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Abstract
We prove that some exact geometric pattern matching problems reduce in linear time
to k-SUM when the pattern has a fixed size k. This holds in the real RAM model for
searching for a similar copy of a set of k ≥ 3 points within a set of n points in the
plane, and for searching for an affine image of a set of k ≥ d + 2 points within a
set of n points in d-space. As corollaries, we obtain improved real RAM algorithms
and decision trees for the two problems. In particular, they can be solved by algebraic
decision trees of near-linear height.

Keywords Geometric pattern matching · 3-SUM · k-SUM
Mathematics Subject Classification 68Q25 · 68W40 · 68U05

1 Introduction

The k-SUM problem is a fixed-parameter version of the NP-complete SUBSET SUM
problem. It consists of deciding, given a set of n numbers, whether any subset of size
k sums to zero. The problem for k = 3, known as 3-SUM, is now a well-established
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bottleneck problem in fine-grained complexity theory (see for instance [1,29] and
references therein). While there are many reductions showing 3-SUM- or k-SUM-
hardness of computational problems in geometry, only few reductions to 3-SUM and
k-SUM are known (from triangle enumeration in graphs, for instance; see Jafargholi
and Viola [26]). We give examples of computational geometry problems that reduce
to 3-SUM or k-SUM.

Our results are motivated by the nontrivial improved upper bounds on the com-
plexity of 3-SUM and k-SUM proven in the recent years. While it has long been
conjectured that no subquadratic algorithm for 3-SUM existed, it is now known to
be solvable in time O((n2/log n)(log log n)2) in the real RAM model, and in time
O((n2/log2n)(log log n)O(1)) if we allow bitwise operations on fixed-length words
[14,20,22,25]. The existence of an O(n2−δ) algorithm for some δ > 0 remains an
open problem. Using folklore meet-in-the-middle algorithms, k-SUM can be solved in
time O(n�k/2�) if k is odd, and in time O(nk/2 log n) if k is even. Recently, Kane et
al. [27] showed that it can be solved in time O(n log2 n) in the linear decision tree
model, improving on previous polynomial bounds [13,19].

Geometric pattern matching We consider two problems involving searching for a
given set P of k points, called the pattern, within a larger set S of points, up to
some geometric transformation. Here we focus on exact algorithms, in which the
pattern must match the subset of points exactly. We consider two types of geometric
transformations: similarity transformations, which are compositions of a translation,
a rotation, and a uniform scaling, and affine transformations, which are compositions
of a translation and a linear map. This yields the following two problems.

Problem 1.1 (SIMILARITY MATCHING) For a fixed integer k ≥ 3, given a set P of k
points in the plane and a set S of n points in the plane, determine whether S contains
the image of P under a similarity transformation.

Problem 1.2 (AFFINEMATCHING) For fixed integers d ≥ 2 and k ≥ d+2, given a set
P of k points inRd containing d+1 affinely independent points, and a set S of n points
in Rd , determine whether S contains the image of P under an affine transformation.

A large body of the computational geometry and pattern recognition literature is
dedicated to the problems of finding approximate matches up to some geometric
transformation, where the quality of the approximation is typically measured by the
Hausdorff distance [6,15,21,24]. For exact pattern matching problems under differ-
ent families of transformations, known upper bounds on time complexity have been
compiled in a survey by Peter Braß [11]. We reproduce them in Table 1.

The complexity of these algorithms is directly related to bounds on the maximum
number of occurrences of a pattern or a distance in a set of n points. In fact, such bounds
directly yield a lower bound on the computational problem of listing all occurrences
of the pattern. A prototypal example is Erdős’ unit distance problem; see Braß and
Pach [12] for more examples. It is known, in particular, that there can be Θ(n2)
similar copies of a pattern in an n-point set [3,4,18]. Structural results on the extremal
point sets are also known [2]. For affine transformations in R

d , there exist pairs P, S
such that S contains Θ(nd+1) copies of P: for instance, the d-dimensional lattice

{1, 2, . . . , n1/d}d contains Θ(nd+1) affine images of a cube.
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Table 1 Known upper bounds on the time complexity of exact geometric pattern matching in various
settings (taken from [11] and [23, Chap. 54])

Transformations Dimension Complexity

Congruence 2 O(kn4/3 log n) [11]

Congruence 3 O(kn5/3 log n2O(α(n)2)) [5]

Translation d O(kn log n) (easy)

Homothety d O(kn1+1/d log n) [11,18]

Similarity d O(knd log n) [11]

Affine d O(knd+1 log n) [11]

We indicate the dependency on the pattern size k

Our results We suppose we can perform exact computations over the reals. There-
fore, all the algorithms that we consider are either uniform algorithms in the real
RAM model, or nonuniform algorithms in the real algebraic decision tree model. For
simplicity, we will also assume that in the RAM model we have access to random
real numbers. We show that they can be replaced by polynomially bounded random
integers, at the cost of a polynomially vanishing probability of error. Our main result
is the following.

Theorem 1.3 SIMILARITY MATCHING and AFFINE MATCHING reduce in randomized
linear time to k-SUM.

We refer the reader to the exact definitions of the k-SUM problem and the notion of
randomized linear-time reduction given later. Theorem 1.3 has a number of conse-
quences. Let us consider the special case of the SIMILARITY MATCHING problem in
which k = 3.

Problem 1.4 (TRIANGLE) Given a triangle Δ and a set S of n points in the plane,
determine whether S contains three points whose convex hull is similar to Δ.

Combining the reduction provided by Theorem 1.3 with the real RAM algorithm for
3-SUM from Chan [14], we obtain the following.

Corollary 1.5 There exists an O((n2/log n)(log log n)2) randomized real RAM algo-
rithm for TRIANGLE. In particular, there exists a subquadratic algorithm to detect
equilateral triangles in a point set.

This contrasts with our current knowledge on the related 3-SUM-hard problem of
finding three collinear points, also known as GENERAL POSITION TESTING. Despite
recent attempts [10,14], it is still an open problem to find a subquadratic algorithm for
GENERAL POSITION TESTING.

Our next corollary is obtained directly from known algorithms for k-SUM. It
improves on the best known O(nd+1 log n) algorithm whenever k < 2(d + 1).

Corollary 1.6 There exists an O(n�k/2�) (for k odd), or an O(nk/2 log n) (for k even)
randomized real RAM algorithm for AFFINE MATCHING.
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Finally, we consider the nonuniform decision tree complexity, also known as query
complexity, of the two problems. By applying a recent result of Kane et al. [27], we
can bound the number of algebraic tests that are required to detect copies of P in an
input set S.

Corollary 1.7 There exist randomized algebraic decision trees of height O(n log2n)

for SIMILARITY MATCHING and AFFINE MATCHING.

In fact, if the pattern P is a fixed parameter, that is, when P is not part of the input,
but known at the algorithm design time, then the decision tree in the statement above
only involves linear tests.

Corollary 1.8 There exist randomized linear decision trees of height O(n log2n) for
the fixed-parameter versions of SIMILARITY MATCHING and AFFINE MATCHING, in
which P is a fixed parameter of the problems.

In a recent paper, Aronov et al. [8] study the following problem: Given three sets
A, B,C of n points in the plane, decide whether there exists (a, b, c) ∈ A×B×C that
simultaneously satisfies two real polynomial equations. They provide a subquadratic
upper bound on the algebraic decision tree complexity of this problem. In a preliminary
version of their paper [9, version 2, Corollary 4.4], they considered the TRIANGLE
problem as a special case of this problem. This version also contains a proof that
TRIANGLE is 3-SUM-hard. As our result shows, it turns out that this special case is
in fact much easier than the general problem, as the two polynomial equations can
be made linear. Hence TRIANGLE is actually linear-time equivalent to 3-SUM, and its
decision tree complexity is near-linear. We refer to [8,9] for a thorough discussion of
the relation between these and other related problems.

Note that our results rely on a randomized reduction. We leave as an open problem
the question of whether analogous deterministic reductions exist.

Plan In the next section, we define a number of variants of the k-SUM problem and
prove they are all equivalent in the computation model we consider. In Sect. 3, we
prove our main result for SIMILARITY MATCHING. Section 4 considers the AFFINE
MATCHING problem. The last section is dedicated to the proof of Corollaries 1.7 and
1.8.

2 Linear Degeneracy Testing

We first give a definition of the k-SUM problem. Here, k ≥ 3 is a fixed integer and X
is a ring.

Problem 2.1 (k-SUM(X )) Given k sets A1, . . . , Ak of n elements of X , determine
whether there exists a k-tuple (a1, . . . , ak) ∈ �

k
i=1Ai such that

∑k
i=1 ai = 0.

Our next problem is often referred to as linear degeneracy testing [7,17]. We consider
the cases where X = R or C with the usual addition and multiplication operations, or
where X = R

d or Cd for some integer d ≥ 2, with the vector addition and Hadamard
(entrywise) product defined by (uv)i = uivi . In the latter cases, the all-zero vector is
denoted by 0, and the all-one vector by 1.
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Problem 2.2 (k-LDT(X )) For a linear function f : Xk → X given by f (a1, . . . , ak) =
β0 + ∑k

i=1 βi ai with βi ∈ X for 0 ≤ i ≤ k, given k sets A1, . . . , Ak of n ele-
ments of X , determine whether there exists a k-tuple (a1, . . . , ak) ∈ �

k
i=1Ai such that

f (a1, . . . , ak) = 0.

We make two observations. First, these are fixed-parameter problems: the integer k is
part of the definition of the problem, not of the input. The same can be assumed for
the function f . Such parameters will be referred to as fixed in what follows. Another
observation is that using the Hadamard product in the definition of the function f
allows us to combine conditions on the sought k-tuples: In the ring X , searching for
k-tuples that simultaneously satisfy d linear equations can be cast as k-LDT(Xd ).

It is clear that k-SUM is the special case of k-LDT in which β0 = 0 and βi = 1 for
1 ≤ i ≤ k. On the other hand, k-LDT is not harder than k-SUM.

Lemma 2.3 For any integer d > 0, k-LDT(X ) reduces in linear time to k-SUM(X ).

Proof Consider the sets Ai from the k-LDT instance and let A′
i := {βi a | a ∈ Ai } for

all 1 ≤ i < k, and A′
k := {βka+β0 | a ∈ Ak}. Then the instance of k-SUM composed

of the sets A′
i has a solution if and only if the instance of k-LDT has a solution. 	


In what follows, we say that a problem A reduces to problem B in randomized g(n)

time if there exists an algorithm in the real RAM model with access to random real
numbers in [0, 1] that maps any instance of size n of A to an equivalent instance of B
in time O(g(n)) with probability 1. Over the reals, the vector and scalar versions of
k-SUM are also essentially equivalent, up to such a randomized reduction.

Lemma 2.4 For any fixed integer d > 0, k-SUM(Rd ) reduces in randomized linear
time to k-SUM(R).

Proof Given an instance {A1, . . . , Ak} of k-SUM(Rd ), pick a uniform random unit
vector v ∈ R

d (see for instance Chapter V in Devroye’s classical textbook [16] for
the generation of random vectors on the unit hypersphere) and consider the sets A′

i :=
{a · v | a ∈ Ai } ⊂ R, where a · v is the usual dot product. They form an instance
of k-SUM(R) such that any solution to the original instance of k-SUM(Rd ) is also a
solution. In the other direction, suppose there is a k-tuple (a′

1, . . . , a
′
k) ∈ �

k
i=1A

′
i such

that
∑k

i=1 a
′
i = 0, where a′

i = ai · v. Hence we have ∑k
i=1 ai · v = 0, which is either

because v ⊥ ∑k
i=1 ai and

∑k
i=1 ai = 0, or because

∑k
i=1 ai = 0. Since v ⊥ ∑k

i=1 ai
and

∑k
i=1 ai = 0 occurs with probability 0, the k-tuple (a1, . . . , ak) is a solution of

the instance {A1, . . . , Ak} of k-SUM(Rd ) with probability 1. 	

In a model of computation where random real numbers are not available, one can
replace a random unit vector in R

d by a random vector v from the integer grid cube
[nc]d , for a suitably large constant c. There is no need to normalize the length of v.
The above dot product becomes zero only if v lies on a particular hyperplane. Since
the grid cube intersects any hyperplane in at most (nc)d−1 points, the probability of
such an event is at most 1/nc. We also make the following simple observation:

Observation 2.5 k-SUM(Cd ) is equivalent to k-SUM(R2d ).
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3 Searching for a Similar Copy

Recall that in the TRIANGLE problem, we want to determine whether an input set S
of n points in the plane contains three points whose convex hull is similar to a given
triangle Δ. The short proof of the following result uses the interpretation of points in
the plane as complex numbers, an idea that was exploited in a combinatorial context
before [18,28].

Lemma 3.1 TRIANGLE reduces in linear time to 3-SUM(C).

Proof Let u = reiθ be such that the three numbers 0, 1, u are the vertices of a triangle
similar to Δ in the complex plane. Recall that multiplying by reiθ has a geometric
interpretation in the complex plane as scaling by a factor r and rotating by an angle θ .
Hence three other complex numbers a, b, c ∈ C form a triangle similar to Δ in
the complex plane with the same orientation if and only if c − a = u(b − a), or
equivalently if (u − 1)a − ub + c = 0. Hence TRIANGLE reduces to 3-LDT(C) with
β = (0, u − 1,−u, 1). From Lemma 2.3, it reduces in linear time to 3-SUM(C). 	

Combining with Observation 2.5 and Lemma 2.4, we obtain:

Theorem 3.2 TRIANGLE reduces in randomized linear time to 3-SUM(R).

Recall that TRIANGLE is also known to be 3-SUM-hard [9], hence it is actually linear-
time equivalent to 3-SUM. Our result generalizes naturally to larger patterns.

Lemma 3.3 SIMILARITY MATCHING reduces in linear time to k-SUM(Ck−2).

Proof Let u1, . . . , uk−2 ∈ C be such that the set Q = {0, 1, u1, . . . , uk−2} is similar
to P in the complex plane. Then k numbers a1, . . . , ak ∈ C form a similar copy
of Q in the complex plane, with a1 mapped to 0, a2 to 1, and so on, if and only if
ai − a1 = ui−2(a2 − a1) for all 3 ≤ i ≤ k. These are k − 2 linear equations on the
k complex numbers a1, . . . , ak , hence SIMILARITY MATCHING reduces in linear time
to k-LDT(Ck−2). From Lemma 2.3, it reduces in linear time to k-SUM(Ck−2). 	

Again, combining with Observation 2.5 and Lemma 2.4, we obtain the first statement
of Theorem 1.3.

Theorem 3.4 SIMILARITYMATCHING reduces in randomized linear time to k-SUM(R).

4 Searching for an Affine Image

We now prove the analogous result for the affine case. As a warm-up, we first consider
the following simpler special case of AFFINE MATCHING in which the pattern is a
square. Four points form the affine image of vertices of a square if and only if they are
the vertices of a (possibly degenerate) parallelogram. Hence the problem can be cast
as follows.

Problem 4.1 (PARALLELOGRAM) Given a set S of n points in the plane, determine
whether S contains four points whose convex hull is a parallelogram.
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Theorem 4.2 PARALLELOGRAM reduces in randomized linear time to 4-SUM(R).

Proof Four points a1, a2, a3, a4 ∈ S in this order form a parallelogram with a1a2
parallel to a4a3 and a2a3 parallel to a1a4 if and only if a2 − a1 = a3 − a4, or
equivalently if a1−a2+a3−a4 = 0. Hence PARALLELOGRAM reduces to 4-LDT(R2)
with β = ((0, 0), (1, 1), (−1,−1), (1, 1), (−1,−1)). From Lemmas 2.3 and 2.4, it
also reduces in randomized linear time to 4-SUM(R). 	

The general case follows from the following observation. Consider a matrix Q ∈
R
n×n and let Qk denote the matrix obtained from Q by replacing its kth column by

the column vector xT , where x1, x2, . . . , xn are variables. Then det Qk is a linear
combination of x1, x2, . . . , xn , with coefficients defined by Q.

Lemma 4.3 AFFINE MATCHING reduces in linear time to k-SUM(R�) with � =
d(k − (d + 1)).

Proof We use the notation [k] := {1, 2, . . . , k}. Let pi = (pi,1, . . . , pi,d) be a row
vector representing the i th point of P . From the problem definition, P must contain
d +1 affinely independent points. Since we suppose k and d fixed, these points can be
determined in constant time. We therefore assume without loss of generality that they

are the first d + 1 points p1, . . . , pd+1. Let A = {a1, . . . , ak} ∈ (S
k

)
be a candidate

match. In order for the set A to be the image of P under an affine transformation,
there must be a solution to the system of k linear equations of the form pi F + t = ai
for all i ∈ [k], with d2 + d real unknowns F ∈ R

d×d and t ∈ R
d . The system can

be decomposed into d systems, one for each coordinate j ∈ [d]. Each consists of k
equations with d + 1 unknowns, of the form pi Fj + t j = ai j for i ∈ [k], where Fj is
the j th column of F . We consider one such system, for a fixed j ∈ [d], and restrict it
to the first d + 1 equations only:

Q ·
(
Fj

t j

)

=
⎛

⎜
⎝

a1, j
...

ad+1, j

⎞

⎟
⎠ , where Q =

⎛

⎜
⎝

p1 1
...

...

pd+1 1

⎞

⎟
⎠ .

Since the first d+1 points of P are affinely independent, Q is invertible and the system
defines a unique solution for the coefficients Fj and t j of the affine transformation.
From Cramer’s rule, the value of the kth unknown is the ratio det Qk/det Q, where
Qk is the matrix obtained by replacing the kth column of Q by (a1, j , . . . , ad+1, j )

T .
From the above observation and the fact that Q does not depend on S, the expressions
det Qk/det Q are linear combinations of the values a1, j , . . . , ad+1, j , with coefficients
determined by P . Hence the explicit solution for the coefficients Fj and t j are linear
combinations of the a1, j , . . . , ad+1, j .

A necessary and sufficient condition for the set A to be amatch is that the remaining
k − d − 1 points of A are also images of the corresponding points in P . Hence we
require that for all i > d + 1 the i th equation pi Fj + t j = ai j is also satisfied
by this solution. The unknowns Fj and t j can be replaced by linear combinations of
a1, j , . . . , ad+1, j . Hence we obtain a set of k−(d+1) linear equations on the variables
a1, j , . . . , ak, j , with coefficients depending on P .
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Since these k − (d + 1) equations must hold for all coordinates j ∈ [d] simultane-
ously,we obtain thatAFFINEMATCHING reduces to k-LDT(R�)with � = d(k−(d+1)).
From Lemma 2.3 it also reduces to k-SUM(R�). Since d and k are fixed, the reduction
takes linear time. 	

Combining with the randomization step in Lemma 2.4, we get the second part of
Theorem 1.3.

Theorem 4.4 AFFINE MATCHING reduces in randomized linear time to k-SUM(R).

5 Algebraic Decision Tree Complexity

An algebraic decision tree is a type of nonuniform algorithm for problems on inputs
composed of n real numbers. For each input size n, it consists of a binary tree whose
internal nodes are labeledwith inequalities of the form“q(x) ≤ 0” on the input x ∈ R

n ,
where q is a bounded-degree n-variate polynomial in x1, x2, . . . , xn . Inequalities are
interpreted as queries on the input, and the two subtrees correspond to the possible
outcomes of the query on the input. Leaves of the tree are labeled with the answer to
the problem. The minimum height h(n) of an algebraic decision tree solving instances
of size n of the problem is the decision tree complexity, or query complexity of the
problem. When the queries only involve linear functions, such trees are called linear
decision trees. In that case, a query is said to be t-sparse when it involves at most t
numbers of the input.

We have the following recent result on the linear decision tree complexity of the
k-SUM problem.

Theorem 5.1 (Kane et al. [27]) The k-SUM problem on n elements can be solved by a
linear decision tree of height O(kn log2n) in which all the queries are 2k-sparse and
have only {−1, 0, 1} coefficients.
Wenowshow that this result directly applies to the SIMILARITYMATCHING andAFFINE
MATCHING problems, thereby proving Corollary 1.7.

We first consider the SIMILARITY MATCHING problem, an instance y of which
consists of two coordinates per point of P and S, hence of 2(k + n) real numbers.
Suppose we apply the randomized reduction proposed in Theorem 3.4 to obtain an
instance of k-SUM(R). Now consider the linear decision tree from Theorem 5.1. Each
linear query on the transformed input maps to a query on the original input numbers y.
Because the reduction only involves multiplications and additions on these numbers,
such queries are algebraic queries on the original input y. Therefore, the linear decision
tree for k-SUM maps to an algebraic decision tree of the same height for SIMILARITY
MATCHING. The same reasoning applies toAFFINEMATCHING. In that case, it suffices
to observe that multiplying both sides of every query by the quantity det Q for the
matrix Q used in the proof of Lemma 4.3 yields algebraic queries again. Note that
since k and d are constant and the linear queries in Theorem 5.1 are sparse, the queries
have bounded degree and bounded size. This proves Corollary 1.7.

Also note that if we suppose the pattern P is a fixed parameter of the problem,
then the two problems are solved by linear decision trees of height O(n log2n). It can
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indeed be checked that the algebraic queries do not involve multiplications between
coordinates of the points of S, hence are linear whenever P is fixed. This proves
Corollary 1.8. It applies in particular to the PARALLELOGRAM problem, or to finding
an equilateral triangle in a point set.
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