼ L for all
t ∈ [0, 1] as required. ��
Theorem 7.10 Let G be a connected Z

2-gain graph with rank G = 2. Then there
exists a full 2-periodic framework (G, p, L) in R

2 with a scissor flex if and only if
either:

(i) G has a type 2 flexible 2-lattice NBAC-colouring, or
(ii) G has a type 1 flexible 2-lattice NBAC-colouring where, for some linearly inde-

pendent pair α, β ∈ Z
2, there are no almost red circuits of G with gain in Zα and

there are no almost blue circuits of G with gain in Zβ.

123



1328 Discrete & Computational Geometry (2021) 66:1286–1329

Proof If G has a type 2 flexible 2-lattice NBAC-colouring, then there exists a full
2-periodic framework (G, p, L) with a scissor flex by Lemma 6.11. Suppose G has a
type 1 flexible 2-lattice NBAC-colouring δ with no almost red circuits with gain in Zα

and no almost blue circuits with gain in Zβ. We note that if we add the loops (v, v, α)

and (v, v, β) to G to form the graph G ′, then we can extend δ to a type 2 flexible
2-lattice NBAC-colouring δ′ ofG ′ by setting δ′(v, v, α) = red and δ′(v, v, β) = blue.
A full 2-periodic framework (G ′, p, L) with a scissor flex can now be constructed
by Lemma 6.11. We finish by noting that (G, p, L) will also have a scissor flex as
required.

Now suppose there exists a full 2-periodic framework (G, p, L) with a scissor flex
(pt , Lt ); we shall assume thatα, β ∈ Z

2 are linearly independent gainswhere ‖Lt ·α‖2
and ‖Lt ·β‖2 are both constant. Choose any v ∈ V (G) and defineG ′ to be theZ2-gain
graph formed from G by adding the loops lα := (v, v, α) and lβ := (v, v, β). We note
that (pt , Lt ) is a flex of (G ′, p, L) also, hence as rank G ′ = 2, we have that G ′ has an
active NBAC-colouring by Lemma 6.4.

If all active NBAC-colourings δ′ of G ′ have δ′(lα) = δ′(lβ), then by Lemma 7.9,
(G ′, p, L) is fixed lattice flexible, a contradiction. It follows that G ′ has an active
NBAC-colouring δ′ with δ′(lα) 
= δ′(lβ). By Lemma 7.8, δ′ is a type 2 flexible 2-
lattice NBAC-colouring. If we define δ to be the restriction of δ′ to G, then δ is a type
k flexible 2-lattice NBAC-colouring for some k ∈ {1, 2}, as rank G = 2 and δ′ cannot
be monochromatic on any subgraph of rank 2. We finish by noting that if δ is a type 1
flexible 2-lattice NBAC-colouring, then (with respect to δ) there are no almost red
circuits of G with gain in Zα and there are no almost blue circuits of G with gain in
Zβ. ��
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