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Abstract
In Beltrán and Etayo (J. Complexity 59, #101471 (2020)) the authors presented a
family of points on the sphere S2 depending on many parameters, called the Diamond
ensemble. In this paper we compute the spherical cap discrepancy of the Diamond
ensemble as well as some other quantities. We also define an area regular partition
on the sphere where each region contains exactly one point of the set. For a concrete
choice of parameters, we prove that the Diamond ensemble provides the best spherical
cap discrepancy, known until now for a deterministic family of points.

Keywords Area regular partition · Spherical points · Spherical cap discrepancy ·
Covering radius · Quasi-uniform points

Mathematics Subject Classification 31A15 · 65D30 · 65D32

1 Introduction andMain Results

Sets of points on the sphere S2 that are, in a sense, well distributed have been broadly
studied in the literature, see for example [13,18,21]. We use the expression family
of points to denote a sequence of configurations of points on the sphere S2, (ωN )N ,
where N is the number of points of the configuration. N does not necessarily run
through every integer number, but an infinite subsequence of them. In order to ease
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the notation, we will use ωN both for a family of points and a set of points, although
the meaning should be clear from the context.

Let us consider a family of points ωN ⊂ S
2 and let μ be the Lebesgue measure on

the sphere S2. We recall that a Borel set C ⊂ S
2 is μ-continuous if μ(∂C) = 0, where

∂C is the boundary ofC . Then we say that ωN is asymptotically uniformly distributed
if

lim
N→∞

μ(S2)

N

N∑

j=1

f (x j ) =
∫

S2
f (x) dμ(x),

where, for a fixed N , ωN = {x1, x2, . . . , xN } and the equation is satisfied for all
continuous functions f : S2 → R. This definition is equivalent to the statement

lim
N→∞

# (ωN ∩ C)

N
= μ(C)

μ(S2)
(1)

for all μ-continuous sets C . Asymptotical uniformity is one of the main conditions
that one may ask a family of points in order to have an even distribution. This notion
is described in a more general context in [17, Chapter 3].

In this article we work with the spherical distance on S2. Let us highlight, however,
that the spherical distance and theEuclideandistance are equivalent for small quantities
and so for all results presented here. The separation distance of a set of points ωN is
given by

δ(ωN ) = min
1≤i< j≤N

‖xi − x j‖,

and a family of points ωN is said to be well-separated if

δ(ωN ) ≥ c√
N

for some constant c not depending on N . The covering radius of a set of points on S2,
also known as mesh norm, is defined as

ρ(ωN ) = max
y∈S2

min
1≤ j≤N

‖y − x j‖.

A family of points ωN is a good covering if

ρ(ωN ) ≤ c√
N

for some constant c not depending on N . The relation between the separation distance
and the covering radius is usually referred to as the mesh-separation ratio

γ (ωN ) = ρ(ωN )

δ(ωN )
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and can be thought of as a condition number for approximation problems on the sphere.

1.1 Spherical Cap Discrepancy

Whenever we have a family of points that are asymptotically uniformly distributed,
i.e., their limit distribution is the uniformmeasure on S2, we may ask what is the speed
of convergence. From formula (1) we know that a family of points is asymptotically
uniformly distributed if

lim
N→∞

# (ωN ∩ C)

N
= μ(C)

μ(S2)

for all μ-continuous Borel sets C ⊂ S
2. So, we want to study the rate at which

∣∣∣∣
# (ωN ∩ C)

N
− μ(C)

μ(S2)

∣∣∣∣

tends to 0 in some norm and for some suitable collection of test sets. This quantity
is called discrepancy. The most classical discrepancy on the sphere is the so-called
spherical cap discrepancy, where we consider the set of all the spherical caps and the
norm is either the supremum or the L2 norm. We denote by cap the set of all possible
spherical caps on S

2. Then the spherical cap discrepancy of a set of points ωN is
defined as

Dsup,cap(ωN ) = sup
C∈cap

∣∣∣∣
# (ωN ∩ C)

N
− μ(C)

μ(S2)

∣∣∣∣. (2)

A spherical cap C = C(z, t) centered at z ∈ S
2 with height t ∈ [−1, 1] is the set

C(z, t) = {y ∈ S
2 : 〈z, y〉 > t},

where we denote by 〈z, y〉 the usual inner product in R
3. If instead of the supremum

norm the L2 norm is considered, then the corresponding discrepancy is defined by

DL2,cap(ωN ) =
(∫ 1

−1

∫

S2

∣∣∣∣
# (ωN ∩ C(z, t))

N
− μ(C(z, t))

μ(S2)

∣∣∣∣
2

dμ(z) dt

)1/2
. (3)

The Stolarsky invariance formula, stated in [23], establishes a relation between the
sum of distances of the points from ωN and the L2 spherical cap discrepancy:

cd
(
DL2,cap(ωN )

)2 =
∫

Sd

∫

Sd
‖x − y‖ dμSd (x) dμSd (y) − 1

N 2

N∑

i, j=1

‖xi − x j‖,

where cd is a constant depending only on the dimension of the sphere and μSd is the
Lebesgue measure on S

d normalized so that μSd (S
d) = 1. See also [9,12] for more

modern proofs of the Stolarsky invariance formula.
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1.1.1 Minimal Spherical Cap Discrepancy

In [5] it was shown that there exists a constant c > 0, independent of N , such that for
any N -point set ωN ⊂ S

2 we have

Dsup,cap(ωN ) ≥ cN−3/4.

On the other hand, using probabilistic methods, it has been shown in [4] that for all
N ≥ 1 there exists a point set ωN in S2 satisfying

Dsup,cap(ωN ) ≤ c′N−3/4
√
log N ,

where c′ > 0 is a constant independent of N . The proof of the last result is non-
constructive.

1.1.2 Probabilistic Sets of Points

The spherical cap discrepancy of a random set of points coming from the uniform
distribution on the sphere is of the order N−1/2, see [1] for a proof. In the papers [3,7],
the authors define two determinantal point processes on the sphere S

2 and compute
the spherical cap discrepancy, obtaining

Dsup,cap
(
ωN ∼ X(N )∗

) = O
(
N−3/4

√
log N

)

with overwhelming probability for the spherical ensemble (see [3, Thm. 1.1]) and the
same for the harmonic ensemble, see [7, Corollary 5]. Here, ωN ∼ X

(N )∗ means a
random set of N different points on S

2 following the distribution given by X
(N )∗ , the

determinantal point process.

1.1.3 Deterministic Sets of Points

It is unknown how to construct a deterministic family of points with spherical cap
discrepancy decaying like N−3/4√log N . The best bound given to date for a deter-
ministic family of points can be found in the article [1], where the authors are able to
bound the spherical cap discrepancy of the so-called spherical Fibonacci nodes by

Dsup,cap(ωN ) ≤ 44
√
8N−1/2. (4)

1.1.4 Riesz Potentials and Spherical Cap Discrepancy

Given s ∈ (0,∞), the Riesz potential or s-energy of a set of pointsωN = {x1, . . . , xN }
on the sphere S2 is

Es(ωN ) =
∑

i �= j

1

‖xi − x j‖s .
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This energy has a physical interpretation for some particular values of s, i.e., for s = 1
the Riesz energy is the Coulomb potential and for s = 0 the energy is defined by

Elog(ωN ) = dEs(ωN )

ds

∣∣∣∣
s=0

=
∑

i �= j

log ‖xi − x j‖−1.

Finding quasiminimizers of the logarithmic energy is stated as the problem number 7
in the list of problems for the 21st century proposed by Smale, see [22].

There exist several results relating minimizers of the spherical cap discrepancy and
minimizers of the Riesz energy. For example, minimizers of Riesz and logarithmic
energy exhibit small spherical cap discrepancy; we refer to [13] and cites therein. The
last word in this respect was given by Marzo and Mas who proved that any set of
points that minimizes some Riesz energy with parameter 0 ≤ s < 2 has spherical cap
discrepancy bounded by

Dsup,cap(ωN ) ≤ cs N
−(2−s)/(6−s),

where cs is a constant depending only on s. See [20, Thm. 1.1] for the statement of
the result in this full generality.

1.2 Main Results

In [8], the authors present a constructive family of points defined by: the North Pole,
the South Pole, and sets of equispaced points located on several parallels. It is a
parametrical model depending on the parallels chosen, the number of points chosen
on each parallel, and the rotation angle of every parallel. The family is called the
Diamond ensemble and it is denoted by �(N ), where N is the number of points. This
model is defined in full generality in Sect. 2.

Theorem 1.1 For any choice of parameters of the Diamond ensemble there exist two
constants c1, c2 ∈ R+, depending only on the parameters, such that

c1√
N

≤ Dsup,cap(�(N )) ≤ c2√
N

.

Corollary 1.2 For any choice of parameters of the Diamond ensemble we have

DL2,cap(�(N )) ≤ c2√
N

where c2 ∈ R+ is a fixed constant that depends on the concrete model.

Remark 1.3 Intuitively speaking, we tend to think that the L2 spherical cap discrepancy
of a set of points coming from theDiamond ensemble is lower than the bound proposed
in Corollary 1.2. There are

√
N caps that present greater spherical cap discrepancy

and that is where the supremum spherical cap discrepancy arises, but they should not
influence that much when we average over all spherical caps.
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Remark 1.4 The separation distances of theminimal logarithmic energy configurations
on S2 have been proven to be of the good order: there exists a constant c such that the
distance in between any pair of points from a concrete configuration is greater than
cN−1/2; for explicit values of the constant, we refer to [14,21]. Since the logarithmic
energy of the points coming from the Diamond ensemble is close to the minimal (see
[8, Thm. 1.1]), their separation distance is expected to be of the right order. Then using
Theorem 1.1 we could obtain a bound for the Riesz potential as it is done in [19, Thm.
5.2.1].

The constants c1 and c2 from Theorem 1.1 can be explicitly computed for any choice
of parameters, and so, for the model presented in Sect. 3.3 we have the following
statement.

Theorem 1.5 Let �(N ) be the Diamond ensemble defined by n = 1 and r j = 4 j for
1 ≤ j ≤ M. Then

1√
N

+ o

(
1√
N

)
≤ Dsup,cap(�(N )) <

4 + 2
√
2√

N
.

Note that the choice of parameters in Theorem 1.5 is really simple and yet we obtain
a bound for the discrepancy that is better than the best one known to date for a deter-
ministic set of points, see formula (4). With better choices of parameters, for instance,
with the ones proposed in [8], we should obtain better bounds.

1.2.1 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from these two intermediate results.

Theorem 1.6 For any choice of parameters of the Diamond ensemble we have

Dsup,cap�(N ) ≤ c2√
N

,

where c2 ∈ R+ is a fixed number that depends on the concrete model.

The proof of Theorem 1.6 follows the classical argument of Beck for the upper bound
on the discrepancy, see for example [6, Thm. 24D]. In order to prove it, we define an
area regular partition on the sphere in Sect. 3 and we complete the proof in Sect. 4.

Theorem 1.7 For any choice of parameters of the Diamond ensemble we have

Dsup,cap�(N ) ≥ c1√
N

,

where c1 ∈ R+ is a fixed number that depends on the concrete model.

For proving Theorem 1.7 it is enough to compute the value of

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

μ(N )

∣∣∣∣
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for a particular spherical cap C , as we do in Sect. 5.

1.3 Organization of the Paper

In Sect. 2 we recall the principal characteristics of the Diamond ensemble presented
in [8] and prove some new results, essentially concerning the relation between the
number of points on a given parallel and the total number of points. In Sect. 3 we
present an area regular partition of the sphere coming from the Diamond ensemble
and we prove some of its properties. We employ the rest of the sections in proving
Theorems 1.5, 1.6, and 1.7.

2 The Diamond Ensemble

2.1 Definitions

In this section we follow [8]. Fix z ∈ (−1, 1), the parallel of height z in the sphere
S
2 ⊂ R

3 is simply the set of points x ∈ S
2 such that 〈x, (0, 0, 1)〉 = z. Then we define

a general construction of points as follows:

1. Choose a positive integer p and z1, . . . , z p ∈ R such that 1 > z1 > . . . > z p > −1.
Consider the p parallels with heights z1, . . . , z p.

2. For each j , 1 ≤ j ≤ p, choose a number r j of points to be allocated on parallel j
(which is a circumference) by projecting the r j roots of unity onto the circumference
and rotating them by a phase θ j ∈ [0, 2π ], that also has to be chosen.

3. To the already constructed collection of points, add the North and South Poles.

We denote this set by 	(p, {r j }, {z j }, {θ j }). Explicit formulas for this construction
are easily produced: points in parallel of height z j are of the form

x =
(√

1 − z2j cos θ,

√
1 − z2j sin θ, z j

)

for some θ ∈ [0, 2π ], and thus the set 	(p, {r j }, {z j }, {θ j }) we have described is
defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N = (0, 0, 1),

xij =
(√

1 − z2j cos

(
2π i

r j
+ θ j

)
,
√
1 − z2j sin

(
2π i

r j
+ θ j

)
, z j

)
,

S = (0, 0,−1).

We can rewrite 	(p, {r j }, {z j }, {θ j }) using spherical coordinates:

	(p, {r j }, {z j }, {θ j }) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N = (0, 0),

xij =
(
2π i

r j
+ θ j , arccos z j

)
,

S = (0, π),
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where the first coordinate is an angle between 0 and 2π defined in the plane z = 0 and
the second coordinate is an angle between 0 and π defined in the half-plane x = 0,
y > 0. Note that since the points belong to the sphere, we do not write the coordinate
correspondent to the radius, r = 1. We obtain different families of points from the
Diamond ensemble giving values to the parameters p, θ j , r j , and z j as in the following
definition.

Definition 2.1 ([8, Defn. 3.1]) Let p, M be two positive integers with p = 2M−1 odd
and let r j = r( j) where r : [0, 2M] → R is a continuous piecewise linear function
satisfying r(x) = r(2M − x) and

r(x) =

⎧
⎪⎪⎨

⎪⎪⎩

α1 + β1x if 0 = t0 ≤ x ≤ t1,
...

...

αn + βnx if tn−1 ≤ x ≤ tn = M .

Here, [t0, t1, . . . , tn] is some partition of [0, M] and all the t�, α�, β� are assumed to
be integers. The further assumptions on the parameters are that α1 = 0, α�, β� ≥ 0,
β1 > 0, and there exists a constant A ≥ 2 not depending on M such that α� ≤ AM
and β� ≤ A for all 1 ≤ � ≤ n. We also assume that t1 ≥ cM for some c > 0.

The final goal of defining the Diamond ensemble in [8] was to be able to compute its
logarithmic energy.Authors could not reach this goal for any set	(p, {r j }, {z j }, {θ j }),
but they could compute the expected value of the logarithmic energy when the angles
θ j are taken randomly uniformly distributed in [0, 2π ]. Moreover, this gives us some
natural candidates for the z j ’s.

Proposition 2.2 ([8, Prop. 2.5]) Given {r1, . . . , rp} such that ri ∈ N, there exists a
unique set of heights {z1, . . . , z p} such that z1 > . . . > z p and

Eθ1,...,θp∈[0,2π ]p
[
Elog(	(p, {r j }, {z j }, {θ j }))

]

is minimized. The heights are:

zl =

p∑

j=l+1

r j −
l−1∑

j=1

r j

1 +
p∑

j=1

r j

= 1 −
1 + rl + 2

l−1∑

j=1

r j

N − 1
,

where N = 2 + ∑p
j=1 r j is the total number of points.

From now on, let z j be as defined in Proposition 2.2.

Remark 2.3 Note that since β1 > 0 and we have α� + β�t� = α�+1 + β�+1t�, the
function r(x) is non-decreasing on [0, M]; in other words, r j ≥ rk if M > j > k.
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Fig. 1 Models of the Diamond ensemble for different choices of parameters. Different colors for points
correspond to different linear pieces defining r(x)

We call the family of points defined by the r j ’s given in Definition 2.1 and the z j ’s as
in Proposition 2.2 the Diamond ensemble and we denote it by �(N ), omitting in the
notation the dependence on all the parameters n, t1, . . . , tn , α1, . . . , αn , β1, . . . , βn ,
θ1, . . . , θn . We may not worry about the angle θ j , since the results presented here
are valid for any choice of θ j ∈ [0, 2π ], so we denote 	(p, {r j }, {z j }, {θ j }) by
	(p, {r j }, {z j }). The choice of parameters n, t�, and r� for 1 ≤ � ≤ n hence defines a
sequence of configurations of points, where not all the integer numbers are taken but
still the sequence goes to infinity as we make M cover the natural numbers.

2.2 Some Extra Properties

The total number of points of �(N ) is

N = 2 − (αn + βnM) + 2
n∑

�=1

t�∑

j=t�−1+1

(α� + β� j).

We denote

N j = 1 +
j−1∑

k=1

rk . (5)

Using the notation N j we can rewrite the value of z j :

z j = 1 −
1 + r j + 2

j−1∑

k=1

rk

N − 1
= 1 − 2N j

N − 1
− r j − 1

N − 1
. (6)

The following proposition shows the dependence of N on the number of parallels.

Lemma 2.4 There exist constants a1, a2 ∈ R+, depending only on the choice of param-
eters n, t�, α�, β� for all 1 ≤ � ≤ n, such that

a1M
2 ≤ N ≤ a2M

2.
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Proof From the properties of α�, β� we have that

N = 2 − (αn + βnM) + 2
n∑

�=1

t�∑

j=t�−1+1

(α� + β� j)

≤ 2 + 2
n∑

�=1

t�∑

j=t�−1+1

(AM + Aj)

= 2 + 2AM2 + AM(M + 1) = 3AM2 + AM + 2,

where A is the constant from Definition 2.1. So it is enough to take a2 = 4A for
M ≥ 2. For the other inequality, using again the properties from Definition 2.1, we
have

Nt1 = 1 +
t1−1∑

j=1

(α1 + β1 j) ≥ 1 +
cM−1∑

j=1

j = 1 + cM(cM − 1)

2
= c2

2
M2 − cM

2
+ 1.

We take a1 = (c2 − c)/2 and conclude with

N ≥ Nt1 ≥ a1M
2. (7)

��
Lemma 2.5 There exist constants k1, k2 ∈ R+ depending only on the choice of param-
eters n, t�, α�, β�, 1 ≤ � ≤ n, such that for all 1 ≤ j ≤ M we have

k1r
2
j ≤ N j ≤ k2r

2
j .

Proof For 1 ≤ j ≤ t1 we have that α1 = 0, and so

N j = 1 +
j−1∑

k=1

β1k = 1 + β1

2
j ( j − 1) and r2j = β2

1 j
2.

It is immediate to check that if we take k̇2 = 1, then N j ≤ k̇2r2j for all 1 ≤ j ≤ t1. We

observe that both N j and r2j are positive branches of parabolas in j . Let us consider
the functions

r2(x) = β2
1 x

2 and N (x) = β1

2
x2 − β1

2
x + 1.

Then, if we take k̇1 = 1/(2β2
1 ), we have k̇1r2(1) = 1/2 < N (1) and k̇1(r2(x))′ ≤

N (x)′ for all x ∈ (1, t1) so we conclude that k̇1r2j ≤ N j for all 1 ≤ j ≤ t1. For j > t1
we have

r2j = (α� + β� j)
2 ≤ (AM + AM)2 = 4A2M2
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and from (7)

N j ≥ Nt1 ≥ a1M
2.

So it is enough to take k̃1 = a1/(4A2). On the other hand, by Lemma 2.4 we have

N j ≤ N ≤ a2M
2

and, by the monotonicity of the function (see Remark 2.3),

r2j = (α� + β� j)
2 ≥ t21 ≥ c2M2.

So it is enough to take k̃2 = a2/c2. We conclude by taking

k1 = min {k̃1, k̇1} and k2 = max {k̃2, k̇2}. ��

3 An Area Regular Partition Coming from the Diamond Ensemble

3.1 About Area Regular Partitions on the Sphere

In the literature we can find several references to area regular partitions on the sphere
S
2 but no so many explicit examples of them; we refer to [2,11,15,23]. In [24] Zhou

describes an area regular partition in S
2 quite similar to the one that we present here.

The same construction is explained in [21] and later in [16]. This construction was
modified by Bondarenko et al. [10] to create a partition with geodesic boundaries in
order to obtainwell-separated spherical designs. In his PhD dissertation [19], Leopardi
studied the construction of Zhou generalizing it to higher dimensional spheres. He
also provided a code in Matlab available at http://eqsp.sourceforge.net/ where one can
obtain an area regular partition in Sd for any given number of cells.

3.2 ARP for the Diamond Ensemble

Given a family of points coming from the Diamond ensemble, we define an area
regular partition by taking two spherical caps, one centered at the North Pole and the
other at the South Pole, and a collection of rectangular regions located in some collars,
see Fig. 2. The partition of a collar into r j rectangular regions is made so that every
point of the parallel z j is located on a different region of the collar.

Definition 3.1 Let p, M be two positive integers with p = 2M −1 and let us consider
the following subsets of S2:

– A spherical cap centered at the North Pole with height 1 − h1, which we denote
by RN .
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Fig. 2 Example of an area
regular partition coming from
the Diamond ensemble

– The spherical rectangles on the Northern Hemisphere given in spherical coordi-
nates on the sphere by

Ri
j =

[
2π i

r j
+ π

r j
+ θ j ,

2π(i + 1)

r j
+ π

r j
+ θ j

]
× [arccos h j , arccos h j+1].

– The spherical rectangles contained in a collar containing the equator:

Ri
M =

[
2π i

rM
+ π

rM
+θM ,

2π(i + 1)

rM
+ π

rM
+θM

]
× [arccos hM , π − arccos hM ].

– The symmetrization of the Northern Hemisphere.

Let h j be defined by the following recurrence relation:

h1 = 1 − 2

N
, h j+1 = h j − 2r j

N
for 1 ≤ j ≤ M,

or, in an explicit formula, using the notation from equation (5), by

h j = 1 − 2N j

N
.

Proposition 3.2 The partition defined in Definition 3.1 is an area regular partition.

Proof From the definition, we can see that it is enough to compute the area of the North
Pole region, one of the regions Ri

j and one of the regions R
i
M . We start by computing

the area of the region containing the North Pole:

A(RN ) = 2π(1 − h1) = 2π

(
1 − 1 + 2

N

)
= 4π

N
.

Now we consider a rectangle Ri
j and compute its area.

A(Ri
j ) =

∫ 2π(i+1)/r j+π/r j+θ j

2π i/r j+π/r j+θ j

∫ arccos h j+1

arccos h j

sin θ dθ dφ
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=
∫ 2π(i+1)/r j+π/r j+θ j

2π i/r j+π/r j+θ j

dφ ·
∫ arccos h j+1

arccos h j

sin θ dθ

= 2π

r j
(cos arccos h j − cos arccos h j+1) = 2π

r j
(h j − h j+1).

By the recurrence relation defining h j+1, we have

A(Ri
j ) = 2π

r j

(
h j − h j + 2r j

N

)
= 4π

N
.

It remains to consider the case Ri
M . We compute the area of half of the region:

A(Ri
M )

2
=

∫ 2π(i+1)/rM+π/rM+θM

2π i/rM+π/rM+θM

∫ π/2

arccos hM
sin θ dθ dφ = 2π

rM
hM .

Using the explicit definition of hM we can write

A(Ri
M )

2
= 2π

rM

(
1 − 2

N
NM

)
= 2π

N

(
N

rM
− 2NM

rM

)
= 2π

N
. ��

Proposition 3.3 Every region of the partition defined in Definition 3.1 contains a
unique point of the Diamond ensemble.

Proof Since, given a collar, it is partitioned in such a way that every point belongs to
a different region, it is enough to prove that

h j+1 < z j < h j

for all 1 ≤ j ≤ M − 1 and that hM > 0. We start by proving that z j < h j , which
follows easily from these two facts:

2N j

N − 1
>

2N j

N
and

r j − 1

N − 1
≥ 0.

If we take now the characterizations for z j and h j given in (6) and Definition 3.1
respectively, the proof is done. To prove that h j+1 < z j we use the same characteri-
zations and the fact that 2N j + r j = 2N j+1 − r j ; then

z j − h j+1 = −2N j+1 − r j − 1

N − 1
+ 2N j+1

N
= N (r j + 1) − 2N j+1

N (N − 1)
> 0.

We conclude with
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hM = 1 − 2NM

N
= 1 − N − rM

N
= rM

N
> 0. ��

We describe some properties of the area regular partition.

Proposition 3.4 The radius of the region RN is 2 arcsin (1/
√
N ) ≈ 2/

√
N for big N.

Proof The proof consists of some trigonometric computations and is left to the reader.
��

Proposition 3.5 For every rectangular region Ri
j , the length of the horizontal sides

(those parallel to the equator) is bounded as follows:

d1√
N

< length of the horizontal sides of Ri
j <

d2√
N

,

where d1, d2 ∈ R+ are fixed constants depending only on the choice of parameters
n, t�, α�, β�, 1 ≤ � ≤ n.

Proof By the symmetry of the model, we only work with the regions contained in the
Northern Hemisphere and those containing the equator. Note that for every rectangular
region of the Northern Hemisphere, the side parallel to the equator that is closer to the
North Pole is shorter than the one that is closer to the equator, see Fig. 2. In the case
Ri
M they are equal. So it is enough to prove that

d1√
N

<
2π

√
1 − h2j

r j
<

d2√
N

for 1 ≤ j ≤ M . We transform this expression:

2π
√
1 − h2j

r j
>

d1√
N

⇔ N (1 − h2j ) >
d21r

2
j

4π2 ⇔ N j

(
1 − N j

N

)
>

d21r
2
j

16π2 .

Since 1 ≤ j ≤ M , we have that 1/2 < 1 − N j/N < 1. Applying Proposition 2.5 we
have

N j

(
1 − N j

N

)
>

N j

2
≥ k1

2
r2j

and so it is enough to take d1 = 2
√
2π

√
k1. On the other hand,

N j

(
1 − N j

N

)
< N j ≤ k2r

2
j ,

and so we take d2 = 4π
√
k2. ��
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Corollary 3.6 The heights of the rectangles Ri
j for 1 ≤ j ≤ M of the area regular

partition are bounded from above by e/
√
N, where e ∈ R+ depends only on the choice

of parameters n, t�, α�, β�, 1 ≤ � ≤ n.

Corollary 3.7 The diameters of the rectangles Ri
j for 1 ≤ j ≤ M of the area regular

partition are bounded as follows:

g1√
N

< diam Ri
j <

g2√
N

,

where g1, g2 ∈ R+ depend only on the choice of parameters n, t�, α�, β�, 1 ≤ � ≤ n.

Corollary 3.7 implies that the mesh norm of the Diamond ensemble is bounded by
g2/

√
N . So in particular we can state that the Diamond ensemble is a good covering.

3.3 A Concrete Example

We consider in this section the simple model defined in [8, Sect. 4.1] and compute
explicitly all the constants presented in the previous section. Following the notation
from Definition 2.1, we choose n = 1 and r j = 4 j for 1 ≤ j ≤ M . Then, for all
j ∈ {1, . . . , M} we have

z j = 1 − 1 + 4 j2

N − 1
.

The number of parallels is 2M − 1 and the number of points is

N = 2 − 4M + 2
M∑

j=1

4 j = 2 + 4M2 and N j = 1 +
j−1∑

k=1

4k = 2 j2 − 2 j + 1.

We consider the partition of S2 defined in Definition 3.1 where

h j = 1 − 2

N
− 4 j( j − 1)

N
= −4

N
j2 + 4

N
j +

(
1 − 2

N

)
,

for 1 ≤ j ≤ M , and is given by the recurrence relation:

h j+1 = h j − 8 j

N
.

We can obtain the same bound as in Proposition 3.5 with explicit constants d1 and d2.

Proposition 3.8 For every rectangular region Ri
j from the area regular partition

described above, the length of the horizontal sides (those parallel to the equator)
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is bounded as follows:

π√
2N

< length of the horizontal sides of Ri
j <

π
√
2√
N

.

Proof As in the proof of Proposition 3.5, we consider the quantity

2π
√
1 − h2j

r j
= 2π

4 j

√
4N j

N

(
1 − N j

N

)
= π

N

√
(2 j2 − 2 j + 1)(4M2 − 2 j2 + 2 j + 1)

j2
.

First we bound

1 ≤ 2 j2 − 2 j + 1

j2
< 2 for all 1 ≤ j ≤ M .

On the other hand,

2M2 + 2M + 1 ≤ 4M2 − 2 j2 + 2 j + 1 ≤ 4M2 + 1 for all 1 ≤ j ≤ M .

Since all quantities are positive, we have

√
2M2 + 2M + 1 ≤

√

(4M2 − 2 j2 + 2 j + 1)
2 j2 − 2 j + 1

j2
<

√
2(4M2 + 1) .

We rewrite the expressions in terms of N :

π

N

√
2M2 + 2M + 1 = π

N

√
N

2
+ √

N − 2 ≥ π√
2

1√
N

and

π

N

√
2(4M2 + 1) = π

N

√
2N = π

√
2√
N

. ��

We can easily deduce bounds for the other quantities for this model as in Corollaries
3.6 and 3.7.

4 Proof of Theorem 1.6

As we mentioned before, to prove Theorem 1.6 we follow the general lines of the
proof proposed in [6, Thm. 24D].

Given a family of points coming from the Diamond ensemble for some choice
of parameters n, t�, α�, β� for 1 ≤ � ≤ n, we consider the associated area regular
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partition given in Definition 3.1. Let us take a spherical cap on the sphere S
2 and

denote it by C . We can split

C = C̃ ∪ Ċ

where Ċ is the union of all the regions of the area regular partition that are completely
contained inC . Therefore, C̃ is the union of all the regions of the area regular partition
that are partially contained in C , intersected with C . Then we have

Dsup,cap(�(N )) = sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣

= sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C̃)

N
+ # (�(N ) ∩ Ċ)

N
− μ(C̃)

4π
− μ(Ċ)

4π

∣∣∣∣.

Since we are taking an area regular partition, we have

# (�(N ) ∩ Ċ)

N
= μ(Ċ)

4π

and so

Dsup,cap(�(N )) = sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C̃)

N
− μ(C̃)

4π

∣∣∣∣.

Now let us prove that the border of any spherical cap C passes through at most k
√
N

different regions of our partition, with k ∈ R+ depending only on the choice of
parameters n, t�, α�, β�, 1 ≤ � ≤ n. In order to do so, we consider the intersection of
the border of our spherical cap,whichwewill denote byC , and a collar Z j = ⋃r j

i=1 R
i
j .

Let

L j = Z j ∩ C ,

and we consider the length of L j , which we denote by |L j |. Note that C can pass
through each Z j at most twice and at non-consecutive times, see Fig. 3 (a). Then the
number of regions that L j passes through, which we denote by N (L j ), is bounded
as follows:

N (L j ) ≤ 4 + |L j |
d1/

√
N

with d1 as in Proposition 3.5. So, the number of regions that the border of C passes
through is bounded by

2M−1∑

j=1

N (L j ) ≤
2M−1∑

j=1

(
4 + |L j |

d1/
√
N

)
= 4(2M − 1) +

√
N

d1

2M−1∑

j=1

|L j |
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Fig. 3 Decomposition of the border of a spherical cap

≤ 4(2M − 1) + 2π

d1

√
N ≤ 8√

a1

√
N − 4 + 2π

d1

√
N

≤
(

8√
a1

+ 2π

d1

)√
N ,

where we have used Lemma 2.4 to bound M .
Since every region has area 4π/N , we conclude that

Dsup,cap(�(N )) = sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C̃)

N
− μ(C̃)

4π

∣∣∣∣ ≤
(

8√
a1

+ 2π

d1

)
1√
N

.

Note that we are not taking into account the regions containing the North or South
Pole since they are meaningless for the asymptotics.

5 Proof of Theorem 1.7

For proving Theorem 1.7 we consider the very specific spherical cap consisting of the
upper half semisphere containing the line of the equator. Then the expression

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣

can be simplified. For the symmetry of the model,

# (�(N ) ∩ C) = N

2
+ rM

2
,

where by rM we denote the number of points that lie in the equator and μ(C)/(4π) =
1/2. Then we have

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣ =
∣∣∣∣
N/2 + rM/2

N
− 1

2

∣∣∣∣ =
∣∣∣∣
1

2
+ rM

2N
− 1

2

∣∣∣∣ = rM
2N

.
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From Definition 2.1 we know that rM ≥ rt1 ≥ cM and from Lemma 2.4 we have
N ≤ a2M2. So,

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣ = rM
2N

≥ cM

2N
≥ c

√
N

2
√
a2N

= c

2
√
a2

· 1√
N

.

Then, it is enough to take c1 = c/(2
√
a2) to conclude that

Dsup,cap(�(N )) = sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣ ≥ c1√
N

.

6 Proof of Theorem 1.5

As for Theorem 1.1, we split the proof of Theorem 1.5 into two lemmas.

Lemma 6.1 Let �(N ) be the Diamond ensemble defined by n = 1 and r j = 4 j for
1 ≤ j ≤ M. Then

Dsup,cap(�(N )) <
4 + 2

√
2√

N
.

Proof We follow the proof from Theorem 1.6, then using the bounds given in Propo-
sition 3.8 we have

2M−1∑

j=1

N (L j ) <

2M−1∑

j=1

(
4 + |L j |

π/
√
2N

)
= 4(2M − 1) +

√
2

π

√
N

2M−1∑

j=1

|L j |

≤ 4
√
N − 2 − 4 + 2

√
2N < (4 + 2

√
2)

√
N .

Then, we have

Dsup,cap(�(N )) = sup
C∈cap

∣∣∣∣
# (�(N ) ∩ C̃)

N
− μ(C̃)

4π

∣∣∣∣ ≤ 4 + 2
√
2√

N
. ��

Lemma 6.2 Let �(N ) be the Diamond ensemble defined by n = 1 and r j = 4 j for
1 ≤ j ≤ M. Then

Dsup,cap(�(N )) ≥ 1√
N

+ o

(
1√
N

)
.

Proof We are going to consider a subfamily of spherical caps in S2 formed by the caps
that are centered at the North Pole and whose border is one of the parallels where we
have chosen the points, i.e., one of the parallels defined by the z j ’s. For the symmetry
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of the model, it is enough to consider 1 ≤ j ≤ M . The discrepancy for these particular
caps reads

sup
1≤ j≤M

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣ = sup
1≤ j≤M

∣∣∣∣
N j+1

N
− 2π(1 − z j )

4π

∣∣∣∣

= sup
1≤ j≤M

∣∣∣∣
N − 2 − 4 j2 + 4 j(N − 1)

2N (N − 1)

∣∣∣∣,

where N − 2− 4 j2 + 4(N − 1) j > 0 for all 1 ≤ j ≤ M , and f (x) = N − 2− 4x2 +
4(N − 1)x is an increasing function in the interval [1, M], so

sup
1≤ j≤M

∣∣∣∣
# (�(N ) ∩ C)

N
− μ(C)

4π

∣∣∣∣ = N − 2 − 4M2 + 4M(N − 1)

2N (N − 1)

=
√
N − 2

N
= 1√

N
+ o

(
1√
N

)
. ��
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