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Abstract
Gardner et al. posed the problem to find a discrete analogue of Meyer’s inequality
bounding from below the volume of a convex body by the geometric mean of the
volumes of its slices with the coordinate hyperplanes. Motivated by this problem,
for which we provide a first general bound, we study in a more general context the
question of bounding the number of lattice points of a convex body in terms of slices,
as well as projections.

Keywords Lattice point enumerator · Loomis−Whitney inequality · Meyer’s
inequality · Slicing problem · Successive minima

Mathematics Subject Classification 52C07 · 11H06

1 Introduction

One of the central questions inGeometric Tomography is to determine or to reconstruct
a set K in the n-dimensional Euclidean space Rn by some of its lower dimensional
“structures” (see [13]). Usually, these are projections on and sections with lower
dimensional subspaces ofRn . A classical and very well-known example in this context
is the famous Loomis–Whitney inequality [31], which compares the volume of a non-
empty compact set K to the geometric mean of its projections onto the coordinate
hyperplanes:
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(vol K )(n−1)/n ≤
(

n∏
i=1

voln−1(K |e⊥
i )

)1/n

. (1.1)

Here vol K denotes the volume, i.e., the n-dimensional Lebesguemeasure of the set K ,
and voln−1(K |e⊥

i ) the (n − 1)-dimensional volume of the orthogonal projection of K
onto the coordinate hyperplane orthogonal to the i th unit vector ei . Equality is attained,
e.g., if K = [a1, b1] × · · · × [an, bn], ai < bi , is a rectangular box. For various
generalizations and extensions of this inequality we refer to [7] and the references
within.

Loomis and Whitney proved (1.1) by observing that it suffices to prove it when
K is the non-overlapping union of equal cubes which is then a purely combinatorial
problem. In particular, this combinatorial version implies (and is actually equivalent
to) the following discrete variant of (1.1):

(#K )(n−1)/n ≤
(

n∏
i=1

#(K |e⊥
i )

)1/n

, (1.2)

where #M = |M ∩ Z
n| is the lattice point enumerator (with respect to Z

n). So (1.1)
and (1.2) are equivalent statements for compact sets. The discrete version (1.2) was
also independently proven by Schwenk and Munro [39].

Due to the comparison of n- and (n − 1)-dimensional volumes in (1.1), it is easy
to see that there is no lower bound on the volume in terms of the geometric mean
of voln−1(K |e⊥

i ). However, if we further assume that K ∈ Kn , i.e., it belongs to the
family of convex and compact sets, and if we replace projections by sections, then it
was shown by Meyer [35] that

(vol K )(n−1)/n ≥ n!1/n
n

(
n∏

i=1

voln−1(K ∩ e⊥
i )

)1/n

, (1.3)

where equality is attained if and only if K is a generalized crosspolytope, i.e., K =
conv {a1e1,−b1e1, . . . , anen,−bnen}, for some ai , bi ≥ 0. Observe that n!1/n/n is
asymptotically 1/e. Meyer’s inequality may also be regarded as a dual inequality to
(1.1) in the setting of polarity of convex bodies (see, e.g., [7]).

In [15], Gardner et al. posed the question to find a discrete analogue of Meyer’s
inequality (1.3); more precisely, they asked

Question Let n ∈ N. Is there a constant cn > 0 such that for all K ∈ Kn,

(#K )(n−1)/n ≥ cn

(
n∏

i=1

#(K ∩ e⊥
i )

)1/n

? (1.4)

As in the case of the Loomis–Whitney inequality, a discrete version (1.4) would
imply the analogous inequality for the volume, and hence, by (1.3) we certainly have
cn ≤ n!1/n/n (cf. (2.9)). In the plane, Gardner et al. [15] proved
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(#K )1/2 >
1√
3

(
#(K ∩ e⊥

1 ) · #(K ∩ e⊥
2 )

)1/2
,

for any K ∈ K2. The elongated cross-polytope K = conv {±e1,±he2} shows that
1/

√
3 is asymptotically best possible, i.e., for h → ∞. Hence, in contrast to the

Loomis–Whitney inequality, (1.3) has no equivalent discrete version, since in the
plane the constant in Meyer’s inequality is 1/

√
2.

The short answer to the question above is “No!” for arbitrary convex bodies and
n ≥ 3 (cf. Proposition 3.1). Restricted to the set Kn

os of origin-symmetric convex
bodies, however, we have the following result.

Theorem 1.1 Let K ∈ Kn
os. Then

(#K )(n−1)/n >
1

4n−1

(
n∏

i=1

#(K ∩ e⊥
i )

)1/n

.

We do not believe that this inequality is best possible. Instead, we propose 3(1−n)/n to
be the right constant (cf. Example 3.2).

While it is not possible to bound the volume of a symmetric convex set K from
above in terms of

∏n
i=1 voln−1(K ∩ e⊥

i ), Feng et al. proved in [12] that there is a
constant c̃n ≤ (n − 1)! such that for any K ∈ Kn

os there exists an orthogonal basis
u1, . . . , un ∈ R

n such that

(vol K )(n−1)/n ≤ c̃n

(
n∏

i=1

voln−1(K ∩ u⊥
i )

)1/n

. (1.5)

Alonso-Gutiérrez and Brazitikos [2] improved this result considerably: they showed
that up to a universal constant the best possible c̃n is equal to the so-called maximum
isotropic constant in dimension n, which is bounded from above by n1/4 (see [23]).
For a definition of the isotropic constant and extensive background material thereunto,
we refer to [8]. Moreover, they proved that this is valid for any centered convex body,
i.e., for a convex body whose centroid is at the origin. Inspired by this, we prove the
following inequalities:

Theorem 1.2 Let K ∈ Kn
os. There exists a basis b1, . . . , bn of the lattice Z

n such that

(#K )(n−1)/n < O(n22n)

(
n∏

i=1

#(K ∩ b⊥
i )

)1/n

, (1.6)

and there exist t i ∈ Z
n, 1 ≤ i ≤ n, such that

(#K )(n−1)/n < O(n2)

(
n∏

i=1

#(K ∩ (t i + b⊥
i ))

)1/n

. (1.7)

Observe that due to Brunn’s concavity principle (see, e.g., [3, Thm. 1.2.1]) the volume
maximal slice voln−1(K ∩ (t + u⊥)), t ∈ R

n , of K ∈ Kn
os is always the central
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slice, i.e., t = 0. This is no longer true regarding lattice points which explains the
difference between (1.6) and (1.7). Here we have the following kind of a discrete
Brunn’s concavity principle.

Lemma 1.3 Let K ∈ Kn
os and let L ⊂ R

n be a k-dimensional linear lattice subspace,
i.e., dim (L ∩ Z

n) = k, k ∈ {0, . . . , n − 1}. Then for any t ∈ R
n,

#(K ∩ (t + L)) ≤ 2k#(K ∩ L),

and the inequality is best possible.

For various discrete versions of the classical Brunn–Minkowski theorem, which in
particular implies Brunn’s concavity principle, we refer to [14,19,21,22].

From (1.7) we immediately get an inequality for K ∈ Kn
os of the type

(#K )(n−1)/n ≤ cn max
t∈Zn ,u∈Zn\{0} #(K ∩ (t + u⊥)) (1.8)

with cn = O(n2). This may be regarded as a lattice version of the well-known slicing
problem for volumes, asking for the correct order of a constant c such that for all
centered convex bodies K ∈ Kn there exists a u ∈ R

n \ {0} such that

(vol K )(n−1)/n ≤ c vol(K ∩ u⊥). (1.9)

To this day, the best known bound is of order n1/4 (cf. [23]).With respect to the discrete
slicing inequality (1.8) we prove

Theorem 1.4 Let K ∈ Kn. Then

(#K )(n−1)/n ≤ O(n2) max
t∈Zn ,u∈Zn\{0} #(K ∩ (t + u⊥)). (1.10)

If K ∈ Kn
os, the constant can be replaced by O(n).

Finally, we will give an example that shows that all the constants in (1.6), (1.7), (1.8),
and (1.10) must be at least of order

√
n.

Theorem 1.5 For n ∈ N there exists a sequence of n-dimensional origin-symmetric
convex bodies (K j ) j∈N such that

lim sup
j→∞

(#K j )
(n−1)/n

supH #(K j ∩ H)
≥ c

√
n,

where H ranges over all affine hyperplanes in Rn and c > 0 is a universal constant.

We remark that the slicing problem (1.9) has also been extensively studied for other
measures. For instance, Koldobsky [27] proved for origin-symmetric convex bodies
that

μ(K ) ≤ O(
√
n) max

x∈Rn\{0} μ(K ∩ x⊥)(vol K )1/n

123



Discrete & Computational Geometry (2022) 67:895–918 899

for measures μ that admit a continuous density, and it was shown by Klartag and
Livshyts [25] that the order of

√
n is optimal (see also [24]). An extension to lower

dimensional sections was given by Koldobsky in [26,28], and Chasapis et al. [11]
proved for general convex bodies that

μ(K ) ≤ O(k)(n−k)/2 max
F

μ(K ∩ F)(vol K )(n−k)/n, (1.11)

where F ranges over all k-dimensional subspaces of Rn and μ is a measure with a
locally integrable density function. In [1] the authors obtained an inequality similar to
(1.11) for K ∈ Kn

os and the lattice point enumerator:

#K ≤ O(n)n−k max
H

#(K ∩ F)(vol K )(n−k)/n,

where F ranges over all k-dimensional linear subspaces with dim (F ∩ Z
n) = k. In

the case k = n − 1 and convex bodies of “small” volume, Regev [37] proved via a
probabilistic approach such an inequality with the constant O(n) instead of O(n)n−1.

Finally, we discuss a reverse Loomis–Whitney inequality in the spirit of (1.5).
Campi et al. [9] showed that there exists a constant d̃n ≥ c/n, where c is an absolute
constant, such that

(vol K )(n−1)/n ≥ d̃n

(
n∏

i=1

vol(K |u⊥
i )

)1/n

, (1.12)

where again u1, . . . , un form a suitable orthonormal basis. In [29], Koldobsky et al.
showed that the optimal order of the constant d̃n is of size n−1/2.

In order to get a meaningful discrete version of (1.12) we have to project so that
Z
n|u⊥

i is again a lattice, i.e., ui ∈ Z
n , and we have to count the lattice points of K |u⊥

i
with respect to this lattice.

Theorem 1.6 Let K ∈ Kn
os with dim (K ∩ Z

n) = n. There exist linearly independent
vectors v1, . . . , vn ∈ Z

n such that

(#K )(n−1)/n ≥ O(1)−n

(
n∏

i=1

#
Zn |v⊥

i
(K |v⊥

i )

)1/n

,

where #
Zn |v⊥

i
(K |v⊥

i ) = ∣∣(K |v⊥
i ) ∩ (Zn|v⊥

i )
∣∣.

The paper is organized as follows. In the next section we recall briefly some basic
definitions and tools from Convex Geometry and Geometry of Numbers needed for
the proofs. Section 3 is devoted to the slicing inequalities, in particular, we provide
the proofs of Theorems 1.1 to 1.5 as well as of Lemma 1.3. The proof of Theorem 1.6
is given in Sect. 4, and in the final section we discuss improvements for the special
class of unconditional bodies.
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2 Preliminaries

For a non-zero vector x ∈ R
n , we denote the orthogonal complement of span {x}

by x⊥ and its Euclidean norm by |x|. We write Bn = {x ∈ R
n : |x| ≤ 1} for the

Euclidean unit ball and Cn = [−1, 1]n for the symmetric cube. The line segment
between x, y ∈ R

n is denoted by [x, y] = {λx + (1 − λ) y : λ ∈ [0, 1]}. For
two non-empty sets A, B ⊆ R

n the Minkowski sum is defined elementwise, i.e.,
A + B = {a + b : a ∈ A, b ∈ B}. Similarly, for a scalar λ ∈ R, one defines
λA = {λa : a ∈ A} and we write −A = (−1)A.

A convex body is a compact convex set K ⊆ R
n .We say that K is origin-symmetric,

if K = −K . The set of all convex bodies is denoted by Kn and the set of all origin-
symmetric convex bodies is denoted by Kn

os. The support function of a convex body
K is defined for x ∈ R

n as h(K , x) = sup y∈K 〈x, y〉. If the origin is an interior point
of K , the polar body of K is defined as

K � = { y ∈ R
n : 〈x, y〉 ≤ 1, ∀x ∈ K } ∈ Kn .

Moreover, for such K , the gauge function | · |K : Rn → R≥0 is defined by |x|K =
min {μ ≥ 0 : x ∈ μK }; then | · |K � = h(K , · ) [38, Lem. 1.7.13]. The volume vol K
of a convex body K is its n-dimensional Lebesgue measure. If K is contained in a
k-dimensional space F , we denote by volk K its k-dimensional Lebesgue measure
in F . It is a famous open problem in Convex Geometry to find the best possible lower
bound on the volume product vol K ·vol K �, where K ∈ Kn

os. Mahler conjectured that
it is 4n/n! and it is known to be true with πn/n! [30]. Here we will just use

vol K · vol K � ≥ 3n

n! . (2.1)

For X ⊆ R
n , we denote the convex hull of X by conv X . If X is finite, conv X is called

a polytope and if, in addition, X ⊆ Z
n , we call conv X a lattice polytope.

In general, a lattice � ⊆ R
n is a discrete subgroup of Rn of the form

� =
{

k∑
i=1

αi bi : αi ∈ Z

}
,

for some linearly independent b1, . . . , bk ∈ R
n . The set {b1, . . . , bk} is called a

(lattice) basis of � and one defines det� = volk([0, b1] + · · · + [0, bk]). Sublattices
of � that arise as intersections � ∩ L , where L ⊆ R

n is a linear subspace, are called
primitive. If L fulfills dim L = dim (� ∩ L), L is called a lattice subspace of �. A
point v ∈ � \ {0} is called primitive, if Zv is a primitive sublattice of �. The polar
lattice of � is defined as

�� = {a ∈ span� : 〈b, a〉 ∈ Z, ∀b ∈ �}.

There are several duality relations between � and �� of which we recall a few here
(cf. e.g. [34, Prop. 1.3.4]). First of all the determinants of � and �� are linked by the
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simple formula det� · det�� = 1. Further, a k-dimensional subspace L ⊆ span �

is a lattice subspace of �, if and only if its orthogonal complement L⊥ in span� is a
(dim�−k)-dimensional lattice subspace of��. In particular, every lattice hyperplane
H of � possesses a primitive normal vector v� ∈ �� and the determinant of � ∩ H
is given by |v�| det�. Moreover, the orthogonal projection ��|L is a k-dimensional
lattice and we have the following relation:

(� ∩ L)� = ��|L. (2.2)

For a finite set A ⊂ R
n we denote by |A| its cardinality and for the lattice point

enumerator of a set A ⊆ R
n with respect to a lattice� ⊆ R

n wewrite #�A = |A∩�|.
If � = Z

n , we just write #A instead of #Zn A.
Minkowski established via his successive minima various fundamental relations

between the volume and lattice point properties of a symmetric convex body. For
K ∈ Kn

os and a lattice � ⊆ R
n , both full-dimensional, the i th successive minimum is

defined as

λi (K ,�) = min {λ > 0 : dim (λK ∩ �) = i},

where 1 ≤ i ≤ n; we abbreviate λi (K ) = λi (K ,Zn). In [10, Ch.VIII, Thm. V]
Minkowski proved the fundamental inequalities:

2n

n! det� ≤ λ1(K ,�) · · · λn(K ,�) · vol K ≤ 2n det�. (2.3)

Here we also need a discrete variant of the upper bound going back to Betke et al. [6].
For K ∈ Kn

os they proved

#K ≤
n∏

i=1

(
2i

λi (K )
+ 1

)
,

which was later improved in [20]. The currently best known upper bound is due to
Malikiosis [33], which, in particular, implies for K ∈ Kn

os that

#K ≤ √
3
n−1

n∏
i=1

⌊
2

λi (K )
+ 1

⌋
. (2.4)

In general, linearly independent lattice points ai ∈ �, 1 ≤ i ≤ n, corresponding to the
successive minima, i.e., ai ∈ λi (K ,�)K , do not form a basis of �. It was shown by
Mahler (cf. [18, Sect. 2.10]), however, that there exists a lattice basis b1, . . . , bn ∈ �

such that

|bi |K ≤ max

{
1,

i

2

}
· λi (K ,�). (2.5)
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We also need a lower bound on the product of the successive minima of a convex body
K with those of the polar body K � (cf. [17, Thm. 23.2]):

λi (K
�,��) · λn+1−i (K ,�) ≥ 1. (2.6)

Regarding upper and lower bounds on the volume in terms of the lattice point enumer-
ator, we mention here two results. First, van der Corput [18, Ch.2, Thm. 7.1] proved
for K ∈ Kn

os that

vol K ≤ (2n−1(#�K + 1)) · det�, (2.7)

and Blichfeldt [42] showed for K ∈ Kn with dim (K ∩ �) = n that

vol K ≥ #�K − n

n! det�. (2.8)

Finally, the volume and the lattice point enumerator are equivalent “on a large scale”,
i.e., for any n-dimensional convex body K ⊆ R

n , n-dimensional lattice � ⊆ R
n , and

t ∈ R
n one has (cf. e.g. [40, Lem. 3.22])

lim
r→∞

#t+�(r K )

rn
= vol K

det�
. (2.9)

In this paper we will mostly deal with the standard lattice Zn since all the results can
easily be generalized to arbitrary lattices.

For more information on Geometry of Numbers and/or Convex Geometry we refer
to the books [13,17,18,38].

3 Slicing Inequalities for the Lattice Point Enumerator

First, we show that the answer to the question (1.4) of Gardner et al. is in general
negative, if the dimension is greater than 2.

Proposition 3.1 Let n ≥ 3 be fixed. There exists no positive number c > 0 such that
for all K ∈ Kn

(#K )(n−1)/n ≥ c

(
n∏

i=1

#(K ∩ e⊥
i )

)1/n

. (3.1)

Proof We first prove it for n = 3. For an integer k ∈ N, let Tk be the simplex
with vertices {0, e1, e1 + k e2, k e3} (see Fig. 1). Then, #Tk = 2(k + 1), and also
#(Tk ∩ e⊥

1 ) = k + 1 and #(Tk ∩ e⊥
2 ) = #(Tk ∩ e⊥

3 ) = k + 2. Thus

(#Tk)2/3(∏3
i=1 #(Tk ∩ e⊥

i )
)1/3 ≤ 22/3

(k + 1)2/3

k + 1
= 22/3(k + 1)−1/3
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Fig. 1 The simplex Tk

and so the left hand side tends to 0 as k → ∞. For n ≥ 4 we just can consider, e.g.,
the simplices conv (Tk ∪ {e4, . . . , en}). ��
Roughly speaking, the simplex Tk from above falsifies (3.1) because the two skew
segments [0, ke3] and [e1, e1+ke2] are both ”long”, but do not generate any additional
lattice points in Tk . Such a construction is not possible in the symmetric case. In fact,
if K ∈ Kn

os possesses 2h + 1 lattice points on the coordinate axis Ren , any interior
lattice point v ∈ K ∩ e⊥

n will contribute Ov,n(h) lattice points to K . Here, Ov,n

hides a constant that only depends on v and n. However, unlike the simplex above,
a symmetric convex body always contains at least #K/3n interior lattice points (see
[16]).Motivated by this heuristic, we conjecture the following polytopes to be extremal
in (3.1), when restricted to Kn

os.

Example 3.2 For an integer h ∈ N let Kh = conv
(
(Cn−1 × {0}) ∪ {±h en}

)
be a

double pyramid over the (n − 1)-dimensional cube Cn−1 = [−1, 1]n−1 (see Fig. 2).
Then #Kh = 3n−1 + 2h, #(Kh ∩ e⊥

i ) = 3n−2 + 2h, for 1 ≤ i < n, and #(Kh ∩ e⊥
n ) =

3n−1. Thus,

lim
h→∞

(#Kh)
n−1∏n

i=1 #(Kh ∩ e⊥
i )

= 1

3n−1 ,

which is why we conjecture the optimal constant in (3.1) to be 3−(n−1)/n ≈ 1/3.

In order to prove the lower bound inTheorem1.1,wemust first understand the behavior
of #( · ) with respect to affine transformations. An important tool for this is the index
of a sublattice�′ ⊆ �, i.e., the number of different cosets a+�′, a ∈ �. If dim�′ =
dim�, this number is known to be finite and is given by det�′/det�. The following
lemma will be used extensively throughout this paper.

Lemma 3.3 Let K ∈ Kn
os, t ∈ R

n, and A ∈ Z
n,n be an invertible matrix with integral

entries. Then

#(AK + t) ≤ 2n−1|det A| · (#K + 1) ≤ 2n|det A| · #K .
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Fig. 2 The double pyramid Kh

In particular, we have

#(K + t) ≤ 2n−1(#K + 1) ≤ 2n#K , (3.2)

which is best possible, and for m ∈ N,

#(mK ) ≤ 2n−1mn(#K + 1) ≤ (2m)n#K , (3.3)

which is best possible up to a factor (1 + 1/(2m − 1))n.

Proof Let � = 2AZn ⊆ Z
n and let �i ⊆ Z

n , 1 ≤ i ≤ 2n|det A|, be the cosets of �

in Z
n . Consider two points y j = A x j + t ∈ A K + t , where x j ∈ K , j = 1, 2, that

belong to a common �i , say. For such points, we have y1 − y2 ∈ �. Thus, by the
symmetry of K , we have

1

2
( y1 − y2) = A

(
1

2
(x1 − x2)

)
∈ AK ∩ AZn = A(K ∩ Z

n).

That means

∣∣(AK + t) ∩ �i − (AK + t) ∩ �i
∣∣ ≤ |A(K ∩ Z

n)| = #K . (3.4)
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Since for any two finite sets A, B ⊆ R
n (cf. [40, Sect. 5.1])

|A + B| ≥ |A| + |B| − 1, (3.5)

we get from (3.4), |(AK + t) ∩ �i | ≤ (#K + 1)/2. Since the �i ’s form a partition
ofZn , the desired inequality follows. In order to see that (3.2) is best possible, consider
the rectangular box Qk = (1/2)[−1, 1]n−1 × [−k + 1/2, k − 1/2], where k ∈ N,
and t = (1/2, . . . , 1/2)T ∈ R

n . Then, we have #Qk = 2k − 1 and #(Qk + t) =
2n−12k = 2n−1(#Qk + 1). For (3.3), let K = [−(1 − 1/(2m)), 1 − 1/(2m)]n ; then
#(m K ) = (2m − 1)n#K . ��
Remark (1) Restricted to the class of origin-symmetric lattice polytopes, (3.2) is best

possible up to a factor 4, as the polytopes of Example 3.2 together with the vector
t = (1/2, . . . , 1/2, 0)T show. On the one hand, one has #Kh = 2h+O(1), where
O( · ) describes the asymptotic behavior for h → ∞. On the other hand, the cube
[0, 1]n−1 is contained in the relative interior of K ∩ e⊥

n + t . Even more, each of
its vertices v is the midpoint of [t, t + x], where x is a vertex of K ∩ e⊥

n . Hence,
the lines v + Ren each contribute h + O(1) points to (Kh + t) ∩ Z

n . Since there
are 2n−1 such lines, we obtain

lim
h→∞

#(Kh + t)
#Kh

= lim
h→∞

2n−1(h + O(1))

2h + O(1)
= 2n−2.

In fact, Wills [41] showed that for any lattice polygon P ⊆ R
2 and t ∈ R

2 one
has #(P + t) ≤ #P . We conjecture that for any lattice polytope P ∈ Kn

os,

#(P + t) ≤ 2n−2#P.

(2) If K is not necessarily symmetric, (3.2) and (3.3) fail. In that case, counterexam-
ples are given by the simplices Tk in the proof of Proposition 3.1. Basically, the
reason for this is that Tk contains O(k) lattice points, while in a translation or
dilation of Tk one may find a right-angled triangle spanned by two orthogonal
segments of length O(k) each, lying in a hyperplane of the form e⊥

i + t , t ∈ Z
3.

Such a triangle contributes O(k2) points. Again, letting k → ∞ shows that the
inequalities cannot be generalized to the non-symmetric case. This has also been
observed independently by Lovett and Regev in [32].

Next we come to the proof of Theorem 1.1.

Proof of Theorem 1.1 Let Ki = K ∩ e⊥
i and �i = Z

n ∩ e⊥
i , 1 ≤ i ≤ n. First, assume

that there is an i such that (1/2)Ki contains only the origin as a lattice point. For
convenience, let i = n. Then (3.3) applied to (1/2)Kn in the (n − 1)-dimensional
setting yields #�n Kn ≤ 4n−1#�n ((1/2)Kn) = 4n−1. Thus, since Ki ⊆ K ,

#Kn−1 ≥
n−1∏
i=1

#�i Ki ≥ 1

4n−1

n∏
i=1

#�i Ki >
1

4n(n−1)

n∏
i=1

#�i Ki ,
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and we are done. So we can assume that every (1/2)Ki contains a non-zero lattice
point. In this case, the second inequality in (3.3) is strict and we obtain

#Ki = #�i Ki = #�i

(
2 · 1

2
Ki

)
< 4n−1#�i

(
1

2
Ki

)
= 4n−1#2�i (Ki ). (3.6)

Now we consider the linear map

φ : (K1 ∩ 2�1) × · · · × (Kn ∩ 2�n) → (K ∩ Z
n)n−1 given by

φ((a1, . . . , an)) =
(
1

2
(a2 − a1),

1

2
(a3 − a1), . . . ,

1

2
(an − a1)

)
.

We note that by the symmetry and convexity of K , as well as the definition of 2�i , we
readily have φ((a1, . . . , an)) ∈ (K ∩ Z

n)n−1. Moreover, since ai ∈ e⊥
i , 1 ≤ i ≤ n,

the map is injective and so

#Kn−1 ≥
n∏

i=1

#2�i Ki .

Together with (3.6) we obtain

(#K )(n−1)/n >
1

4n−1

(
n∏

i=1

#Ki

)1/n

. ��

Next, we want to reverse the inequality in Theorem 1.1. Apparently, one cannot get
an upper bound on #K in terms of the geometric mean of the sections K ∩ e⊥

i . Here
we have to replace the ei by a lattice basis b1, . . . , bn of Zn that “suits” the body K .
Our strategy will then be to decompose Z

n = ⋃
j∈Z{x ∈ Z

n : 〈x, bi 〉 = j} and

estimate the sections parallel to b⊥
i against the central one. As for the volume, Brunn’s

concavity principle states that

vol (K ∩ (t + L)) ≤ vol (K ∩ L),

for any k-dimensional linear subspace L ⊆ R
n , t ∈ R

n , and K ∈ Kn
os. So the volume-

maximal section of K parallel to L is indeed always the one containing the origin.
Unfortunately, this is false in the discrete setting as the following example shows: Let
K = conv (±([0, 1]n−1 × {1})) and, for 1 ≤ k ≤ n − 1, let Lk = span {e1, . . . , ek}.
Then #(K ∩ Lk) = 1, but #(K ∩ (en + Lk)) = 2k .

Indeed, the deviation between the central section and the maximal section is
extremal for K as above, as claimed in Lemma 1.3 which we prove next.

Proof of Lemma 1.3 Wemay assume t ∈ Z
n . In that case,� = L∩Z

n and�′ = �+ t
are k-dimensional (affine) sublattices ofZn and both of them intersect exactly 2k cosets
of Zn/2Zn . Let � ∈ Z

n/2Zn be such that�∩� �= ∅. Then�∩� ∈ �/2� and, since
cosets are disjoint, we see that � intersects at most |�/2�| = 2k cosets of Zn/2Zn .
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Conversely, since � arises as a section of Zn with a linear subspace, there exists a
complementary lattice � ⊆ Z

n such that � ⊕ � = Z
n . Then, every coset �̃ ∈ �/2�

defines a unique coset �̃⊕2� ofZn/2Zn and so�meets at least 2k cosets ofZn/2Zn .
Regarding the affine lattice �′, we note that the translation by t serves as a bijection
between cosets in � and the cosets in �′.

Now consider two points x, y ∈ K ∩�′ belonging to a common coset� ofZn/2Zn .
By the symmetry of K , we have (1/2)(x − y) ∈ K ∩ � and so

|K ∩ �′ ∩ � − K ∩ �′ ∩ �| ≤ |K ∩ �|.

Thus, by (3.5), every coset of Zn/2Zn that is present in �′ ∩ K contains at most
(1/2)(#(K ∩ �) + 1) points of K ∩ �′. Hence,

|K ∩ �′| ≤ 2k · |K ∩ �| + 1

2
.

Recalling the definitions of � and �′, we obtain

#(K ∩ (L + t)) ≤ 2k · #(K ∩ L) + 1

2
≤ 2k#(K ∩ L). ��

Now we are ready for the proof of the reverse Meyer Theorem 1.2.

Proof of Theorem 1.2 By induction on the dimension, we will show that for any n-
dimensional convex body K ∈ Kn

os and any n-dimensional lattice �, there exists a
basis b1, . . . , bn of �� and vectors t1, . . . , tn ∈ � such that

(#�K )n−1 ≤ (n!)24n
n∏

i=1

#�(K ∩ (t i + b⊥
i )). (3.7)

From this, (1.7) follows by considering � = Z
n and taking the nth root. Moreover,

(1.6) follows immediately from (1.7) and Lemma 1.3.

First, we assume dim (K ∩ �) = n. For any b ∈ �� we may write

#�K =
�h(K ,b)�∑

i=−�h(K ,b)�
#�(K ∩ {x ∈ R

n : 〈b, x〉 = i})

≤ (2�h(K , b)� + 1) · #�(K ∩ (t b + b⊥)),

(3.8)

where t b ∈ � is chosen to be the translation that maximizes the number of lattice
points in a section parallel to b⊥.

Now let b1, . . . , bn ∈ �� be a basis of �� obtained from (2.5) with respect to the
polar body K �, i.e., we have |bi |K � ≤ iλi (K �,��), 1 ≤ i ≤ n. For the vectors bi we
denote the above translation vectors t bi by t i . Then, on account of h(K , bi ) = |bi |K �

123



908 Discrete & Computational Geometry (2022) 67:895–918

we conclude from (3.8) that

(#�K )n ≤ n!
n∏

i=1

(2λi (K
�,��) + 1)

n∏
i=1

#�(K ∩ (t i + b⊥
i ))

≤ n!3n
n∏

i=1

λi (K
�,��)

n∏
i=1

#�(K ∩ (t i + b⊥
i )),

(3.9)

where for the last inequality we used λi (K �,��) ≥ 1 which follows from the assump-
tion dim (K ∩ �) = n via (2.6). Using the upper bound ofMinkowski’s theorem (2.3),
the lower bound on the volume product (2.1), and van der Corput’s inequality (2.7),
we estimate

n∏
i=1

λi (K
�,��) ≤ 2n det��

vol K �
≤ n!

(
2

3

)n
vol K · det�� ≤ n!

(
4

3

)n
#�K . (3.10)

Substituting this into (3.9) yields the desired inequality (3.7) for this case.

It remains to consider the case dim (K ∩ �) < n, so let K ∩ � ⊆ H for some
(n−1)-dimensional lattice subspace H ⊆ R

n . Let� = �∩H .We apply our induction
hypothesis to � and K ∩ H . Hence, we find a basis y1, . . . , yn−1 of �� and vectors
t1, . . . , tn−1 ∈ � such that

(#�K )n−2 ≤ (n − 1)!24n−1
n−1∏
i=1

#�(K ∩ ( y⊥
i + t i )),

which is equivalent to

(#�K )n−1 ≤ (n − 1)!24n−1#�(K ∩ b⊥
n )

n−1∏
i=1

#�(K ∩ ( y⊥
i + t i )), (3.11)

where bn ∈ �� is a primitive normal vector of H . Unfortunately, the independent
system { y1, . . . , yn−1, bn} is in general not a basis of ��. In fact, the yi ’s are not
elements of �� in the first place.

In view of (2.2), we have �� = ��|H = ��|b⊥
n . So there are vectors bi ∈

( yi + Rbn) ∩ ��. For these vectors, one has b⊥
i ∩ H = y⊥

i ∩ H . By our assumption
on K , this means

#�(K ∩ ( y⊥
i + t i )) = #�(K ∩ (b⊥

i + t i )), (3.12)

for all 1 ≤ i ≤ n − 1. Moreover, {b1, . . . , bn} is a ��-basis, since

det (b1, . . . , bn) = det ( y1, . . . , yn−1, bn)

= |bn| det �� = |bn|
det �

= |bn|
|bn| det� = det��.
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In viewof (3.11) and (3.12), {b1, . . . , bn} is the desired basis and our proof is complete.
��

Remark If we just want to find linearly independent lattice points ai ∈ Z
n , 1 ≤ i ≤ n,

for the slices in Theorem 1.2 instead of a basis, then one can save one factor of n in the
bounds of Theorem 1.2. To see this, we replace in the proof above the basis vectors bi
by linearly independent lattice points ai ∈ λi (K �)K � ∩ Z

n , 1 ≤ i ≤ n. In this case
we do not need the estimate (2.5). In particular this leads to

(#K )(n−1)/n < O(n) max
t∈Zn ,u∈Zn\{0} #(K ∩ (t + u⊥)). (3.13)

In the remainder of this section, we want to generalize (3.13) to the non-symmetric
case.

If we consider (3.8), we see that we can also estimate #K , if K is not symmetric; in
that case one replaces the factor (2�h(K , b)�+1) on the right hand side by the number
of hyperplanes parallel to b⊥ that intersect K . As it will turn out, the challenge then
is to compare the number of lattice points in K − K to the number of points in K .

For volume, such a comparison is provided by the Rogers–Shephard inequality,
which asserts that

vol (K − K ) ≤
(
2n

n

)
vol K .

The simplices Tk given in the proof of Proposition 3.1 show that there is no similar
inequality for the lattice point enumerator: While we have #Tk = O(k), in Tk − Tk
we find the triangle conv {0, k/2e2, ke3} which contains O(k2) lattice points. Since k
can be arbitrarily large, there is no constant cn > 0 depending only on the dimension
such that #(K − K ) ≤ cn#K .

However, the simplices Tk are extremely flat and therefore easily admit a large
hyperplane section. Our strategy in order to prove Theorem 1.4 will be to argue that
convex bodies K whose difference body K − K contains disproportionately many
lattice points are automatically flat. This reasoning is inspired by the proof of [4,
Thm. 4].

Proof of Theorem 1.4 The inequality for K ∈ Kn
os is already given by (3.13). So let

K ∈ Kn . We may assume dim (K ∩ Z
n) = n, because otherwise K ∩Z

n is contained
in a hyperplane itself and the inequality follows directly. Therefore, K −K contains n
linearly independent lattice points and it follows λ� = λ1((K − K )�) ≥ 1 (cf. (2.6)).
Let y ∈ λ�(K − K )� ∩ Z

n \ {0}. Then

h(K , y) + h(K ,− y) = h(K − K , y) = | y|(K−K )� = λ�,

and similarly to (3.8), (3.9), we obtain for a certain t ∈ Z
n

#K ≤ (2λ� + 1) · #(K ∩ (t + y⊥)) ≤ 3λ�#(K ∩ (t + y⊥)). (3.14)
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Let c ∈ K be the centroid of K . Then it is known [38, Lem. 2.3.3] that

K − K ⊂ (n + 1)(−c+ K ). (3.15)

First we assume that (1/2)(K + c) = c+(1/2)(−c+K ) does not contain any integral
lattice point. Then the well-known flatness theorem (cf. [5]) implies that

λ∗ = 2λ1

((
1

2
(c+ K ) − 1

2
(c+ K )

)� )
= O(n3/2).

In view of (3.14) we are done.

So we can assume that there is a lattice point a ∈ (1/2)(c+K )∩Z
n . By the choice

of c (cf. (3.15)), we get

a + 1

2(n + 1)
(K − K ) ⊆ 1

2
(c+ K ) + 1

2(n + 1)
(K − K )

= 1

2
K + 1

2

(
c+ 1

n + 1
(K − K )

)
⊆ 1

2
K + 1

2
K = K .

(3.16)

Now in order to bound λ∗ in this case we use (3.10) applied to (K − K )� and Z
n ,

which implies

(λ∗)n ≤ n!
(
4

3

)n
#(K − K ).

Together with (3.14) we obtain

(#K )n ≤ n!4n#(K − K ) #(K ∩ (t + y⊥))n . (3.17)

In order to estimate the number of lattice points in K − K we may apply (3.3) and
with (3.16) we get

#(K − K ) ≤ 4n(n + 1)n#

(
1

2(n + 1)
(K − K )

)
≤ 4n(n + 1)n#K .

By plugging this into (3.17), we obtain

(#K )n−1 ≤ 16nn!(n + 1)n#(K ∩ (t + y⊥))n .

After taking the nth root, we have

(#K )(n−1)/n ≤ O(n2)#(K ∩ (t + y⊥)),

as desired. ��

123



Discrete & Computational Geometry (2022) 67:895–918 911

We finish the section by proving Theorem 1.5, providing a lower bound on the
constants presented in Theorems 1.2 and 1.4.

Proof of Theorem 1.5 We consider a lattice � ⊆ R
n such that � is self-polar, i.e.,

� = ��, and λ1(Bn,�) = c
√
n, where c is an absolute constant. Such lattices

have been detected by Conway and Thompson [36, Thm. 9.5]. We will use a volume
approximation argument for the Euclidean ball r Bn = {x ∈ R

n : |x| ≤ r}, where
r → ∞.

For x ∈ R
n \ {0} and α ∈ R, let H(x, α) = { y ∈ R

n : 〈x, y〉 = α} be the
corresponding hyperplane. For r > 0 let ar ∈ R

n andαr ∈ R≥0 be such that #�(r Bn∩
H(ar , αr )) is maximal. Since� is self-polar, wemay assume that ar ∈ � and αr ∈ Z.
In order to control the limit as r → ∞wewant to find a sequence of radii (r j ) j∈N ⊆ N

such that r j → ∞ and H(ar j , αr j ) is constant. To this end, fix a primitive vector
a0 ∈ �. Van der Corput’s inequality (2.7) yields

#�(r Bn ∩ H(ar , αr )) ≥ #�(r Bn ∩ a⊥
0 ) ≥ 2−(n−1)rn−1ωn−1

|a0| , (3.18)

where ωi denotes the volume of the i-dimensional Euclidean unit ball and we used the
fact that the determinant of�∩a⊥

0 is given by |a0| det� = |a0|, since the determinant
of any self-polar lattice is 1.

On the other hand, if r is large enough, r Bn contains n linearly independent points
of �. Thus, the maximal section r Bn ∩ H(ar , αr ) contains n−1 affinely independent
points of �; otherwise, we might choose another point x ∈ r Bn ∩ � and replace
H(ar , αr ) by the affine hull of r Bn ∩ H(ar , αr ) ∩ � and x. This yields a hyperplane
that contains more lattice points of r Bn than H(ar , αr ), contradicting the maximality.
Hence, Blichfeldt’s inequality (2.8) yields

#�(r Bn ∩ H(ar , αr )) ≤ n!rn−1ωn−1

|ar | .

Combining with (3.18), we obtain |ar | ≤ 2n−1n!|a0|, for all but finitely many r ∈ N.
Since this bound is independent of r , we find a sequence (r j ) j∈N ⊆ N that tends to
infinity such that ar j = a, for all j and some primitive a ∈ � independent of j .

Since a ∈ �, we have for any α > |a|2,

−a + (r j B
n ∩ H(a, α) ∩ �) ⊆ r j B

n ∩ H(a, α − |a|2) ∩ �.

Hence, we may assume that αr j ≤ |a|2. Since αr is integral, we even find a sequence
of radii (r j ) j∈N ⊆ N such that H(ar j , αr j ) = H(a, α) =: H for all j and a fixed
α ∈ N.

We choose K j = r j Bn . In order to estimate the limit, we want to apply (2.9) to
r j Bn and r j Bn ∩ H . The latter body may be viewed as a ball of radius r j − o(r j ) that

123



912 Discrete & Computational Geometry (2022) 67:895–918

Fig. 3 The lattice points in the projection close to the origin admit a preimage in K that is long enough to
ensure a lattice point

is embedded in an (n−1)-space together with a translation of �∩ a⊥. Thus, by (2.9),

lim
j→∞

(#�(r j Bn))n−1

max #�(r j Bn ∩ H)n
= lim

j→∞

(
#�(r j Bn)/rnj

)n−1(
#�(r j Bn ∩ H)/(r j − o(r j ))n−1

)n
= |a|n ωn−1

n

ωn
n−1

≥ (c
√
n)ne−c′n,

where c′ > 0 is an absolute constant. In the last step we used the assumption that
λ1(Bn,�) = c

√
n and Stirling’s formula to estimate the volumes, together with the

formula ωn = πn/2/�(n/2+1), where � is the Gamma function. Taking the nth root
yields the claim. ��

4 Discrete Version of the Reverse Loomis–Whitney Inequality

The goal of this section is to prove Theorem 1.6. First, for a given v ∈ Z
n we have to

estimate the number of points in the projection of K |v⊥ with respect to the projected
lattice Zn|v⊥ against the number of points in (K ∩ Z

n)|v⊥.

Lemma 4.1 Let K ∈ Kn
os and v ∈ (K ∩ Z

n) \ {0}. Then

#Zn |v⊥(K |v⊥) ≤ O(1)n · |(K ∩ Z
n)|v⊥|.

Proof For short we write K = K |v⊥ and � = Z
n|v⊥. Consider a line 
 ⊆ v⊥ that

contains at least five points from K ∩ �, i.e.,


 ∩ K ∩ � = {i · y : −m ≤ i ≤ m}

for some y ∈ � \ {0} and m ≥ 2. Since v ∈ K , the length of Rv ∩ K is at least
2|v|. Therefore, the length of the segment (i · y + Rv) ∩ K is at least |v|, for any
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|i | ≤ �m/2�, as can be seen by considering the triangle given by v, −v, and a point
w ∈ K with w|v⊥ = m y (cf. Fig. 3). So, as long as i ≤ m/2 the section (i · y + Rv)

contains a lattice point. Sincem ≥ 2, at least 1/3 of the points in 
∩�∩ K \ {0} have
a preimage in K ∩ Z

n . Hence, with

A = {
x ∈ K ∩ � \ {0} : |Rx ∩ K ∩ �| ≥ 5

}
,

we know that |A| ≤ 3|(K ∩ Z
n)|v⊥| and so it suffices to prove

#�(K ) ≤ O(1)n|A|. (4.1)

To this end, let R1, . . . , R4n−1 ⊆ � be the cosets of 4� in � and consider two distinct
points x, y ∈ K ∩ Rk . Then x − y ∈ 4� and thus

1

2
(x − y) ∈ K ∩ 2� \ {0} ⊆ A.

Hence, (1/2)((K ∩ Rk) − (K ∩ Rk)) ⊆ A ∪ {0} and thus

|K ∩ Rk | ≤ |(K ∩ Rk) − (K ∩ Rk)|
=

∣∣∣∣12 ((K ∩ Rk) − (K ∩ Rk))

∣∣∣∣ ≤ |A ∪ {0}| = |A| + 1.

If A = ∅, we immediately get

#�K ≤ 4n−1 ≤ 4n−1|(K ∩ Z
n)|v⊥|

and the claim of the lemma follows. So let A �= ∅. Then |K ∩ Rk | ≤ 2|A| which leads
to |K ∩ �| ≤ 4n−1 · 2|A| and thus (4.1). ��
Remark 4.2 The inequality of Lemma 4.1 is essentially the best possible, in the sense
that, in any dimension, there is a convex body K ∈ Kn

os with en ∈ K , such that

#Zn |e⊥n (K |e⊥
n ) = 3n−1 and (K ∩ Z

n)|e⊥
n = {0}.

To see this, let u = (1, 2, 4, . . . , 2n−1)T ∈ R
n . We haveCn ∩u⊥ ∩Z

n = {0}. Suppose
there is a non-zero point x ∈ Cn ∩u⊥ ∩Z

n . Let i be the largest index such that xi �= 0.
By symmetry, we may assume that xi > 0. It follows from

k−1∑
j=0

2 j = 2k − 1 (4.2)

that 〈x, u〉 ≥ 1, a contradiction. On the other hand, we have (Cn ∩ u⊥)|e⊥
n = Cn−1.

Let x ∈ {±1}n−1 be a vertex of Cn−1. Then, by (4.2),
∣∣∑n−1

i=1 xi2i−1
∣∣ ≤ 2n−1. So

there exists xn ∈ [−1, 1] such that (x, xn)T ∈ Cn ∩ u⊥. Thus, the convex body
K = conv ((Cn ∩ u⊥) ∪ {±en}) has the desired properties.
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Now we are ready for the proof of Theorem 1.6.

Proof of Theorem 1.6 We abbreviate λi = λi (K ) and let vi ∈ λi K ∩ Z
n , 1 ≤ i ≤ n,

be linearly independent. Due to our assumption we have λn ≤ 1 and so vi ∈ K . So
we may apply Lemma 4.1 to obtain

n∏
i=1

#
Zn |v⊥

i
(K |v⊥

i ) ≤ O(1)n
2

n∏
i=1

|Z |v⊥
i |,

where Z = K ∩ Z
n . It is therefore enough to show that

n∏
i=1

|Z |v⊥
i | ≤ O(1)n

2 |Z |n−1. (4.3)

To this end we set Si = Z ∩ Rvi , 1 ≤ i ≤ n. Then |Si | = 2�1/λi� + 1. Now we
choose a subset Zi ⊆ Z such that the projection Zi �→ Z |v⊥

i is bijective. Clearly,
Zi + Si ⊆ Z + Z and so we have

|Z + Z | ≥ |Zi + Si | = (2�1/λi� + 1) · |Z |v⊥
i | ≥ 3

4
(�2/λi� + 1) · |Z |v⊥

i |.

So we obtain

|Z + Z |n ≥
(
3

4

)n n∏
i=1

⌊
2

λi
+ 1

⌋ n∏
i=1

|Z |v⊥
i |.

In view of Lemma 3.3, (3.3) we have |Z + Z | ≤ #(2K ) ≤ 4n#K = 4n|Z | and thus

4n
2
(
4

3

)n
|Z |n ≥

n∏
i=1

⌊
2

λi
+ 1

⌋ n∏
i=1

|Z |v⊥
i |.

Finally we use (2.4), i.e.,
∏n

i=1�2/λi + 1� ≥ 3−n|Z | in order to get (4.3). ��
Remark (1) The above proof does not depend on the particular properties of the lat-

tice Zn . So one obtains the same statement for an arbitrary n-dimensional lattice
� ⊆ R

n . More precisely, if K ∈ Kn
os fulfills dim (K ∩ �) = n, we have

(#�K )(n−1)/n ≥ c−n

(
n∏

i=1

#�|v⊥
i
(K |v⊥

i )

)1/n

,

where vi ∈ λi (K ,�)K ∩ � are linearly independent.
(2) Also, the above approach yields a reverse Loomis–Whitney type inequality, if one

aims for a lattice basis, instead of merely independent lattice vectors. However, in
order to apply Lemma 4.1 one has to ensure that the basis is contained in K . For
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the basis {b1, . . . , bn} from equation (2.5), this means that one has to enlarge K
by a factor n. So in this case, we obtain

(#K )(n−1)/n ≥ (cn)−n

(
n∏

i=1

#
Zn |v⊥

i
(K |b⊥

i )

)1/n

.

5 Unconditional Bodies

A convex body K is called unconditional, if it is symmetric with respect to all the
coordinate hyperplanes, i.e., (±x1, . . . ,±xn) ∈ K for any x ∈ K . For such bodies
we can improve some of our inequalities. We start with (3.3).

Lemma 5.1 Let K ∈ Kn be unconditional and m ∈ N. Then #(mK ) ≤ (2m − 1)n#K
and the inequality is sharp.

Proof First, we prove the claim for dim K = 1, i.e., we may assume that K =
[−x, x] ⊆ R, x ≥ 0. Then, #K = 2�x� + 1. In case when x ∈ Z we have

#(mK ) = 2mx + 1 ≤ m(2x + 1) = m · #K .

So let x /∈ Z. Then

#(mK ) ≤ 2mx + 1 < 2m(�x� + 1) + 1.

Since both sides of the inequality are odd integers, we obtain

#(mK ) ≤ 2m(�x� + 1) − 1 = 2m�x� + 2m − 1

= (2m − 1)

(
m

2m − 1
· 2�x� + 1

)
≤ (2m − 1)#K .

Next, let K ⊆ R
n be an arbitrary unconditional convex body. Consider the uncondi-

tional body K ′ obtained by multiplying the first coordinates in K by m. The lattice
points in K and K ′ can be partitioned into intervals parallel to e1. The intervals that
we see in K ′ are exactly the intervals of K , multiplied by m. So by the 1-dimensional
case we have #K ′ ≤ (2m − 1)#K . If we repeat this argument for every coordinate,
we end up with the desired inequality. The cubes K = [−(1−1/(2m)), 1−1/(2m)]n
show that the inequality is sharp. ��
We conjecture (2m − 1)n to be the right constant also for arbitrary symmetric convex
bodies. Lemma 5.1 yields a slightly improved version of Theorem 1.1 for the class of
unconditional bodies.

Proposition 5.2 Let K ∈ Kn
os be unconditional. Then

(#K )(n−1)/n ≥ 1

3n−1

(
n∏

i=1

#(K ∩ e⊥
i )

)1/n

.
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Proof Again, we write Ki = K ∩ e⊥
i and hi = h(K , ei ). Note that hi is attained by a

multiple of ei , since K is unconditional. This implies that

Ki + [−hi , hi ]ei ⊆ 2K ,

and we obtain

(#(2K ))n−1 ≥
n−1∏
i=1

(2�hi� + 1)#Ki ≥
n∏

i=1

#Ki ,

where the last inequality follows from Kn ⊆ [−h1, h1] × · · · × [−hn−1, hn−1]. The
claim follows by applying Lemma 5.1 to the left-hand side above. ��

Note that for an unconditional body K ⊆ R
n one has K ∩ e⊥

i = K |e⊥
i , 1 ≤ i ≤ n.

Therefore, Proposition 5.2 is also a sharpening of Theorem 1.6. In fact, following the
lines of the proof of the discrete reverse Loomis–Whitney inequality in Sect. 4, the
above proof is a simplification of the proof in Sect. 4.

Moreover, the inequalities ofTheorems1.2 and1.4 holdwith constant 1 for uncondi-
tional bodies, by the Loomis–Whitney inequality. As for the discrete Brunn inequality,
a constant 1 is obtained when intersecting an unconditional body K with a coordinate
subspace L , since every slice K ∩ (L + t) is mapped into the central slice injectively
by the orthogonal projection onto L . Moreover, for any hyperplane H there is a coor-
dinate i such that the projection H �→ e⊥

i is bijective and maps lattice points in H to
lattice points in e⊥

i . The index i can be chosen to be an index for which the normal
vector v of H is non-zero. Therefore, the maximal hyperplane section with respect to
#( · ) can always be chosen to be a coordinate section. However, for general subspaces
L we cannot hope for a constant 1 in the discrete Brunn inequality, as the next example
illustrates.

Example 5.3 Consider the symmetric cube Cn = [−1, 1]n and the vector u =
(1, 2, 4, . . . , 2n−1)T ∈ R

n . Then we have #(Cn ∩ u⊥) = 1 (cf. Remark 4.2). On
the other hand, we have #(Cn ∩ {x ∈ R

n : 〈x, u〉 = 1}) = n, because, in view
of (4.2), the points xk = ek − ∑k−1

j=0 e j , 1 ≤ k ≤ n, are contained in this section and
as in Remark 4.2, by considering the maximal non-zero coordinate of a lattice point
in this section, there are no further points.
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