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Abstract
A famous and wide-open problem, going back to at least the early 1970s, con-
cerns the classification of chromatic polynomials of graphs. Toward this classification
problem, one may ask for necessary inequalities among the coefficients of a chro-
matic polynomial, and we contribute such inequalities when a chromatic polynomial
χG(n) = χ∗

0

(n+d
d

) + χ∗
1

(n+d−1
d

) + · · · + χ∗
d

(n
d

)
is written in terms of a binomial-

coefficient basis. For example, we show that χ∗
j ≤ χ∗

d− j , for 0 ≤ j ≤ d/2. Similar
results hold for flow and tension polynomials enumerating either modular or inte-
gral nowhere-zero flows/tensions of a graph. Our theorems follow from connections
among chromatic, flow, tension, and order polynomials, as well as Ehrhart polynomi-
als of lattice polytopes that admit unimodular triangulations. Our results use Ehrhart
inequalities due toAthanasiadis andStapledon and are related to recentworkbyHersh–
Swartz and Breuer–Dall, where inequalities similar to some of ours were derived using
algebraic-combinatorial methods.
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1 Introduction

A famous and wide-open problem, going back to at least [30], concerns the classifica-
tion of chromatic polynomials of graphs. As is well known, for a given graph G, the
number χG(n) of proper colorings of G using n colors evaluates to a polynomial in n,
and so a natural question is: which polynomials are chromatic?

Toward this classification problem, one may ask for necessary inequalities among
the coefficients of a chromatic polynomial, and this paper gives one such set of inequal-
ities. In enumerative combinatorics, there are three natural bases for the space of
polynomials of degree at most d:

– the monomials 1, n, n2, . . . , nd ;
– the binomial coefficients

(n
d

)
,
( n

d−1

)
, . . . ,

(n
0

)
;

– the binomial coefficients
(n+d

d

)
,
(n+d−1

d

)
, . . . ,

(n
d

)
.

It is well known that the coefficients of any chromatic polynomial in the monomial
basis alternate in sign (this can be proved, e.g., by deletion–contraction), and that the
coefficients in both binomial-coefficient bases are nonnegative (in the first case, this
follows from considering proper colorings that use exactly k colors, for 0 ≤ k ≤ d,
and this is closely connected to σ -polynomials [16]; in the second case, nonnegativity
follows from Stanley’s work on order polynomials [23] and the natural decomposition
of a chromatic polynomial into order polynomial—see (8) below; this was first spelled
out in [19]).

We will work in the last basis and define the corresponding coefficients of the
chromatic polynomial of a given graph G with d vertices via

χG(n) = χ∗
0

(
n + d

d

)
+ χ∗

1

(
n + d − 1

d

)
+ · · · + χ∗

d

(
n

d

)
.

We will collect the χ∗
j s in the polynomial χ∗

G(z) := χ∗
d zd + χ∗

d−1zd−1 + · · · + χ∗
0

(whichmight not have degree d) and note that this polynomial appears in the generating
function of χG(n), more precisely,

∑

n≥1

χG(n) zn = χ∗
G(z)

(1 − z)d+1 .

To the best of our knowledge, Linial [19] initiated the first study of the chromatic poly-
nomial in the form ofχ∗

G(z); see also [4,9,10,28].We think of the linear transformation
going from χG(n) to χ∗

G(z) as a tool that is useful beyond chromatic polynomials (in
fact, as we will see below, it is a standard tool in Ehrhart theory), and so we suggest
to call χ∗

G(z) the binomial transform of χG(n).
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The strongest known conditions on the coefficients1 of χ∗
G(z) are due to Hersh and

Swartz [12, Thm. 15]: Defining h0, h1, . . . , hd via

∑

n≥0

(
(n + 1)d − χG(n + 1)

)
zn = hd zd + hd−1zd−1 + · · · + h0

(1 − z)d
,

they proved that

h0 ≤ h1 ≤ . . . ≤ h�d/2�−1 and h j ≤ hd−2− j for j ≤ d

2
− 1,

from which one can now deduce inequalities for the χ∗
j s involving Eulerian numbers.

The natural dual situation concerns flows on a graph. Denote by H = (ηv,e) ∈
{0,±1}V ×E the signed incidence matrix of G = (V , E), i.e.,

ηv,e =

⎧
⎪⎨

⎪⎩

1 if v is the head of e,

−1 if v is the tail of e,

0 if v is not incident with e,

where we equipped G with an (arbitrary but fixed) orientation. Let A be an Abelian
group. A nowhere-zero A-flow on G is a mapping x : E → A \ {0} that is in the kernel
of H. (See, e.g., [13,22] for background on nowhere-zero flows.) Tutte [29] proved
in 1947 that the number φG(n) of nowhere-zero Zn-flows on G is a polynomial in n.
A more recent theorem of Kochol [14] says that the number fG(n) of nowhere-zero
Z-flows on G whose images satisfy |x(e)| < n is also a polynomial in n. (It is easy
to see that both flow polynomials are independent of the chosen orientation.) While
it has long been known that φG(n) and fG(n) have identical integer roots, they are
rather different polynomials.

A nowhere-zero A-tension on G is a mapping x : E → A \ {0} that is in the row
space of H. It is not hard to see that the number of nowhere-zero Zn-tensions on G
equals χG(n)/nc where c denotes the number of components of G. The situation for
integer tensions is more interesting: Kochol [15] proved that the number tG(n) of
nowhere-zero Z-tensions on G with |x(e)| < n is a polynomial in n (which is quite
different from χG(n)).

As with the chromatic polynomials, we will express φG(n), fG(n), and tG(z) in a
binomial-coefficient basis (namely,

(n+ξ
ξ

)
,
(n+ξ−1

ξ

)
, . . . ,

(n
ξ

)
) and define their binomial

1 If we do not specify a basis when talking about the coefficients of a polynomial, we are thinking of the
standard monomial basis.
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transforms via2

∑

n≥1

φG(n) zn = φ∗
G(z)

(1 − z)ξ+1 ,
∑

n≥1

fG(n) zn = f ∗
G(z)

(1 − z)ξ+1 ,

∑

n≥1

tG(n) zn = t∗G(z)

(1 − z)d−c+1 ,

where c denotes the number of components of G and ξ := |E |−d +c is the cyclomatic
number of G.

Similarly to the chromatic situation, it is known [6,14,15] that the coefficients
of φ∗

G(z), f ∗
G(z), and t∗G(z) are nonnegative. Breuer and Dall [5] proved the Zn-

flow analogues of the above-mentioned inequalities by Hersh and Swartz: Defining
h0, h1, . . . , hξ via

∑

n≥0

(
(n + 1)ξ − φG(n + 1)

)
zn = hξ zξ + hξ−1zξ−1 + · · · + h0

(1 − z)ξ
,

we have

h0 ≤ h1 ≤ . . . ≤ h�ξ/2�−1 and h j ≤ hξ−2− j for j ≤ ξ

2
− 1,

and again, from these one can deduce inequalities for the coefficients of φ∗
G(z) involv-

ing Eulerian numbers. Breuer and Dall gave some constraints also for f ∗
G(z) and t∗G(z)

but these were not as clearly cut as for φ∗
G(z).

Our goal is to show how one can derive theorems similar to those by Hersh–
Swartz andBreuer–Dall (including inequalities for f ∗

G(n) and t∗G(z)) through a discrete
geometric setup. Our main result is as follows.

Theorem 1.1 Let G be a graph on d vertices with c components and cyclomatic num-
ber ξ . Then

χ∗
1 ≤ χ∗

2 ≤ . . . ≤ χ∗
�(d+1)/2�, χ∗

j ≤ χ∗
d− j for 1 ≤ j ≤ d − 1

2
,

φ∗
1 ≤ φ∗

2 ≤ . . . ≤ φ∗�ξ/2�+1, φ∗
j ≤ φ∗

ξ+1− j for 1 ≤ j ≤ ξ

2
,

f ∗
1 ≤ f ∗

2 ≤ . . . ≤ f ∗�ξ/2�+1, f ∗
j ≤ f ∗

ξ+1− j for 1 ≤ j ≤ ξ

2
,

t∗1 ≤ t∗2 ≤ . . . ≤ t∗�(d−c)/2�+1, t∗j ≤ t∗d−c+1− j for 1 ≤ j ≤ d − c

2
.

2 There is a subtlety here that differentiates χG (n) from φG (n), fG (n), and tG (z), and thus one needs to
treat the accompanying generating functions with some care. Namely, χG (n) has constant term 0, which
is not true for φG (n), fG (n), and tG (z). Note that we chose all of our generating functions to start with
n = 1; the alternative choice of starting with n = 0 would result in a different definition of the binomial
transform.
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It is clear (though the details need some work) that the inequalities for χ∗
G and φ∗

G are
closely related to the work of Hersh–Swartz and Breuer–Dall. At any rate, the methods
in [5,12] are from algebraic combinatorics: one constructs a simplicial complex whose
h-vector satisfies certain inequalities (stemming from a convex-ear decomposition).
Our approach, by contrast, is through Ehrhart polynomials of lattice polytopes, which
we discuss in Sect. 2. A small subclass of lattice polytopes admit unimodular triangu-
lations, and for this subclass, Athanasiadis [1] and Stapledon [27] proved inequalities
for the binomial transforms of Ehrhart polynomials similar in spirit to Theorem 1.1.

While chromatic polynomials are not Ehrhart polynomials, they can be written as
sums of order polynomials (by the afore-mentioned work of Stanley [23]), which we
study in Sect. 3. Order polynomials, in turn, are Ehrhart polynomials in disguise,
and so here is where we apply the Athanasiadis–Stapledon inequalities (with some
tweaking); Theorem 3.1 below might be of interest on its own account.

The flow and tension inequalities in Theorem 1.1 follow in a similar fashion from
writing the (twokinds of) flowand tension polynomials as sumsofEhrhart polynomials
(and then using the Athanasiadis–Stapledon inequalities), as we illustrate in Sect. 4.
For integral flows and tensions, this geometric setupwas introduced byKochol [14,15],
whereas for modular flows it is due to Breuer–Sanyal [6].

The underlying theme here is that one can interpret graph polynomials as certain
combinations of Ehrhart polynomials of very nice polytopes (ones that admit unimodu-
lar triangulations), and thus theseEhrhart polynomials satisfy certain linear constraints,
which then can be translated back into constraints for the graph polynomials.

2 Ehrhart theory and h∗-inequalities

Given a lattice polytope P ⊂ R
d , i.e., the convex hull of finitely many points in Z

d ,
Ehrhart’s celebrated theorem [8] says that the counting function

ehrP(n) := |nP ∩ Z
d |

for n ∈ Z>0 extends to a polynomial in n of degree dimP. (See, e.g., [2] for back-
ground on Ehrhart theory.) We will assume throughout that P is full dimensional,
and so the degree of ehrP(n) is d. An equivalent formulation of Ehrhart’s theorem
is that the Ehrhart series 1 + ∑

n≥1 ehrP(n) zn evaluates to a rational function of
the form h∗

P(z)/(1 − z)d+1 for some polynomial h∗
P(z) of degree s ≤ d, the h∗-

polynomial of P—a name for the binomial transform of an Ehrhart polynomial that
has become somewhat of a standard. We are interested in (linear) constraints among
the h∗-coefficients. Stanley [24] proved that the coefficients of h∗

P(z) are nonnegative
integers. We will use below the fact that the coefficient of zd equals the number of
interior lattice points of P, and the constant term equals 1.

The Ehrhart–Macdonald reciprocity theorem [20] gives the algebraic relation

(−1)d ehrP(−n) = ehrP◦(n),
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where P◦ denotes the interior of P. An equivalent version is

zd+1h∗
P(1/z) = h∗

P◦(z), (1)

where the h∗-polynomial of P◦ is defined through

∑

n≥1

ehrP◦(n) zn = h∗
P◦(z)

(1 − z)d+1 .

Note that the degree of h∗
P◦(z) equals d + 1.

A triangulation of a d-dimensional polytopeP is a collection of simplices such that
their union is P and the intersection of two simplices is a face of both. (See, e.g., [7]
for background on triangulations.) A triangulation of P is unimodular if all simplices
have integer vertices and (minimal) volume 1/d!. A triangulation T comes with an
f -polynomial

fT (z) :=
d+1∑

j=0

f j−1z j ,

where f j counts the number of j-dimensional faces of T (and we set f−1 = 1 for the
empty face). We further define the h-polynomial of T to be

hT (z) := (1 − z)d+1 fT

(
z

1 − z

)
.

If P has a unimodular triangulation T , it is well known (see, e.g., [2, Chap. 10]) that
the h∗-polynomial of P equals the h-polynomial of T .

Athanasiadis [1, Thm. 1.3] proved that, if P is a d-dimensional lattice polytope that
admits a regular unimodular triangulation, then

h∗
d ≤ h∗

d−1 ≤ . . . ≤ h∗
�(d+1)/2�, (2)

h∗
j+1 ≥ h∗

d− j for 0 ≤ j ≤ d

2
− 1, (3)

h∗
j ≤

(
h∗
1 + j − 1

j

)
for 0 ≤ j ≤ d. (4)

Athanasiadis remarked in [1] that these inequalities had been independently proved
by Hibi and Stanley (unpublished). Stapledon [27, Thm. 2.20] showed that (3) holds
under the (weaker) assumption that the boundary of P admits a regular unimodular
triangulation. Under the same condition, Stapledon proved that

h∗
0 + · · · + h∗

j+1 ≤ h∗
d + · · · + h∗

d− j +
(

h∗
1 − h∗

d + j + 1

j + 1

)
for 0 ≤ j ≤ d

2
− 1.

(5)
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We remark that Stapledon derived (3) and (5) from a broad set of h∗-inequalities,
extending previous work of Betke–McMullen [3] and Payne [21].

3 Order and Chromatic Polynomials

Given a finite poset (Π,�) with |Π | = d, the order polynomial Ω◦
Π(n) counts all

strictly order-preserving maps from Π to [n] := {1, 2, . . . , n}, i.e.,

Ω◦
Π(n) := |{ϕ ∈ [n]Π : a ≺ b ⇒ ϕ(a) < ϕ(b)}|.

Order polynomials first surfaced in [23]; we will encode them via

∑

n≥1

Ω◦
Π(n) zn = Ω∗

Π(z)

(1 − z)d+1 .

(See, e.g., [26] for background on posets and order polynomials.) Order polynomials
are Ehrhart polynomials in disguise. We define the order polytope of Π as

O := {ϕ ∈ [0, 1]Π : a � b ⇒ ϕ(a) ≤ ϕ(b)}.

This much-studied subpolytope of the unit cube in R
Π was introduced in [25]. From

its definition we deduce that

Ω◦
Π(n) = ehrO◦(n + 1).

This implies Ω∗
Π(z) = h∗

O◦(z)/z = zd h∗
O(1/z), i.e.,

Ω∗
j = h∗

d− j , (6)

where the numbers on the right-hand side are the coefficients of h∗
O(z). Note that

Ω∗
0 = h∗

d = 0 (because O contains no interior lattice points) and Ω∗
d = h∗

0 = 1.

Theorem 3.1 Let Π be a poset on d elements and, as above, denote the binomial
transform of its order polynomial by Ω∗

Π(z) = Ω∗
d zd +Ω∗

d−1zd−1 +· · ·+Ω∗
1 z. Then

Ω∗
1 ≤ Ω∗

2 ≤ . . . ≤ Ω∗
�(d+1)/2�,

Ω∗
j ≤ Ω∗

d− j for 1 ≤ j ≤ d − 1

2
,

Ω∗
d− j ≤

(
Ω∗

d−1 + j − 1

j

)
for 0 ≤ j ≤ d − 1,

Ω∗
d + · · · + Ω∗

d− j ≤ Ω∗
1 + · · · + Ω∗

j +
(

Ω∗
d−1 − Ω∗

1 + j

j

)
for 1 ≤ j ≤ d − 1

2
.
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Proof Let μ : Rd → H0 := {x ∈ R
d : x1 + x2 + · · · + xd = 0} be an orthogonal

projection, and let L be the lattice in H0 generated by μ(e1), . . . , μ(ed−1), i.e., L =
μ(Zd), and μ(ed) = −μ(e1) − · · · − μ(ed−1).

We claim that the order polytopeO ofΠ andμ(O) have the same h∗-polynomial. To
see this, consider the canonical unimodular triangulation T ofO, using the hyperplanes
x j = xk . The image of each simplex Δ ∈ T under the projection μ is a unimodular
simplex in H0 (with respect to L), and the vertices (0, . . . , 0) and (1, . . . , 1) both get
projected to the origin. This gives a unimodular triangulation Tμ of μ(O), and T is
combinatorially a cone over Tμ; in particular, the f -vectors of T and Tμ are related
via

fT (z) = fTμ(z) · (1 + z).

Because both triangulations are unimodular,3

h∗
O(z) = hT (z) = (1 − z)d+1 fT

(
z

1 − z

)
= (1 − z)d+1

(
1 + z

1 − z

)
fTμ

(
z

1 − z

)

= (1 − z)d fTμ

(
z

1 − z

)
= hTμ(z) = h∗

μ(O)(z). (7)

The coefficients of h∗
μ(O)

(z) satisfy the Athanasiadis–Stapledon inequalities (2)–(5),
with d replaced by d −1. Via (6), all the inequalities from the theorem follow and this
finishes our proof. ��
Proof of the first two sets of inequalities in Theorem 1.1 Let A(G) be the set of all
acyclic orientations of G.4 Then the chromatic polynomial χG(n) of G decomposes
naturally into order polynomials as

χG(n) =
∑

Π∈A(G)

Ω◦
Π(n). (8)

Here we identify an acyclic orientation Π with its corresponding poset. (In this
language, it is quite natural to think of Ω◦

Π(n) as the chromatic polynomial of the
digraph Π .) Because every Π ∈ A(G) has d elements,

χ∗
G(z) =

∑

Π∈A(G)

Ω∗
Π(z),

and so the first two sets of inequalities in Theorem 1.1 follow from Theorem 3.1. ��
3 The equality (7) of h∗

O(z) and h∗
μ(O)

(z) can be also seen by noticing that the triangulations T and Tμ are
regular and therefore shellable, and they have the same h-polynomial. See, e.g., [11] why order polytopes
are compressed, and therefore have regular unimodular triangulations, and also how these properties are
preserved under the projection μ. We also note that projected order polytopes are examples of alcoved
polytopes [17].
4 An orientation is acyclic if it does not contain any coherently directed cycles.
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4 Flow and Tension Polynomials

The inequalities for the coefficients of φ∗
G(z), f ∗

G(z), and t∗G(z) are proved in a similar
way, except that now we do not have the luxury of the dimension reduction exhibited
in the proof of Theorem 3.1.

Proof of the remaining inequalities in Theorem 1.1 We start by showing that each of
φ∗

G(z), f ∗
G(z), and t∗G(z) is the sum of h∗-polynomials of open polytopes of the same

dimension. (By an open polytope we simply mean the interior of a polytope.)

– For Zn-flows we use [6, Prop. 2.3], which expresses φG(n) as a sum of Ehrhart
polynomials of certain open polytopes, all of which have dimension ξ . (Briefly,
one replaces the flow equations over Zn by a set of affine equations over R, in
which n now acts as a dilation parameter.) Thus φ∗

G(z) is a sum of h∗-polynomials
of open polytopes of dimension ξ .

– For integer flows, we write, as in the proof of [14, Thm. 1],

fG(n) =
∑

Π∈T (G)

pΠ(n),

where T (G) is the set of all totally cyclic orientations of G,5 and pΠ(n) counts
the Z-flows x on Π whose images satisfy 0 < x(e) < n. As noted in [14], pΠ(n)

is the Ehrhart polynomial of an open polytope with dimension ξ , and so f ∗
G(z) is

a sum of h∗-polynomials of open polytopes.
– Similarly, for integer tensions, we use [15, Sect. 4] to write

tG(n) =
∑

Π∈A(G)

uΠ(n),

where, as above, A(G) is the set of all acyclic orientations of G, and uΠ(n)

counts the Z-tensions x on Π with 0 < x(e) < n. By [15], uΠ(n) is the Ehrhart
polynomial of an open polytope with dimension d − c, and so t∗G(z) is a sum of
h∗-polynomials of open polytopes.

In each of the above three cases, the polytopes in the decomposition admit regular uni-
modular triangulations (see, e.g., [5,11]), sowe can apply (2)–(5) and these inequalities
will then extend linearly to the coefficients of φ∗

G(z), f ∗
G(z), and t∗G(z).

It remains to rewrite (2)–(5) for h∗
P◦(z) = αd+1zd+1 +αd zd +· · ·+α1z (assuming

the polytope in question has dimension d) via (1):

α1 ≤ α2 ≤ . . . ≤ α�d/2�+1,

αd− j ≥ α j+1 for 0 ≤ j ≤ d

2
− 1,

αd+1− j ≤
(

αd + j − 1

j

)
for 0 ≤ j ≤ d,

5 An orientation is totally cyclic if every edge lies in a coherently directed cycle.
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αd+1 + · · · + αd− j ≤ α1 + · · · + α j+1 +
(

αd − α1 + j + 1

j + 1

)
for 0 ≤ j ≤ d

2
− 1.

The remaining inequalities in Theorem 1.1 now follow from the first two sets of
inequalities above. ��
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