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Abstract
Wedescribe a uniform approach to two knowngraph drawing results includingGioan’s
theorem, stating that any two good drawings of a complete graphwith the same rotation
system are isomorphic up to Reidemeister moves of type 3, and a characterization of
pseudolinear drawings of the complete graph via an excluded configuration: a bad K4.
Our approach yields a new and short self-contained proof of Gioan’s theorem, and a
short proof of the pseudolinearity characterization using a previous result. As a bonus
we obtain an extension of Gioan’s theorem to the family of graphs Kn − M , where M
is a non-perfect matching in Kn , n ≥ 5.

Keywords Gioan’s theorem · Pseudolinearity · Reidemeister moves · Complete
graphs · Graph drawing
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1 Introduction

This paper includes unified proofs of two known results in topological graph theory.
The first result is Gioan’s theorem, announced in a 2005 WG paper by Gioan [7];
the paper only contains a sketch of the proof, and the first complete proof, due to
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The simplified proof of Gioan’s theorem appears in Sect. 4.3.2 of my book “Crossing Number of Graphs”,
CRC Press, 2018 [16].
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→

Fig. 1 A slide move (Reidemeister move of type 3)

Arroyo et al. [2], did not appear until 2018.1 Gioan’s original proof sketch is based
on a logical approach, while the proof in [2] uses more traditional graph drawing
methods. Recall that a drawing of a graph is good if every pair of edges intersects at
most once (a common endpoint counts as an intersection, so adjacent edges do not
cross). The rotation of a vertex in a drawing is the cyclic permutation of edges incident
to the vertex, as we pass through the edges around the vertex clockwise. The rotation
system of the drawing is the collection of all rotations of vertices in the drawing. Two
drawings of a graph are rotation-equivalent if they have the same rotation system,
and they are isomorphic if there is a homeomorphism of the sphere that transforms
one drawing into the other.2 Unless we state otherwise, graphs are labeled, and the
homeomorphisms of the drawings are required to respect the labeling.

If two drawings are isomorphic, they are rotation-equivalent up to reversing the
rotations at all vertices (corresponding to an orientation-reversing homeomorphism of
the sphere). The converse is clearly not true: whenever we have a 3-gon bounded by
three crossings, we can move one of the sides over the opposite crossing, as in Fig. 1.
This changes the isomorphism type of the drawing, but does not affect the rotation
system.

The move in Fig. 1 is called a slide move.3 Gioan’s theorem states that up to slide
moves, two rotation-equivalent, good drawings of a complete graph are isomorphic.4

Theorem 1.1 (Gioan’s theorem [2,7]) Any two rotation-equivalent, good drawings
of a complete graph are isomorphic up to slide moves.

We give a new proof of Gioan’s theorem. We also show that Gioan’s theorem can
be extended to incomplete graphs, namely the family Kn − M , where M is a non-
perfectmatching in Kn , n ≥ 5, if we strengthen the assumption of rotation-equivalence
slightly. Both results can be found in Sect. 3.

The proofs of Gioan’s theorem and its extension are based on a lemma which
allows us to detour edges without destroying the goodness of a drawing; we state and
prove this result in Sect. 2. The same lemma can be used to give relatively short and
conceptually simple proofs of another group of results. A drawing of a graph is x-
monotone, or just monotone, if every edge intersects every vertical line at most once.
A pseudoline arrangement is a collection of curves that go from −∞ to ∞ such that

1 The authors of [2] mention that Gioan has also completed a preprint with a full proof.
2 We will explicitly write isomorphic in the plane if we consider homeomorphisms of the plane.
3 More traditionally slide moves are known as Reidemeister moves of type 3; they have also been called
triangle mutations or triangle flips.
4 Gioan states the theorem for good drawings of the complete graph in which the same pairs of edges cross.
This is well known to be an equivalent statement (for complete graphs) as we will see when we discuss
extending Gioan’s theorem in Sect. 3.1.
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Fig. 2 Non-isomorphic ood drawings of K4 in the plane; the bad K4 is on the right

every pair of curves crosses exactly once (and does not intersect otherwise). Pseudoline
arrangements have been very useful in analyzing straight-line arrangements, which
they generalize, since they abstract away from the geometry of the arrangement. We
say a drawing of a graph is pseudolinear if it is isomorphic in the plane to a drawing
that can be extended to a pseudoline arrangement, so that every edge of the graph lies
on a unique pseudoline.

Let us consider K4 as an example. Figure 2 shows all good drawings of K4 in the
plane, up to homeomorphism of unlabeled graphs.5 All but the last are rectilinear (so
x-monotone and pseudolinear); the last drawing is x-monotone, but not pseudolinear:
the edges involved in the crossing cannot be extended to pseudolines, since one end
of the pseudoline will be stuck inside an inner region (and no homeomorphism will
change that). We call this last drawing of K4 the bad K4. (If we were working with
homeomorphisms in the sphere or the projective plane, then the bad K4 would be
pseudolinear, since it is homeomorphic to the second K4 on those surfaces.)Weobserve
that the bad K4 is the only good drawing of K4 in which the crossing is incident to
the outer region.

The presence of a bad K4 is the only obstruction to a good drawing of a complete
graph being pseudolinear. This result was first announced without proof in [1]; a full
version of that paper has not appeared yet.

Theorem 1.2 (Aichholzer et al. [1]) A good drawing of a complete graph in the plane
is pseudolinear if and only if it does not contain a bad K4.

While the proof of Theorem 1.2 has not appeared yet, a proof of an equivalent result
was published around the same time, phrased in somewhat different terms. In a drawing
of Kn , a triangle is a closed region bounded by a K3 subgraph of Kn ; the triangle is
convex if for every pair of vertices u and v lying in the triangle (including boundary
vertices, since the triangle is closed), the edge uv lieswithin the triangle. Call a drawing
of Kn face-convex if every triangle in Kn is convex.6

Theorem 1.3 (Arroyo et al. [2]) A drawing of a complete graph is face-convex if and
only if it is pseudolinear.

There are two obstacles to a triangle in a good drawing being convex: a bad K4, and
two vertices uv in the interior of the triangle, so that uv crosses two sides of the
triangle. Therefore, Theorem 1.2 implies Theorem 1.3. The second obstacle forces

5 For labeled graphs, the leftmost figure, for example, would have to be listed four times, depending on
which face is the outer face.
6 The definition in [2] is given for the sphere, but is consistent with our definition for the plane.
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the presence of a bad K4: suppose there were no bad K4, and let xy be one of the
triangle edges crossed by uv; then the edges between {x, y} and {u, v} must lie inside
the triangle, so the K4 induced by {u, v, x, y} has the crossing between uv and xy on
its outer region, so it must be bad. Hence, Theorem 1.3 also implies Theorem 1.2, and
the two results are equivalent.

Our proof of Theorem 1.2 is based on the following result, which the authors of [1]
also cite as a starting point.7

Theorem 1.4 (Balko et al. [4]) An x-monotone, good drawing of a complete graph
is pseudolinear if and only if it does not contain a bad K4.

The gap between Theorems 1.2 and 1.4 is then covered by the following result.

Theorem 1.5 A good drawing of a complete graph without a bad K4 is isomorphic
in the plane to an x-monotone drawing.

Since a bad K4 is not pseudolinear, Theorem 1.5 together with Theorem 1.4 imply
Theorem 1.2. In the other direction, Theorem 1.2 also implies Theorem 1.5, because
every pseudoline drawing is isomorphic in the plane to a wiring diagram which is
x-monotone (see [8]).

The new proofs in this paper are based on combining two ideas. The first is a graph
redrawing tool, the detour lemma, presented in Sect. 2, which allows us to reroute
edges in a good drawing, without destroying the goodness of the drawing. To apply
this tool we work with a spanning star of the complete graph.8 In a good drawing of a
complete graph with a given rotation system, the order and direction in which an edge
intersects this spanning graph is entirely determined (Lemma 3.1). This restriction
on good drawings significantly simplifies reasoning about them. In Sect. 3 we prove
Gioan’s theorem and its extension, and in Sect. 4 we give a proof of Theorem 1.5.

2 Detours

A bigon consists of two simple curves δ and γ which have the same two distinct
endpoints, and do not intersect otherwise. We say two simple curves δ and γ , typically
edges, bound a bigon if there are curves δ′ ⊆ δ and γ ′ ⊆ γ such that δ′ and γ ′ form a
bigon, and δ − δ′ and γ − γ ′ do not intersect the boundary of the bigon δ′ ∪ γ ′. We
say a bigon is empty if it does not contain any vertices in its interior.

In a good drawing of a graph, a detour of an edge e is a curve δe that has both its
endpoints on e and such that δe forms a bigon with γe ⊆ e, the arc along e connecting
the two endpoints of δe on e. We also say that δe is a detour of γe. We call the detour
homotopic if the bigon bounded by δe ∪ γe is empty, and no edges in the bigon either
end at an endpoint of δe or cross the boundary of the bigon at an endpoint of δe. The
bigon δe ∪ γe may not be a bigon bounded by e and δe, since it is possible that e has

7 The proof of Theorem 1.4 can only be found in the arXiv version [3] of the paper [4]; this leaves us with
the slightly unsatisfactory situation that there is no refereed proof of Theorem 1.4. However, as the authors
discuss in their Sect. 3.2, the result is equivalent to several other well-known results in the literature.
8 Our approach is based on a paper by Kynčl [12], though, as the referee pointed out, the idea itself is older,
for example, it can be found in [14].
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e

δe

γ e

Fig. 3 An edge e with a homotopic detour δe (dashed) for γe , the subarc of e between the endpoints of δe .
Arcs γe and δe form a bigon, but e and δe do not bound that bigon, since e has additional crossings with δe .
There is, however, an empty bigon bounded by e and δe contained in the bigon δe ∪ γe

additional intersections with δe. If the bigon δe ∪ γe is empty, however, then there is a
bigon bounded by δe and e contained in the region bounded by δe ∪ γe, and therefore
empty again, see Fig. 3. The reason is that since e cannot cross itself, and δe ∪ γe is
empty, any crossing of e with δe must be paired with another crossing of e with δe. We
can therefore work with the minimal bigon between δe and a subarc of e contained in
the original bigon. This minimal bigon is then bounded by e and δe.

Lemma 2.1 (detour lemma9) Let δe be a homotopic detour of the arc γe on edge e
in a good drawing of a graph. Let F be the set of edges which cross δe at least twice.
Then we can apply a sequence of slide moves and homeomorphisms of the plane so
that in the resulting drawing e is routed arbitrarily close to δe, without intersecting it.
The slide moves and homeomorphisms only affect a small open neighborhood of the
region bounded by γe ∪ δe, and only edges in F and the γe part of e are redrawn.

Since homeomorphisms and slide moves do not affect the goodness of a drawing, we
know that the final drawing in Lemma 2.1 is good. For an example of applying the
detour lemma to redraw a detour, see Fig. 5. We should mention that it is possible that
the set F contains e.

Proof Every time an edge enters the bigon δe ∪ γe it must leave it again, since there
are no vertices inside the empty bigon. Since the drawing is good, there can be only
one crossing of an edge with γe. This leaves two ways an edge can cross through the
bigon: transversely, one crossing with each side of the bigon, δe and γe; or laterally,
both crossings are with the same side, which then must be δe.

Let us first look at the case that some edge f ∈ F crosses the bigon laterally. Then
there is an arc γ f ⊆ f which lies inside the region bounded by the bigon δe ∪ γe and
which has both its endpoints on δe, and otherwise does not intersect the closed curve
δe ∪γe. Then γ f and a subarc δ′

e ⊆ δe bound a bigon; choose f ∈ F and γ f so that the
resulting bigon is minimal (that is, it encloses no other bigon of this type). Figure 4
illustrates the set-up.

Any edge that crosses the boundary of the bigon δ′
e ∪ γ f must do so transversely,

that is, there are no two consecutive crossings with γ f or δ′
e. For γ f this follows from

the drawing being good, for δ′
e this follows from the minimality of the bigon we chose.

9 This lemma, and the proof of Gioan’s theorem based on it first appeared in [16].
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e

f

δ ′
e
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γ e

Fig. 4 A detour δe (dashed) for γe , the subarc of e between the endpoints of δe . Edge f and δe bound a
minimal bigon δ′

e with γ f . Edges of F in gray

We distinguish two cases:

The bigon δ′
e ∪ γ f does not enclose any crossings. In this case, we can apply a

homeomorphism of the plane to move γ f to the other side of δ′
e making it follow

δ′
e closely.

The bigon δ′
e ∪ γ f does contain a crossing. In this case, the bigon must contain a

crossing c such that c and the two arcs connecting it to γ f bound an empty triangle
(we will argue this presently); we can then slide γ f beyond c; repeating this we
obtain a drawing of γ f such that δ′

e ∪ γ f does not enclose any crossings, and we
continue as in the first case. See Fig. 5.

How do we know that the required c exists? Start with an arbitrary crossing c1
inside the bigon, see Fig. 6. If the two arcs connecting c1 to γ f contain a crossing,
then there must be a crossing along at least one of the arcs. Let c2 be the closest such
crossing to γ f . Then the arc from c2 to γ f has no crossings. If the other arc from c2
to γ f contains crossings, we pick the closest such crossing c3 to γ f . We continue this
process to obtain a sequence of crossings. Starting with c2, at least one of the arcs
incident to the crossing must be free of crossings. This implies that the sequence of
triangles formed by the two arcs at the crossing and γ f is nested (starting with c2).
Since we are strictly reducing the number of crossings contained inside the triangle,
this sequence must stop in a finite number of steps with a crossing c for which both
arcs connecting it to γ f do not contain a crossing.

At this point all crossings of f ∈ F with the bigon are transverse. This is not
possible, since f , by definition of F , has to cross δe at least twice, forcing two crossings
of f with γe (and therefore e), contradicting goodness of the drawing. Hence, F is
empty, and all crossings of edges with δe ∪ γe are transverse; this case we saw how to
handle earlier when rerouting γ f along δ′

e; we apply the same procedure here, to γe
and δe. �	

Remark 2.2 How many slide moves does the detour lemma need? Suppose the bigon
δe ∪ γe contains k crossings in its interior. For an edge f ∈ F , each arc of f may have
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Fig. 5 Detouring γe along δe: after three slide moves, δe ∪ γe contains no more crossings, and we can
redraw γe on the other side of δe , following it closely

c1
c2

c3

c4 c5

γ f

δ ′
e

Fig. 6 The bigon δ′
e ∪γ f contains crossings. To find a crossing that bounds a triangle with γ f we start with

(arbitrary) crossing c1 and then keep following one of the incident arcs which contains crossings up to the
crossing closest to γ f (after c1 that choice is unique)

to be pushed past all k crossings inside the bigon, leading to at most k slide moves
for each arc γ f for each edge f ∈ F . At this point, we need at most another k slide
moves for γe.
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3 Gioan’s Theorem

To use the detour lemma to proveGioan’s theorem, we need to find homotopic detours;
we do so by comparing two drawings of an edge relative to a spanning star. For that
purpose we introduce the notion of a directed crossing: if we (arbitrarily) orient all
edges in a graph, we can distinguish between an edge e crossing another edge f from
left-to-right, or from right-to-left (as we traverse f in the direction we chose). We talk
about a directed crossing.

Lemma 3.1 (Gioan [7], Kynčl [12]) A rotation system of a good drawing of a K5
uniquely determines its isomorphism type on the sphere. The order and direction
of crossings between pairs of edges in the K5 are uniquely determined (given the
orientation of the edges).

Probably the easiest way of proving the lemma is to inspect the five non-isomorphic
drawings of K5 on the sphere, and note that their rotation systems differ, see [12]. The
lemma also follows from Corollary B.2 in Appendix B.

Suppose we have a star S(w) centered at w, and two drawings, e and e′, of an edge
uv between two neighbors u and v of w. We say the two drawings are equivalent with
respect to the drawing of S(w), if following either drawing from u to v results in the
same sequence of directed crossings with edges in S(w).

Lemma 3.2 If we have two drawings e and e′ of an edge uv that are equivalent with
respect to a drawing D of a star S(w), and both D ∪ {e} and D ∪ {e′} are good
drawings, then e and e′ bound an empty bigon.

As one of the referees pointed out, the lemma can also be deduced from a classical
result by Hass and Scott on curves on surfaces [10, Lemma 3.1]. That proof requires
some heavier machinery, so we prefer to include our own more elementary argument.

Proof The edges of S(w), the star edges, split e and e′ into sequences of arcs. Since e
and e′ are equivalent, the j th arc of each sequence connects the same sides of the same
star edges. If the j th arc of e crosses the j th arc of e′ for some j , let j be minimal with
this property, and let c be the first such crossing along the j th arc of e. Otherwise, no
j th arc of e crosses a j th arc of e′, and we choose j so that the j th arcs of e and e′ are
the final arcs of e and e′, and c is v, the common endpoint of those arcs.

Following e and e′ from their starting point u to c gives us two subarcs, γ ⊆ e and
γ ′ ⊆ e′, connecting u to c; note that while γ and γ ′ intersect in c, they do not cross
in c (since they end there), so we do not consider c a crossing of γ and γ ′. See Fig. 7.

If γ and γ ′ do not cross, then γ and γ ′ bound a bigon, and that bigon is empty,
since both γ and γ ′ cross the same star edges in the same order and direction, so none
of the star edges can cross exactly one of them, which would be necessary for a vertex
to lie inside the bigon. If e and e′ bound the bigon γ ∪ γ ′, we are done; otherwise, we
can choose a minimal bigon bounded by e and e′ inside the region enclosed by γ and
γ ′. Since the bigon bounded by γ and γ ′ is empty, so is the minimal bigon, and we
are done.

If γ and γ ′ cross, such a crossing cannot occur between the parts of γ and γ ′ that
belong to the j th arcs, by the choice of c. So an i th arc of γ crosses γ ′ or an i th arc
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c
u e

e′

γ
γ ′

w

Fig. 7 The star S(w). The fourth arcs of e and e′ cross in c. Curves γ ⊆ e and γ ′ ⊆ e′ connect u to c. The
third arc of γ ′ crosses the first arc of γ

of γ ′ crosses γ , where i < j , and both may happen. Without loss of generality, let us
assume the first case holds, illustrated in Fig. 7. Since the i th arcs of γ and γ ′ do not
cross each other, but γ ′ does cross the i th arc of γ , there must be a bigon bounded by
γ and γ ′ in the quadrilateral consisting of the two i th arcs of γ and γ ′ and the arcs
along the star edges that connect the endpoints of those two arcs (unless the i th arc is
the first or last arc, in which case the boundary has three sides—this case is shown in
Fig. 7; two sides are not possible, since c is a crossing). As before, there must then be
a bigon bounded by e and e′ within that quadrilateral. Since the quadrilateral cannot
contain a vertex, this bigon is empty. �	

Proof of Theorem 1.1 Let D and D′ be two rotation-equivalent good drawings of a
complete graph. By applying a homeomorphism, we can assume that the star S(v)

on v and all its neighbors in the complete graph are drawn the same way in both D
and D′. Moreover, by rotating the edges in D′ incident to a vertex u, we can ensure
that the two drawings of each edge (in D and D′) have consecutive ends in the rotation
at u, for all vertices u. Rotating the edges in D′ can be done using a homeomorphism.

Since the vertex locations in both drawings are the same, we can speak about two
drawings of an edge, one in D, one in D′, being the same or not. Using the detour
lemmawewill show that there is a sequence of slide moves and homeomorphisms that
turns D into D′. Since a homeomorphism followed by a slide move can be replaced
by a slide move followed by another homeomorphism, and two homeomorphisms in
sequence are equivalent to a single homeomorphism, this implies the result.

We use induction on the number of edges in which D and D′ differ. Suppose an
edge e is drawn differently in D and D′, and let E= be the set of edges whose drawings
in D and D′ are the same (initially, S(v) ⊆ E=). We use e and e′ to denote the drawing
of e in D and D′, respectively, overloading the symbol e. Using a homeomorphism,
if necessary, we can perturb the drawing of e′ slightly so that e and e′ intersect only
finitely often. Since the rotation systems of D and D′ agree, e and e′ are equivalent
with respect to S(v), so, by Lemma 3.2, there are arcs γe ⊆ e and δe ⊆ e′ such that e
and e′ bound an empty bigon γe ∪ δe. If either, or both, the endpoints of δe are vertices
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Fig. 8 Three drawings of K5 − K2 with the same rotation system; the drawings are not isomorphic, but
become isomorphic if viewed as unlabeled graphs

of the edge, we note that there can be no edges that end at such a vertex inside the
bigon, since we made the ends of e and e′ consecutive at their endpoints.

In other words, δe is a homotopic detour for γe, and we can apply Lemma 2.1 to
redraw D so that e is routed arbitrarily close to δe, and the number of crossings between
e and e′ is reduced by at least two. We repeat this process, until e and e′ have no more
crossings. By Lemma 3.2, e and e′ are the boundaries of an empty bigon, and we can
apply Lemma 2.1 one more time to redraw e as e′. Since e′ was good with respect to
all edges in E=, none of the edges in E= gets modified in the redrawing, so e = e′
can now be added to E=. �	
Remark 3.3 Howmany slide moves are required to turn two rotation-equivalent draw-
ings of the complete graph into each other? By Theorem A.1, in the appendix, we
can assume that two drawings of an edge e cross at most O(n6) times, which means
we apply the detour lemma at most O(n6) times for each edge e of G (the redrawing
reduces the number of crossings between the two drawings). Since there are fewer
than n2 edges, this gives us a bound of O(n8) on the number of applications of the
detour lemma. By Lemma 2.2 every edge f of G requires at most O(n10) slide moves
in an application of the detour lemma ( f can have at most O(n6) arcs crossing δe
laterally, and there are at most k ≤ n4 crossings overall). Since there are at most n2

edges, this gives us O(n12) slide moves per application of the detour lemma, leading
to O(n20) slide moves overall. Improved accounting may lead to better bounds, but at
least we can say that the bound is polynomial.

3.1 An Extension of Gioan’s Theorem10

Can Gioan’s theorem be extended to non-complete graphs? This seems unlikely, at
first glance, and it is easy to construct counterexamples. Figure 8 shows that a K5−K2
can have different drawings for which the rotation system is the same, but the pairs of
edges that cross are not. In particular, these drawings are not isomorphic, so Gioan’s
theorem, as we stated it, does not generalize to K5 − K2, or any Kn − K2, for n ≥ 5.

Remark 3.4 One could attempt to salvage the result by allowing the underlying home-
omorphism to ignore the vertex labels. Clearly, the three drawings shown in Fig. 8

10 The paper originally showed that Gioan’s theorem can be extended to Kn−K2. I am grateful to the referee
for pointing out that the same techniques can be pushed to Kn − M, where M is a non-perfect matching in
Kn.
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are isomorphic if viewed as drawings of unlabeled graphs. It is easy to destroy such
a homeomorphism by replacing an outer vertex with a very small K3 (or larger com-
plete graph), which lies inside the triangle. This leads to three drawings of K7 − K2,
for which the rotation systems are the same, but the three drawings cannot be made
isomorphic by slide moves, even if we do not require vertex labels to be respected.
For this reason, we do not further pursue this idea.

Let us try a different approach. We phrased Gioan’s theorem in terms of rotation
systems, but Gioan originally stated his theorem for weak isomorphism types. Two
drawings of a graph are weakly isomorphic if the same set of pairs of edges cross in
both drawings. If two drawings are isomorphic, they are weakly isomorphic, but the
converse need not be the case in general. For complete graphs, the rotation system of
a drawing determines the weak isomorphism type [11,15], and vice versa (up to all
rotations reversing) [7,12]. For incomplete graphs, that changes. In Appendix B, we
show that for a K5 − 2K2 = W4, a wheel with four spokes, its weak isomorphism
type determines its isomorphism type.

Lemma 3.5 The weak isomorphism type of a good drawing of a K5 − 2K2 = W4
uniquely determines its isomorphism type on the sphere.

This lemma allows us to extend Gioan’s theorem to complete graphs minus a non-
perfect matching. The following result holds even if the matching is perfect.

Corollary 3.6 Let M be a matching in a Kn, n ≥ 5. Then the weak isomorphism type
of Kn − M determines its rotation system (up to all rotations reversing).

Proof For n = 5, this follows from Lemma 3.5 and Corollary B.2. For n > 5, all
vertices have degree at least four. Let q be an arbitrary vertex and pick four arbitrary
neighbors {a, b, c, d} of q. Then the five vertices {q, a, b, c, d} induce either a K5,
a K5 − K2, or K5 − 2K2 = W4 subgraph of Kn − M . In any case, q and the four
edges qa, qb, qc, and qd belong to a W4-subgraph of K5 − M , so the rotation of the
four edges at q is determined by Lemma 3.5 (up to reversing the rotation). Suppose
the rotation is abcd. We can then determine the full rotation at q (up to reversing): for
every neighbor x of q we determine the rotation of {a, b, c, x} at q. It will be one of
axbc, abxc, or abcx (up to reversing). In the first two cases, we can easily combine
this with abcd to conclude that the rotation at q is axbcd or abxcd, respectively. In the
final case, the rotation could be abcdx or abcxd. We can easily figure out which, by
determining the rotation of, for example, {c, d, x, a} at q. Continuing like this, we can
find the full rotation at every vertex, up to reversing. This gives us a rotation system
for Kn − M , in which each rotation may be reversed. Since any two vertices have at
least three common neighbors, though, we can use these to synchronize all rotations,
so that either all, or none of them reverse. �	
When we review the proof of Theorem 1.1 to see what properties of the underlying
(complete) graph we used, we find that we only need three properties: (i) the rotation
system is determined (which it is, by Corollary 3.6 if we fix the weak isomorphism
type of the drawing), (ii) the graph contains a spanning star S(w), and (iii) we can
determine, for any two edges in S(w), in which order and direction they cross an
edge f .
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For a complete graph minus a matching, property (i) is satisfied by Corollary 3.6. If
M is not a perfect matching, then Kn − M contains a spanning star, so (ii) is satisfied.
Finally, for (iii) we note that the graph induced by f and the two edges from S(w)

induce a subgraph of Kn − M which contains K5 − 2K2 = W4 as a subgraph, so (iii)
follows from Lemma 3.5. We conclude that Gioan’s theorem—phrased in terms of
weak isomorphism type—holds for Kn − M .

Corollary 3.7 Let M be a non-perfect matching in Kn, n ≥ 5. Any two weakly isomor-
phic, good drawings of a Kn − M are isomorphic up to slide moves.

Can Gioan’s theorem be extended even further? The obviously missing case in Corol-
lary 3.7 is a complete graph minus a perfect matching (so n is even). The first case to
investigate here would be K6 − 3K2. Our method heavily relies on the existence of a
spanning star, so it is not immediately clear whether it applies here. A complete list
of good drawings of K6 − 3K2 may help to settle that specific case, see Remark B.1.

We can also consider removing two incident edges from a K5, which results in
the house X-graph K5 − P3. This graph has two non-isomorphic plane drawings,
so the weak isomorphism type does not determine its rotation, and it is also easy to
see that a rotation system of a good drawing of this graph does not determine its
weak isomorphism type. To proceed farther with removing adjacent edges then would
either require strengthening our assumption to have both rotation system and weak
isomorphism type, or to investigate the relationship between rotation system and weak
isomorphism type of Kn − P3 for larger n.

We leave Gioan’s theorem with one final remark. If two drawings of a graph are
isomorphic up to slide rules, then clearly their rotation system and weak isomorphism
type are the same. If an edge f crosses two edges g and h which do not cross each
other, then slide moves cannot change the order and direction in which f crosses g
and h. It follows that the order and direction in which an edge f crosses the edges of
a star S(w) is not changed by slide moves. Hence, if there is a spanning star S(w),
then the requirement that order and direction of crossing with S(w) do not change is
a necessary and sufficient condition for there to be a sequence of slide moves turning
one drawing of the graph into another (assuming they have the same rotation system
and weak isomorphism type). So our method seems to be optimal in case there is a
spanning star.

4 Pseudolinearity of Complete Graphs

For the proof of Theorem 1.5, we introduce one more notion: a drawing of a graph is
x-bounded if for every edge uv, the curve representing uv lies entirely between u and v

(with respect to x-coordinates). In the proof we will show how to modify the drawing
using the detour lemma, and homeomorphisms, to make the drawing x-bounded, and
then x-monotone.

Proof of Theorem 1.5 Fix a good drawing of the complete graph that does not contain
a bad K4. We will prove the result by induction on the number of vertices in the graph.
In the base case we have at most four vertices. For n ≤ 3, Kn has a unique drawing,
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· · ·

v

Fig. 9 Stretching S(v). Rays extending edges of S(v) are dotted

which is isomorphic (in the plane) to a rectilinear, and, therefore, x-monotone drawing.
Figure 2 shows that all non-isomorphic drawings of K4 are isomorphic (in the plane)
to an x-monotone drawing. So we can assume that n ≥ 5.

We claim that the drawing contains a vertex incident to the outer region. If the
outer region were not incident to any vertices, then there must be a crossing c incident
to the outer region. Let e and f be the edges crossing in c. The graph induced by
the endpoints of e and f is a K4 with its crossing incident to the outer region, a
bad K4, which is not possible. So we can let v be a vertex incident to the outer region.
Isomorphically redraw the graph so that S(v), the star centered at v, is drawn using
straight-line segments, all neighbors of v lie on the same horizontal line, and v lies
below that line, see Fig. 9. Moreover, we can ensure that no edge is drawn in the
half-plane below v, that is, the horizontal line through v is not crossed by any edges.

We show how to make the drawing x-monotone using the detour lemma, so only
using homeomorphisms and slide moves; neither of these change whether the drawing
contains a bad K4. In the first step we aim for an x-bounded drawing.

For x �= v, let �x be the ray at v extending vx . Consider an edge xy between two
neighbors of v, with x to the left of y. We already know that xy cannot cross below v.
It also cannot cross any edge vw where w is to the left of x or to the right of y; if it
did, then the K4 induced by {v, x, y, w} would be bad (the crossing between xy and
vw is incident to the outer region of the K4). Hence, xy can only cross edges vw with
w between x and y.

Suppose that xy crosses �x or �y , say �x , without loss of generality. Since xy cannot
cross vx , the drawing of the complete graph being good, it must cross �x beyond x .
Let us first consider the possibility that xy attaches at x from the left side of �x . We
claim that for any edge xz that attaches to x in the wedge formed by xy and �x to
the left of �x we must have that z lies to the right of x : if z were to the left of x , then
xz cannot cross vy (as we argued earlier); it also cannot cross vx and xy, since those
edges are adjacent to xz, and xy does not cross vz, so xz is caught in the cycle vxy
and cannot reach z. See the left illustration in Fig. 10.

We can then take xy and all edges that end in the wedge between xy and �x and
rotate them to the right side of �x (without changing the cyclic order of edges attaching
to x , so the rotation at x remains the same), see Fig. 10. Repeating this for all edges
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v

x yz

· · ·· · ·

v

x yz

· · ·· · ·

Fig. 10 Moving ends at x to the right side

v

x yz

· · ·· · ·

Fig. 11 Stuck again

xy, with x, y �= v, we can ensure that an edge xy leaves its endpoints in the correct
direction (towards the other endpoint). Now consider �x . If xy crosses �x it must do so
an even number of times (since xy leaves towards the right, must end to the right, and
does not cross vx or pass below v). We can pick two crossings of xy with �x which are
consecutive along �x (when ignoring crossings with edges other than xy); the subarc
of �x connecting these two crossings is a detour for the subarc of xy between those
same crossings, and we can apply the detour lemma to reroute xy along �x , removing
(at least) two crossings between xy with �x . Repeating this process, we can remove all
crossings of xy with �x . Applying this redrawing for all edges and each endpoint, we
obtain a drawing in which edges xy only cross rays �z where z lies between x and y.
Assuming that the rays are reasonably close to vertical, the drawing is x-bounded;
moreover, by construction, the drawing is good, and isomorphic (in the plane) to the
original drawing.

In the second step we show how to turn the x-bounded drawing into an x-monotone
drawing. Suppose some edge xy, where x is to the left of y, crosses a ray �z more
than once. Let z be the left-most vertex with this property. We know that z must lie
between x and y. Since x and y lie on opposite sides of �z (and xy does not pass
below v), xy must cross �z an odd number of times, so at least three times. As we
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v

x yz

· · ·· · ·

v

x yz

· · ·· · ·

Fig. 12 Directions of two consecutive crossings. Left: xy crosses �z − vz right-to-left followed by left-to-
right. Right: xy crosses �z − vz left-to-right followed by right-to-left

traverse xy and record crossings with �z , these crossings are either with vz or with
�z − vz. Since xy can cross vz only once, this means that xy must cross �z − vz twice
consecutively, unless xy crosses �z exactly three times, and the crossing with vz is
the second (middle) crossing. In that case, xy first crosses �z − vz from left to right,
then vz from right to left, and then �z − vz again from left to right. But then xy can
no longer reach y, so this case is not possible, see Fig. 11.

We are left with two cases depending onwhether the two consecutive crossingswith
�z − vz occur in the directions right-to-left followed by left-to-right, or vice versa (if
there are more than three crossings, both cases may apply). Figure 12 illustrates both
scenarios. In both scenarios, we have found a detour for xy along an arc of �z − vz.
We need to argue that in both cases the corresponding bigon is empty, to ensure the
detour is homotopic, allowing us to apply the detour lemma.

In the first case the detour is homotopic, since the arc of xy between the two
crossings cannot cross any ray between vx and vz, since it would have to do so twice
(once with the arc of xy between x and vz), which contradicts the choice of z. If we are
not in the first case, we must be in the second case, and xy crosses vz from left to right.
Then the arc of �z −vz between the two consecutive crossings with xy is a homotopic
detour: there cannot be a z′ such that the detour crosses vz′, since then xy would have
to cross vz′ twice (once with the detour, and once with the arc of xy connecting vz
to y). In either case, we have found a homotopic detour for xy, which allows us to
remove two crossings of xy with �z . Repeating this process, we can ensure that xy
crosses every �z with z between x and y exactly once, and no other �z , since xy cannot
cross �x and �y as we saw earlier. We have shown that every edge intersects every �z
at most once. We can now replace the drawings of edges between neighboring �z by
straight-line segments without changing how often two edges cross (in every wedge,
and, therefore, overall). Assuming the �z are sufficiently close to vertical (which we
can ensure by moving v downwards), the drawing of the complete graph is now x-
monotone. Since the drawing was obtained by a sequence of homeomorphisms (of the
plane) and slide moves, the drawing remains good, and it still contains no bad K4.

As in the proof of Gioan’s theorem, we can reorder the homeomorphisms and
slide moves so that all slide moves get performed first, after which the drawing is
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isomorphic in the plane to an x-monotone drawing. To make that final x-monotone
drawing isomorphic (in the plane) to the original drawing, we need to undo the slide
moves (in reverse order). Suppose we have an empty triangle formed by crossings
a, b, c with the crossings occurring in order a < b < c from left to right. It does not
matter which of the sides we slide over the opposite crossing, the resulting drawings
are the same (up to homeomorphism), so we may as well slide edge e through ac
over b. For this we simply redraw e by replacing ac with a detour along abc without
crossing ab or bc. We conclude that the original drawing is isomorphic (in the plane)
to an x-monotone drawing. �	

5 Conclusion

The main goal of this paper was to showcase the combination of the detour lemma
with Kynčl’s spanning star approach. The approach yielded two known and one new
result, the extension of Gioan’s theorem to the family Kn − M . What other results can
be provenwith this method?One immediate candidate is the link between x-monotone
and pseudolinear drawings. We currently bridge this gap by referring to a result using
different techniques. Can this gap be bridged with the techniques of this paper?

A more philosophical goal of the paper was to make the case that graph redrawing
arguments can lead to constructive, and conceptually simple proofs. Along those lines,
I also attempted a proof of Levi’s lemma, see [17]. A tempting open question here
is suggested by Lemma 3.2; that lemma proves the special case of Hass and Scott’s
classical result on curves on surfaces [10, Lemma 3.1] which we need for this paper,
namely the planar case. Can our proof technique be extended to give a full graph-
redrawing proof of Hass and Scott’s Lemma 3.1? Such a proof could be a first step
in recasting and reproving the results of the Hass and Scott paper in graph-drawing
terms.

Acknowledgements I would like to thank the anonymous referees whose detailed feedback led to an
improved presentation of the paper, and specifically for the suggestions that led to a strengthening of
Corollary 3.7, see footnote 10, and a simplification of Theorem A.1, see footnote 11.

A Crossings in Simultaneous Drawings

The usual perturbation/general position argument can be invoked to show that during
the redrawings performed in this paper, different drawings of the same edge intersect
only finitely often. To bound the number of slide moves in applications of the detour
lemma asymptotically, we need amore precise statement, which the following theorem
supplies.11 The result applies to cone graphs, graphs that have a spanning vertex.

Theorem A.1 Suppose D1 and D2 are good drawings of the same cone graph G on
n vertices. Then there is a good drawing D′

2 isomorphic to D2 such that

(i) the vertices of G have the same locations in D1 and D′
2,

11 This is much simplified from an earlier version, thanks to a referee’s recommendation to work with
Kynčl’s star-cut representation [11].
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(ii) any two edges in D1 ∪ D′
2 are drawn the same way, or cross at most O(n6) times,

(iii) if D1 and D2 have the same rotation system, then the ends of e1 ∈ D1 and e2 ∈ D2,
both corresponding to the same edge e ∈ E(G), are consecutive at their vertices
in D1 ∪ D′

2, or e is drawn the same way in both D1 and D′
2.

Proof Since G is a cone graph, there is a vertex w such that S(w) spans all of G. For
a good drawing D of G we can do the following: cut the sphere along the edges of
S(w). This results in a disk bounded by two copies of each edge of S(w) and n − 1
copies of v (this is Kynčl’s star-cut representation [11]). Isomorphically redraw the
disk, so that its boundary is a convex polygon. Since the drawing D was good, each
edge of G crosses each boundary edge at most once, so an edge of G consists of at
most n arcs in the star-cut drawing. Replacing each crossing with a degree-4 dummy
vertex gives us a plane graph. Triangulating that drawing yields a 3-connected plane
graph with a unique embedding (up to orientation-preserving homeomorphisms) by
Whitney’s theorem [13]. We can now apply Tutte’s spring embedding theorem [18]
to find a straight-line embedding of the plane graph in which the bounding convex
polygon remains the same. Removing the edges we added, and converting dummy
vertices back into crossings, gives us a drawing isomorphic to D in which every arc
is a polygonal-arc consisting of at most n2 straight-line segments (since each arc can
cross at most

(n
2

)
< n2 other arcs). Since each edge of G consists of at most n arcs,

each edge of G consists of at most n3 straight-line segments.
We now build star-cuts drawings for both D1 and D2 using the same convex (geo-

metric) polygon based on S(w). Slightly perturbing points inside the disk, we can
ensure there is no overlap between edges or crossing points. In this simultaneous
drawing, there are at most n6 crossings between any two edges (independently of
whether they are based on D1 or D2).

We now glue the pieces of S(w) back together, to obtain a drawing D which
contains a drawing D′

1 isomorphic to D1 and a drawing D∗
2 isomorphic to D2, and in

this joint drawing S(w) is drawn the same way. In particular, all vertices are in the
same location. Since D1 and D′

1 are isomorphic, we can apply a homeomorphism of
the plane to D = D′

1 ∪ D∗
2 that turns D′

1 into D1. The result of that homeomorphism
on D∗

2 is the drawing D′
2 we need for (i) and (ii).

Claim (iii) is achieved by homeomorphisms: in a small neighborhood of each vertex,
rotate the edges of D′

2 until they satisfy (iii). This will introduce at most one crossing
between any two edges incident to the same vertex belonging to different drawings,
so the asymptotic analysis is not affected. �	

B Good Drawings ofW4

Recall thatwewant to proveLemma3.5: theweak isomorphism type of a good drawing
ofW4 determines the drawing up to isomorphism. The most direct approach would be
to study all non-isomorphic drawings of W4 and prove that their weak isomorphism
types differ.

There are two obstacles: (i) when listing non-isomorphic drawings, we typically do
so for non-labeled graphs, so one has to take into account that there may be non-trivial
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automorphisms of the drawing (of the unlabeled graph); the drawings in Fig. 8 show
that this difference matters; and (ii) there are no reliable lists of non-isomorphic good
drawings of W4. There is a such list in the paper by Gronau and Harborth [9], W4 is
G31 in their list; however, there are at least two obvious mistakes in that list (the 11th
drawing of W4 shows a degree-2 vertex, and the 15th drawing looks like it has two
degree-4 vertices). This is probably due to copying mistakes, but makes this a less
than ideal basis for a proof. Hence, we opt for a direct proof.

Remark B.1 It would be highly desirable to have a tool that is able to generate all good
drawings (maybe even bad [5] drawings) of small graphs (labeled and unlabeled)
automatically, in some verifiable manner. There are algorithms in the literature (going
as far back as Eggleton [6]), but implementations tend to focus on drawings of small
complete, or small complete bipartite graphs.

Proof of Lemma 3.5 Fix a gooddrawingofW4. Thedrawingdetermines aweak isomor-
phism type. We have to show that we can reconstruct the drawing, up to isomorphism,
from the weak isomorphism type. It is sufficient to determine the rotation at each
vertex, and the order and direction in which edges cross each other (for this, we fix
an arbitrary orientation of the edges). Let q be the unique vertex of degree 4. Edges
incident to q are called spokes, the remaining edges are cycle edges.

Claim 1: The rotation at q is determined. Let uv and xy be two disjoint cycle
edges. Then the two 3-cycles quv and qxy intersect in q; the underlying curves of
those two cycles may touch or cross in q: they touch, if edges qu, uv, qv cross edges
qx, xy, qy an even number of times, otherwise they cross, andwe can tell which, based
on the weak isomorphism type. This test tells us whether qu and qv are neighbors
in the rotation at q or not. If they are not neighbors, the rotation at q has to be uxvy
(possibly requiring an orientation-reversing homeomorphism). Otherwise, there are
two possible rotations: uvxy or uvyx (again up to isomorphism). We can tell which is
the case, by checking whether qu and qx are neighbors (using the other two triangles
at q).

Claim 2: The rotation at all cycle vertices is determined. Fix a cycle vertex u; for
one of the two cycle edges uv incident to u, edges qu and qv must be neighbors
in the rotation at q (they cannot both be opposite to qu in the rotation at q). Up to
isomorphism, there are then four possible good drawings of the four spokes together
with uv, as shown in Fig. 13.

The weak isomorphism type tells us which of the four cases we are in. Vertex u is
incident to two cycle edges: uv, and a second edge e, which is either ux or uy. In all
four cases, we knowwhether the other endpoint of e lies inside the triangle quv or not,
and the weak isomorphism type tells us how often e crosses edges qu, uv, qv. From
this, we can determine if the end of e at u is inside or outside the triangle, determining
the rotation at u.

Claim 3: For every pair of edges, the direction of crossing is determined. Only
pairs of independent edges can cross, so consider a pair of independent edges which
cross. Suppose one of the two edges is a spoke qx , then the other edge must be a
cycle edge uv. Consider the triangle quv. We know (using rotation at q and weak
isomorphism type), whether x lies inside or outside of quv, and we know whether qx
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Fig. 13 The four good drawings of triangle quv with all four spokes

starts inside or outside quv. This tells us in which direction qx crosses uv. Otherwise,
we have two cycle edges uv and xy which cross. Applying an orientation-preserving
homeomorphism if necessary, we can choose the direction of crossing in this case.
Since a good drawing of a C4 can have at most one crossing, this happens at most
once.

Claim 4: The order of crossing along each edge is determined.We argue the cases
of spokes and cycle edges separately.

Consider a spoke qx (with at least two crossings, otherwise the order of crossings
is trivial). In a good drawing of a W4 a spoke can only cross two edges, the two cycle
edges uv and vy (with x �= y, v, y), so qx must cross both. The triangle quv splits the
sphere into two regions, and we (arbitrarily) call the region containing the end of qx at
q the inside of quv; so x will lie on the outside of quv, as shown in the left illustration
of Fig. 14. If vy starts inside quv (something we can tell using the rotation at v), then
qx crosses vy before it crosses uv. Otherwise, vy starts outside of quv. In this case,
qx can cross uv and vy in either order, but the order depends on the direction of vy
crossings qx , something we already know. Hence, we can determine the order.

We are left with the case of a cycle edge, call it xy; again, we assume it has at
least two crossings. Let quv be the triangle on the remaining two spokes. In a good
drawing of the W4 the cycle edge xy can only cross edges qu, qv, and uv, and it must
cross at least two of them (otherwise the order is trivial). In this case, we think of x
as lying on the outside of quv, and xy crosses the boundary two or three times. In
the case of two crossings, the order of crossings along xy is directly determined by
the direction of the crossings (going inside quv first, then leaving again, second). In
the case of three crossings, there are two orders consistent with the directions; see the
two illustrations in the middle and on the right in Fig. 14; the vertices are relabeled
{a, b, c} = {q, u, v} to reduce the number of cases. Now y is incident to two of
{a, b, c}, so it must be incident to a or b. Let us assume that there is an edge ya (the
case yb is the same). If the edge ay starts inside the triangle abc, we are in the left
case, otherwise, we are in the right case (since ay cannot cross xy). Since we know
the rotation at a (by Claim 3), we can decide which case we are in, and determine the
order of crossings along xy. �	
Corollary B.2 For G ∈ {K5, K5 − K2}, the weak isomorphism type of a good drawing
of G determines the drawing up to isomorphism.

Proof Fix a good drawing ofG. Suppose an edge f is crossed by edges g and h (which
the weak isomorphism type tells us). Then g and h must have a shared endpoint (since
G contains no three independent edges). Then {e, g, h} are part of a W4-subgraph
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Fig. 14 Left: triangle quv with spoke qx crossing uv; vy can start inside or outside. Middle, right: triangle
quv (labels renamed abc) and edge xy; directions of crossing of xy with ab, bc, and ac are the same in
both drawings, the order of crossing is not

of G, and by Lemma 3.5 the order and direction of crossing of g and h with f is
determined. Using this, we can find the order of all edges crossing f . �	
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11. Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009)
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