
Discrete & Computational Geometry (2022) 67:311–327
https://doi.org/10.1007/s00454-021-00286-4

Euclidean Bottleneck Bounded-Degree Spanning Tree
Ratios

Ahmad Biniaz1

Received: 17 February 2020 / Revised: 8 November 2020 / Accepted: 3 February 2021 /
Published online: 16 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Inspired by the seminal works of Khuller et al. (SIAM J. Comput. 25(2), 355–368
(1996)) and Chan (Discrete Comput. Geom. 32(2), 177–194 (2004)) we study the bot-
tleneck version of the Euclidean bounded-degree spanning tree problem. A bottleneck
spanning tree is a spanning tree whose largest edge-length is minimum, and a bottle-
neck degree-K spanning tree is a degree-K spanning tree whose largest edge-length is
minimum. Let βK be the supremum ratio of the largest edge-length of the bottleneck
degree-K spanning tree to the largest edge-length of the bottleneck spanning tree, over
all finite point sets in the Euclidean plane. It is known that β5 = 1, and it is easy to
verify that β2 ≥ 2, β3 ≥ √

2, and β4 > 1.175. It is implied by the Hamiltonicity
of the cube of the bottleneck spanning tree that β2 ≤ 3. The degree-3 spanning tree
algorithm of Ravi et al. (25th Annual ACM Symposium on Theory of Computing, pp.
438–447. ACM, New York (1993)) implies that β3 ≤ 2. Andersen and Ras (Networks
68(4), 302–314 (2016)) showed that β4 ≤ √

3. We present the following improved
bounds: β2 ≥ √

7, β3 ≤ √
3, and β4 ≤ √

2. As a result, we obtain better approx-
imation algorithms for Euclidean bottleneck degree-3 and degree-4 spanning trees.
As parts of our proofs of these bounds we present some structural properties of the
Euclidean minimum spanning tree which are of independent interest.
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1 Introduction

The problemof computing a spanning tree of a graph that satisfies given constraints has
been well studied. For example, the famous minimum spanning tree (MST) problem
asks for a spanning tree with minimum total edge-length, and the bottleneck spanning
tree (BST) problem asks for a spanning tree whose largest edge-length is minimum.
In the last decades, a number of works have been devoted to the study of low-degree
spanning trees with short edges. These trees not only satisfy interesting theoretical
properties, but also have applications in wireless networks because nodes with high
degree or high transmission range lead to a higher level of interference. For finite point
sets in any metric space, one can construct a degree-2 spanning tree (a spanning path)
whose largest edge-length is at most thrice the largest edge-length of the BST. Such a
tree always exists in the cube1 of the BST, and can be computed in polynomial time
[18,20]. This yields a factor-3 approximation algorithm for the bottleneck traveling
salesman path problem. We will show that if we use BST’s largest edge-length as the
lower bound, then it is impossible to obtain a ratio better than

√
7 even in the Euclidean

metric in the plane.
This paper addresses the bottleneck degree-K spanning tree problem which is a

generalization of the bottleneck traveling salesman path problem (for which K is 2):
given a finite point set in the Euclidean plane and an integer K ≥ 2, find a spanning tree
of maximum degree at most K that minimizes the largest edge-length, i.e., the length
of the longest edge. The degree constraint is natural to consider as high-degree nodes
in networks are inmanyways undesirable [9]. The degree-3 tree is especially attractive
as it becomes a binary tree once rooted. The edge-length constraint is also natural to
consider, since nodes with high transmission range require higher transmission power.

For K ≥ 2, letβK be the supremum ratio of the largest edge-length of the bottleneck
degree-K spanning tree (degree-K BST) to the largest edge-length of the BST, over
all finite point sets in the Euclidean plane. Based on the above discussion, β2 ≤ 3.
The definition of βK is consistent with Chan’s definition [9] of τK as the supremum
ratio of the weight of the minimum degree-K spanning tree (degree-K MST) to the
weight of the MST, over all finite point sets in the Euclidean plane. Since every point
set has an MST of degree at most 5 [21], we get τK = 1 for all K ≥ 5. Moreover,
since every MST is a BST [7], we get βK = τK for all K ≥ 5. For every K ∈ {2, 3, 4}
there are point sets for which no degree-K MST is a degree-K BST, e.g., for the point
set in Fig. 1 any degree-K MST takes the edge of length 1.237 while no degree-K
BST takes that edge.

1.1 RelatedWork onMST Ratios

The Euclidean degree-K MST problem is NP-hard for K ∈ {2, 3, 4} [15,22,23]. It
is well known that one can compute a degree-2 spanning tree with weight at most 2
times theMSTweight, by doubling theMST edges, computing an Euler tour, and then
short-cutting repeated vertices. The constant 2 is tight, as Fekete et al. [13] showed

1 The cube of a graph G has the same vertices as G, and has an edge between two distinct vertices if and
only if there exists a path, with at most three edges, between them in G.
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Fig. 1 A point set for which no degree-K MST is a degree-K BST for any K ∈ {2, 3, 4}

that for any fixed ε > 0 there exist point sets whose degree-2 MST weight is not
smaller than 2 − ε times the MST weight. Therefore, τ2 = 2.

In 1984, Papadimitriou andVazirani [23] askedwhether theEuclidean geometry can
be exploited to obtain factors better than 2 for degree-3 and degree-4 spanning trees.
Following this question, in 1994, Khuller et al. [19] achieved the following bounds
for K = 3, 4: 1.103 < τ3 ≤ 1.5 and 1.035 < τ4 ≤ 1.25. The lower bounds are
achieved by the center plus vertices of a square and a regular pentagon, respectively;
see Fig. 2, a and b. The upper bounds are obtained by a recursive algorithm that roots
the MST at a leaf v, and then transforms it to a degree-K spanning tree with the
inductive hypothesis that the root should have degree at most K − 2 in the new tree.
The algorithm transforms the subtrees rooted at the children of v recursively, and then
replaces the star (formed by v and its children) by a small-weight path in which v has
degree at most K − 2. A similar approach was studied before by Ravi et al. [25] for
degree-3 spanning trees in metric spaces. In 2003, Chan [9] revisited the ratios and
showed that the upper bounds 1.5 and 1.25 are almost tight if we insist the root to have
degree at most K − 2. He managed to improve the upper bounds to τ3 < 1.402 and
τ4 < 1.143 by a weaker inductive hypothesis that the root can have degree at most
K − 1 in the new tree, and by recursing not only on subtrees of the original MST
but on trees formed by joining subtrees. A detailed analysis [17] shows that Chan’s
construction of degree-4 spanning trees gives upper bound τ4 < 1.1381. Fekete et al.
[13] conjectured that the lower bounds are tight, that is τ3 ≈ 1.103 and τ4 ≈ 1.035.

1.2 RelatedWork on BST Ratios

Following the result of Itai et al. [16] about the NP-hardness of the Hamiltonian path
problem for rectangular grid graphs, Arkin et al. [6] showed the NP-hardness of this
problem for some other classes of grid graphs, including hexagonal grid graphs. This
immediately implies the NP-hardness of the Euclidean degree-2 BST problem, and
its inapproximability in polynomial time by a factor better than

√
3 unless P = NP.

Andersen and Ras [2] have shown that the Euclidean degree-3 BST problem is NP-
hard and cannot be approximated in polynomial time by a factor better than 5

√
2/7

unless P = NP; they left the status of the corresponding degree-4 problem open.
To obtain lower bounds for βK , one could try classic examples (shown in Fig. 2)

that achieve lower bounds for similar ratios (e.g., see [8,9,13,19,24]). It can be verified
simply that β3 ≥ √

2 and β4 > 1.175, by the the center plus vertices of a square and
a regular pentagon; see Fig. 2, a and b. The point set in Fig. 2c shows that β2 ≥ 2;
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Fig. 2 Lower bound examples

the BST edges have length 1 while any degree-2 BST should pick one of the dashed
edges which have length 2.

The current best known upper bounds are β2 ≤ 3, β3 ≤ 2, β4 ≤ √
3 (the bounds

β2 ≤ 3 and β3 ≤ 2 hold for any metric space). As discussed earlier, the upper bound
on β2 is implied by a known result that the cube of every connected graph (in our
case the BST) is Hamiltonian-connected [18,20]; by the triangle inequality the largest
edge-length in the cube graph is at most 3 times the largest edge-length in the BST.
This is also hinted at in [10, Exercise 37.2.3]. The upper bound on β3 is implied by the
degree-3 spanning tree algorithm of Ravi et al. [25, Thm. 1.6] which replaces the star
(formedby theMST’s root and its children)with a path; again by the triangle inequality,
the largest edge-length in the path is at most 2 times the largest edge-length in the star.
Andersen and Ras [2–4] studied bottleneck bounded-degree spanning tree problems
from theoretical and experimental points of view. In [2], they obtained similar upper
bounds for β2 and β3, and managed to show that β4 ≤ √

3 (they obtain this bound by
a modified version of Chan’s degree-4 spanning tree algorithm).

1.3 Our Contributions

We focus on ratios of Euclidean bottleneck degree-K spanning trees for K ∈ {2, 3, 4}.
We report the following improved bounds: β2 ≥ √

7, β3 ≤ √
3, and β4 ≤ √

2. For
the lower bound, in Sect. 5 we exhibit a point set in the plane for which the largest
edge-length of any degree-2 BST is at least

√
7 times the largest edge-length of the

BST. To achieve the upper bounds, we show that for any set of points in the plane
there exist degree-3 and degree-4 spanning trees with edge-lengths within factors

√
3

and
√
2, respectively, of the BST’s largest edge-length. Given the BST (which can

be constructed in O(n log n) time for n points), such trees can be computed in linear
time. As a result, we obtain factor-

√
3 and factor-

√
2 approximation algorithms for

the Euclidean bottleneck degree-3 and degree-4 spanning tree problems in the plane.
The new algorithms are presented in Sects. 3 and 4, and a preliminary of their analysis
is given in Sect. 2. As part of our proofs of these ratios we show some structural
properties of the MST which are of independent interest.

The new algorithms are recursive. Even though they are not complicated, the analy-
sis of the degree-3 algorithm is rather involved. In contrast to previous bounded-degree
spanning tree algorithms that recurse only on subtrees or joint-subtrees rooted at the
children of the root, our algorithms recurse on these subtrees together with the edges
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connecting them to the root. Moreover, our degree-3 algorithm recurses not only on
the children of the root, but also on its grandchildren. The new algorithms also exploit
the geometry of the Euclidean plane, and do not rely only on short-cutting and the
triangle inequality, which are the main hammers used for the known upper bounds
β2 ≤ 3 and β3 ≤ 2.

To add to the importance of our ratios, we refer to the works of Dobrev et al. [11,12]
and Caragiannis et al. [8] who studied similar ratios for Euclidean bottleneck strongly
connected directed graphs of out-degree at most K . These works are motivated by
the problem of replacing every omnidirectional antenna in a sensor network, with
K directional antennae of low transmission range, so that the resulting network is
strongly connected.

2 Preliminaries for the Proofs: SomeMST Properties

To facilitate our analysis, in this section we extract a set of structural properties of the
minimum spanning tree in the Euclidean plane. To avoid use of fractional radians, we
measure angles in degrees. We will frequently use the well-known fact that the angle
between any two adjacent MST edges is at least 60◦ (see [21]) without mentioning it.

For two points p and q in the plane we denote by pq the straight line segment
between p and q, and by |pq| the Euclidean distance between p and q. Consider a
vertex v of degree at least 3 in the MST and assume that its incident edges are sorted
radially. An angle at v is the angle between two consecutive edges. Two angles are
adjacent if they share a boundary edge, and nonadjacent otherwise. We denote the
degree of v by deg(v). We say that two MST edges are adjacent only if they are
incident to the same point (regardless of their relative positions in the radial sorting).
The following two lemmas (though very simple) turn out to be crucial for our analysis.

Lemma 2.1 Let v be any vertex of the MST. The following statements hold for the
angles at v:

(i) If deg(v) = 3 then there exists an angle that is at most 120◦.
(ii) If deg(v) = 4 then there exist two nonadjacent angles that are at most 90◦ and

120◦.
(iii) If deg(v) = 5 then all angles are at most 120◦ and there exist two nonadjacent

angles that are at most 90◦.

Proof If deg(v) = 3 then the smallest angle at v is at most 120◦. Assume deg(v) = 4.
Let α1, α2, α3, and α4 be the angles at v, ordered radially. Without loss of generality
assume that α1 + α3 ≤ α2 + α4, and thus α1 + α3 ≤ 180◦. We claim that α1 and α3,
which are nonadjacent, satisfy the angle constraints.Without loss of generality assume
that α1 ≤ α3, and thus α1 ≤ 90◦. We already know that α1 ≥ 60◦. Thus α3 ≤ 120◦.

Assume that deg(v) = 5. The first part of the statement is implied by the fact that
every angle at v is at least 60◦. For the second part, let α be the smallest angle at v,
and observe that 60◦ ≤ α ≤ 72◦. The sum of α and its two adjacent angles is at least
180◦. Thus, α and its smallest nonadjacent angle (which is at most 90◦) are the desired
angles. �	
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Fig. 3 Illustrations of (a) Lemma 2.2 and (b) Theorems 2.3 and 2.5

Lemma 2.2 Let pu and uv be two adjacent MST edges and let α denote the convex
angle between them. Then |pv| ≤ 2 sin(α/2) · max {|pu|, |uv|}.
Proof Observe that α ≥ 60◦. After a suitable relabeling assume that |pu| ≤ |uv|.
Consider the ray emanating from u and passing through p. Let p′ be the point on this
ray such that |p′u| = |uv|; see Fig. 3a. Then, the triangle �up′v is isosceles, and
thus |p′v| = 2 sin(α/2) · |uv|. The right hand side is at least |uv| because α ≥ 60◦.
Therefore, the diameter of �up′v is |p′v|. Since pv lies in this triangle, its length is
not more than the diameter. Thus, |pv| ≤ |p′v| = 2 sin(α/2) · |uv|. �	

Lemmas 2.1 and 2.2 suffice for the analysis of the degree-4 algorithm. The analysis
of the degree-3 algorithm requires stronger tools; Corollary 2.4 and Theorem 2.5 play
important roles here. Corollary 2.4 is implied by the following technical result of
Angelini et al. [5]; see Fig. 3b for an illustration.

Theorem 2.3 Let pu, uv, and vq be three MST edges such that both p and q lie on
the same side of the line through uv. Let α and γ denote the convex angles at u and v.
If α ≤ 80◦, then γ ≥ 120◦ − α/2.

Corollary 2.4 Let pu, uv, and vq be three MST edges such that both p and q lie on
the same side of the line through uv. Let α and γ denote the convex angles at u and v.
Then α + γ ≥ 150◦.

Proof If both angles are larger than 80◦ then the statement follows immediately. If
one of them, say α, is at most 80◦ then by Theorem 2.3 and the fact that α, γ ≥ 60◦
we have α + γ ≥ α + 120◦ − α/2 = 120◦ + α/2 ≥ 150◦. �	
We prove Theorem 2.5 in Sect. 6. This theorem, illustrated in Fig. 3b, deals with a
maximization problem which has five variables at first glance. We use a sequence of
geometric transformations to reduce the number of variables and simplify the proof.

Theorem 2.5 Let pu, uv, and vq be three MST edges such that both p and q lie on
the same side of the line through uv. Let α and γ denote the convex angles at u and v.
If α + γ ≤ 210◦, then |pq| ≤ √

3 · max {|pu|, |uv|, |vq|}.
Remark The upper bound 210◦ on α + γ in the statement of Theorem 2.5 is tight in
the sense that if we replace it by (210 + ε)◦, then there exist MST edges pu, uv, vq
for which the objective inequality does not hold. For example take α = 90◦, γ =
(120 + ε)◦, and |uv| = |vq| = 1. Then |uq| >

√
3. By placing p very close to u, so

that |pu| tends to zero, we make |pq| larger than √
3.
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Fig. 5 Local replacement of edges: a k = 3 and α is defined by vv1 and vv2. b k = 4, α1 is defined by vr
and vv1, and α2 is defined by vv3 and vv4

3 Degree-4 Spanning Tree Algorithm

Our algorithm is recursive. The algorithm recurses not only on rooted subtrees of the
original tree, but on rooted subtrees together with the edges connecting them to their
parents. For a rooted tree T and a single vertex r /∈ T , we denote by T + r the rooted
tree obtained by making the root of T a child of r ; see Fig. 4 (left).

We are given a minimum spanning tree T of a set of points in the plane, which we
may assume [21] has maximum degree at most 5. Notice that T is also a bottleneck
spanning tree [7]. Root T at a fixed leaf r so that each vertex has at most four
children. Let v denote the only child of r and let T denote the subtree rooted at v.
Then T = T + r , as in Fig. 4 (left). Let b(T + r) denote the largest edge-length of
T + r . Our recursive algorithm transforms the rooted tree T + r into a new degree-4
spanning tree, with the inductive hypothesis that

the root r has degree 1 and v has degree at most 3 in the new tree, and the largest
edge-length of the new tree is at most

√
2 · b(T + r).

We note that after transformation, v may not be the child of r in the new tree.
The algorithm works as follows. After a suitable rescaling we may assume that

b(T +r) = 1. Let v1, . . . , vk be the k (≤ 4) children of v in T that are ordered radially.
Let T1, . . . , Tk be the subtrees rooted at v1, . . . , vk . Transform T1 + v, . . . , Tk + v

recursively, and let T ′
1 + v, . . . , T ′

k + v be the resulting new degree-4 trees. See Fig. 4
for an illustration. By the inductive hypothesis, in each T ′

i +v, the vertex v has degree 1
and the vertex vi has degree at most 3. Let v′

i be the only child of v in each tree T ′
i +v,

and again notice that v′
i might be different from vi . If the child v′

i is different from vi
then we say that v′

i is adopted, otherwise v′
i is called natural.

The above transformation of trees Ti + v does not change the degrees of v and r .
Moreover, for every i ∈ {1, . . . , k}, we have that |vv′

i | ≥ |vvi | because otherwise vvi
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should not be an edge of the original minimum spanning tree T . After transforming
trees Ti + v, we replace the edges vr , vv′

1, . . . , vv′
k locally to obtain a transformation

of T + r . To do so, we differentiate between different values of k.

• k ≤ 2: In this case deg(v) ≤ 3, deg(r) = 1.We just leave the edges rv, vv′
1, vv′

2 in.• k = 3: We describe this case in detail. In this case deg(v) = 4 and there exists
an angle α ≤ 90◦ at v in the original tree T + r . If α is defined by two edges
vvi and vvi+1, then we add the edge vivi+1 and remove vv′

i , as in Fig. 5a. After
this replacement, v has degree 3, r has degree 1, and each of vi and vi+1 has
degree at most 4. Moreover, by Lemma 2.2 the length of the new edge vivi+1 is
at most 2 sin(α/2) · max {|vvi |, |vvi+1|} ≤ 2 sin(α/2) ≤ √

2. If α is defined by
vr and an edge vvi , then we add rvi and remove rv. After this replacement, v has
degree 3, r has degree 1, and vi has degree at most 4. Again by Lemma 2.2 we
have |rvi | ≤ 2 sin(α/2) · max {|vr |, |vvi |} ≤ √

2.

• k = 4: In this case deg(v) = 5, and thus by Lemma 2.1 there exist two nonadjacent
angles α1, α2 ≤ 90◦ at v in the original tree T + r . We process α1 as follows: If
α1 is defined by two edges vvi and vvi+1 then add vivi+1 and remove vv′

i , but
if α1 is defined by vr and an edge vvi then add rvi and remove rv. We process
α2 analogously. See Fig. 5b. After processing both angles, v has degree 3, r has
degree 1, and each vi has degree at most 4. It is implied by Lemma 2.2 that the
length of each new edge is at most

√
2.

Therefore, we obtain a new tree that satisfies the inductive hypothesis, and thus a
ratio of

√
2 has been established. The above local replacements take constant time per

root. Thus, given the initial degree-5MST (which is also a BST and can be constructed
in O(n log n) time for n points [21]), the algorithm runs in linear time.

Remark Our analysis of the ratio
√
2 is tight under our inductive hypothesis that “the

root r must have degree 1 and v must have degree at most 3 in the new tree”; the
example in Fig. 2a indicates why.

4 Degree-3 Spanning Tree Algorithm

Let T +r be a degree-5minimum spanning tree that is rooted at a leaf r , and let v be the
only child of r . Our approach for degree-3 spanning trees is similar to that of degree-4
trees, except that the degree of v should be at most 2. The algorithm transforms T + r
into a new degree-3 spanning tree, with the inductive hypothesis that

the root r has degree 1 and v has degree at most 2 in the new tree, and the largest
edge-length of the new tree is at most

√
3 · b(T + r).

Assume that b(T + r) = 1. Let v1, . . . , vk be the children of v ordered radially, and
let Tv1, . . . , Tvk be the subtrees rooted at these vertices, respectively (in this section
the name Tvi is more convenient than Ti ). Logically, similar to the degree-4 algorithm,
our degree-3 algorithm should first transform the trees Tvi + v and then replace the
edges incident to v locally. However, when k = 4 (i.e., when deg(v) = 5) we are not
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Fig. 6 Local replacement of edges: a k = 2 and α is defined by vr and vv2. b k = 3, α1 is defined by vv1
and vv2, and α2 is defined by vr and vv3

able to replace three of the incident edges without breaking the degree constraint for
r or for a vi . Therefore we differentiate between two cases: k ≤ 3 and k = 4.

Case k ≤ 3. Transform Tv1 + v, . . . , Tvk + v recursively to obtain new degree-3
trees. Let v′

1, . . . , v
′
k be the children of v in the new trees. After this transformation,

the degree of each vi is at most 2, and the degrees of r and v remain unchanged.
Moreover, for each i we have |vv′

i | ≥ |vvi |. To obtain a transformation of T + r , we
then replace vr , vv′

1, . . . , vv′
k locally.

• k ≤ 1: In this case deg(v) ≤ 2 and deg(r) = 1. We just leave the edges rv, vv′
1 in.

• k = 2: Then deg(v) = 3. By Lemma 2.1 there exists an angle α ≤ 120◦ at v in
the original tree T + r . If α is defined by two edges vvi and vvi+1 then add vivi+1
and remove vv′

i . If α is defined by vr and an edge vvi then add rvi and remove rv,
as in Fig. 6a. In either case, after the replacement, v has degree 2, r has degree 1,
and each vi has degree at most 3. Moreover, by Lemma 2.2 the length of the new
edge is at most 2 sin(α/2) ≤ √

3.

• k = 3: Then deg(v) = 4. By Lemma 2.1 there exist two nonadjacent angles
α1, α2 ≤ 120◦ at v in T + r . We process each of α1 and α2 similarly to α in
the previous case; see Fig. 6b. After processing both angles, v has degree 2, r has
degree 1, each vi has degree at most 3, and by Lemma 2.2 the lengths of new edges
are at most

√
3.

Case k = 4. Here is the place where we need more technical results. To see the
difficulty of this case we refer to the importance of the non-adjacency of α1 and α2
in case k = 3. Since these two angles are nonadjacent, we were able to replace two
incident edges (to v) without increasing the degree of each vi by more than 1. In the
current case, deg(v) = 5, and thus to satisfy the degree constraint for v we need to
replace three incident edges. However, there are only five angles at v, and thus we are
unable to find three nonadjacent angles.

It might be tempting to attach two new edges to a vertex vi and remove the edge
vvi ; this would increase the degree of vi by at most 1. We should be careful here as the
edge vvi may not be present after transforming the trees Tvi + v, because all children
of v could be adopted. In this case, we may not even be able to attach adopted children
together or to natural children without breaking the edge-length constraint.
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Fig. 7 Obtaining degree-3 spanning tree when k = 4, i.e., when deg(v) = 5

To handle this case, our idea is to recurse not only on the children of v, but also
on its grandchildren. This gives rise to somewhat lengthier analysis. Also, a technical
complication arises because now we need to bound the distance between endpoints of
two nonadjacent MST edges.

Let v1, . . . , v4 be the children of v in counterclockwise order around v, such that
their grandparent r lies between v1 and v4. Let α1 = ∠rvv1, α2 = ∠v1vv2, α3 =
∠v2vv3, α4 = ∠v3vv4, and α5 = ∠v4vr , as in Fig. 7a. Since α3 ≥ 60◦, the smallest of
α1 +α2 and α4 +α5 is at most 150◦. After a suitable reflection and relabeling assume
that α1 + α2 ≤ 150◦. Now we are going to recurse on the children of both v and v1.
Let u1, . . . , ul be the l (≤ 4) children of v1 in clockwise order around v1, such that
their grandparent v lies between u1 and u2, as in Fig. 7c.

Transform Tv2 +v, Tv3 +v, Tv4 +v recursively to obtain new degree-3 trees, and let
v′
2, v

′
3, v

′
4 be the children of v in the new trees. Also transform Tu1 + v1, . . . , Tul + v1

recursively to obtain new degree-3 trees, and let u′
1, . . . , u

′
l be the children of v1 in the

new trees. In Fig. 7 every new tree is shown by a circle and a connecting black edge
to the parent. After these transformations, each of v2, v3, v4, u1, . . . , ul has degree at
most 2, by the inductive hypothesis. Now we are going to replace the edges incident
to v and v1 locally to obtain a transformation of T + r . Depending on the value of l
we consider four cases. We perform the replacement in such a way that at the end of
each case the following constraints hold: deg(r) = 1, deg(v) = 2, deg(vi ) ≤ 3 for
every i ∈ {1, . . . , 4}, deg(u j ) ≤ 3 for every j ∈ {1, . . . , l}, and the length of every
new edge is at most

√
3.
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Before proceeding to the cases we note that since deg(v) = 5, by Lemma 2.1 all
angles at v in T + r are at most 120◦. Thus, by Lemma 2.2 the distance between any
two consecutive neighbors of v in T + r is at most 2 sin 60◦ = √

3.

• l ≤ 1: In this case add rv1, v1v2, v3v4 and remove rv, v1v, v′
3v; see Fig. 7a.

• l = 2: Let γ1 = ∠u1v1v, γ2 = ∠vv1u2, and γ3 = ∠u2v1u1, as in Fig. 7b. If
γ3 ≤ 120◦, then add u1u2, rv1, v1v2, v3v4 and remove v1u′

1, rv, v1v, v′
3v. Assume

that γ3 ≥ 120◦. Then γ1+γ2 ≤ 240◦ and consequently α1+α2+γ1+γ2 ≤ 390◦.
Thus we have α1 + γ1 ≤ 195◦ or α2 + γ2 ≤ 195◦. If α1 + γ1 ≤ 195◦ then add
ru1, v1v2, v3v4 and remove rv, v1v, v′

3v (this case is depicted in Fig. 7b); notice
that |ru1| ≤ √

3 by Theorem 2.5. If α2 + γ2 ≤ 195◦ then add rv1, u2v2, v3v4 and
remove rv, v1v, v′

3v; notice that |u2v2| ≤ √
3 by Theorem 2.5.

• l = 4: We describe this case first, as it is simpler. Since deg(v1) = 5, it is implied
by Lemmas 2.1 and 2.2 that the distance between any two consecutive neighbors
of v1 in T +r is at most

√
3. In this case we add ru1, u2v2, u3u4, v3v4 and remove

rv, v1v, u′
3v1, v

′
3v, as in Fig. 7c. We only need to show that |ru1| and |u2v2| are

at most
√
3. Let γ1 = ∠u1v1v and γ2 = ∠vv1u2, as in Fig. 7c. Observe that

γ1 + γ2 ≤ 180◦, and thus α1 + α2 + γ1 + γ2 ≤ 330◦. By Corollary 2.4 we have
α1 + γ1 ≥ 150◦ and α2 + γ2 ≥ 150◦. Combining these inequalities, we get that
α1 + γ1 and α2 + γ2 are at most 330◦ − 150◦ = 180◦. Having these constraints,
it is implied by Theorem 2.5 that |ru1| and |u2v2| are at most

√
3.

• l = 3: Let γ1 = ∠u1v1v, γ2 = ∠vv1u2, γ3 = ∠u2v1u3, and γ4 = ∠u3v1u1, as
in Fig. 7d. We differentiate between two cases where (i) max {γ3, γ4} ≥ 120◦ and
(ii) max {γ3, γ4} ≤ 120◦.

(i) We add ru1, u2v2, v3v4 and remove rv, v1v, v′
3v. Observe that γ1 + γ2 ≤ 180◦,

and thus as in the previous case (l = 4) both α1 + γ1 and α2 + γ2 are at most
180◦. Thus by Theorem 2.5 both |ru1| and |u2v2| are at most

√
3.

(ii) We already know that γ3 + γ4 ≥ 120◦. By a reasoning similar to the one in case
l = 2 we have α1 + γ1 ≤ 195◦ or α2 + γ2 ≤ 195◦. If α1 + γ1 ≤ 195◦ then
add ru1, u2u3, v1v2, v3v4 and remove rv, u′

2v1, v1v, v′
3v (this case is depicted in

Fig. 7d); notice that |u2u3| ≤ √
3byLemma2.2 and |ru1| ≤ √

3byTheorem2.5.
If α2 + γ2 ≤ 195◦ then add rv1, u1u3, u2v2, v3v4 and remove rv, u′

1v1, v1v,
v′
3v; notice that |u1u3| ≤ √

3 by Lemma 2.2 and |u2v2| ≤ √
3 by Theorem 2.5.

Therefore, we obtain a new tree that satisfies the inductive hypothesis, and thus the
ratio of

√
3 has been established. The above local replacements take constant time per

root. Thus, given the initial degree-5 MST, the algorithm runs in linear time.

Remark Our analysis of the ratio
√
3 is tight under our inductive hypothesis that “the

root r must have degree 1 and v must have degree at most 2 in the new tree”; a set of
four points formed by the center plus the vertices of an equilateral triangle, indicates
why.
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Fig. 8 Illustration of the lower bound
√
7

5 Worst-Case Ratio for Bottleneck Degree-2 Spanning Trees

In this section we show that β2 ≥ √
7. Recall that any degree-2 spanning tree is a

Hamiltonian path and vice versa. It is already known [8] that the worst-case ratio of
the largest edge-length of the bottleneck Hamiltonian cycle to the largest edge-length
of the BST is at least

√
7; see the example in Fig. 2c. This small example, however,

does not give a lower bound better than 2 for β2, i.e., for the bottleneck Hamiltonian
path.

Figure 8 exhibits a set of 19 points that achieves lower bound
√
7 for the bottleneck

Hamiltonian path. The figure also shows the MST where every edge has length 1.
Every angle at each degree-3 vertex is 120◦, and every angle at each degree-2 vertex
is 180◦. Except the point p, all other points are partitioned into three sets A, B, and C .
Consider any bottleneck Hamiltonian path δ on this point set. We prove that δ has a
“long edge”, i.e., an edge of length at least

√
7. This would immediately imply that

β2 ≥ √
7. Due to the size of the point set which is fairly large (compared with the

lower bound examples in Fig. 2) and our desire to provide a concrete argument, the
proof is somewhat lengthy.

The path δ has 18 edges. Let q be an endpoint of δ such that the number of path
edges between p and q is at least 9. Orient all edges of δ towards q. For any vertex
u ∈ δ we denote its outgoing edge by −→u . The edge −→p goes into one of the three sets,
say A. For the rest of our argument, we consider two cases depending on whether the
incoming edge of p comes from B ∪ C or from A.

First assume that the incoming edge of p comes form B ∪C . If −→p goes to a1 then
there is a long edge between A \ {a1} and B ∪C (recall the nine edges following p). If−→p goes into A \ {a1, a2} then −→p is long. Thus, assume that −→p goes to a2, as depicted
by a red edge in the figure. Now consider −→a2 . If −→a2 goes into B ∪ C then it is long,
and if it goes to a1 then there is a long edge between A \ {a1, a2} and B ∪ C . Thus,
assume that it goes to a vertex in A \ {a1, a2}; by symmetry assume that this vertex is
a3 or a4. If it goes to a4 then there would be a long edge incident to a3. Assume that
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it goes to a3 as in the figure. If
−→a3 goes to any vertex other than a4 then it is long, thus

assume that it goes to a4. Now consider −→a4 . If −→a4 goes to B ∪C ∪ {a6} then it is long,
and if it goes to a1 then there would be a long edge between {a5, a6} and B ∪C . Thus,
assume that it goes to a5. If

−→a5 goes to any vertex other than a6 then there would be a
long edge incident to a6, thus assume that it goes to a6. In this setting the edge −→a6 is
long. Notice that all edges −→p , −→a2 , −→a3 , −→a4 , −→a5 , and −→a6 exist because there are at least
nine edges from p to q.

Now assume that the incoming edge of p comes from A. If this edge comes from
{a3, a4, a5, a6} then it is long. If this edge comes from a1 then, by an argument similar
to the one above, we traverse the edges following −→p until we get a long edge (recall
that −→p goes into A). Thus, assume that the incoming edge of p comes from a2, as
depicted by a blue edge in the figure. Consider −→p again. If it goes to any point of A
other than a1 then it is long. Assume that it goes to a1, as in the figure. If −→a1 goes
into the set A \ {a1, a2} then there is a long edge between this set and B ∪ C . Thus,
assume that −→a1 goes into B or C ; by symmetry assume C . At this point notice that
any edge between A \ {a1, a2} and B ∪ C is long, and thus we may assume there is
no edge between these two sets. If −→a1 goes to any point of C other than c1 then it is
long, and thus assume that it goes to c1. If

−→c1 goes into the set C \ {c1} then there is a
long edge between this set and B (considering the nine edges following p). If it goes
into B \ {b1} then it is long. Thus, assume that it goes to b1, as in the figure. In this
setting there must be an edge between B and C \ {c1} (even if the next edges of the
path capture all remaining points of B, the ninth edge has to leave B); any such edge
is long. This is the end of the proof.

6 Proof of Theorem 2.5

In this section we prove Theorem 2.5. This theorem states a maximization problem
with five variables |pu|, |uv|, |vq|, α, and γ . We use a sequence of geometric trans-
formations to discretize the problem, reduce the number of variables, and simplify the
proof. To do so we use Lemma 6.2 and the following result of Abu-Affash et al. [1].

Lemma 6.1 If pu and uv are two adjacent MST edges, then the triangle with vertices
p, u, and v has no other vertex of the MST in its interior or on its boundary.

Lemma 6.2 Let p and v be two distinct points in the plane and let R be a ray emanating
from v that is not passing through p. Let c1 and c2 be two constants such that c2 >

c1 ≥ 0. Then the largest value of |pq|/max {|vq|, c2} over all points q on R with
|pq| > |vq| ≥ c1, is achieved when |vq| = c1 or |vq| = c2.

Proof Let q1 and q2 be the two points on R such that |vq1| = c1 and |vq2| = c2. Let
q be any point on R with |pq| > |vq| ≥ c1. We consider two cases: |vq| ≤ c2 or
|vq| ≥ c2.

First assume that |vq| ≤ c2, that is, q lies on the segment q1q2 as in Fig. 9. Then
max {|vq|, c2} = c2, and thus we want the largest value of |pq|/c2. Since the largest
distance between a point and a segment is achieved at the segment’s endpoints, the
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Fig. 9 Illustration of the proof of Lemma 6.2
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Fig. 10 Illustration of the proof of Theorem 2.5

largest value of |pq| is achieved when q is an endpoint of q1q2. Therefore, the largest
value of |pq|/c2 is achieved when q = q1 or q = q2, that is, when |vq| = c1 or
|vq| = c2.

Now assume that |vq| ≥ c2, i.e., q does not lie on vq2. Then max {|vq|, c2} = |vq|,
and thus we want the largest value of |pq|/|vq|. Since |pq| > |vq|, if we decrease
|vq| (by moving q towards q2) then |pq|/|vq| increases. Thus, the largest value of
|pq|/|vq| is achieved when |vq| is as small as possible, i.e., when |vq| = c2. �	
Now we have adequate tools for our proof of Theorem 2.5. Without loss of generality
assume that α is the convex angle at u, γ is the convex angle at v, and α ≤ γ .
Thus, 60◦ ≤ α ≤ 105◦. After a suitable rotation and/or reflection assume that uv is
horizontal, u is to the left of v, and both p and q lie above the line through uv; see
Figs. 3b and 10.

We want to prove that
√
3 is an upper bound on the ratio

|pq|
max {|pu|, |uv|, |vq|} .

We assume that |pq| > max {|pu|, |uv|, |vq|} because otherwise the claim is trivial.
To simplify the proof we apply a sequence of geometric transformations that might
increase the ratio, but won’t decrease it. It is implied by Lemma 6.1 that q is outside the
triangle �puv. This and the fact that MST is non-crossing, imply that q is to the right
side of the ray emanating from v and passing through p. Thus, if we rotate q clockwise
around v while maintaining the distance |vq|, then the angle ∠pvq increases and so
does the length |pq|; this would increase the objective ratio. Therefore, without loss
of generality, we assume that γ is as large as possible, i.e., γ = 210◦ − α.

Since |pq| > |vq| ≥ 0, by Lemma 6.2 we can assume that |vq| = 0 or |vq| =
max {|pu|, |uv|}, where 0 and max {|pu|, |uv|} play the roles of the constants c1 and
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c2 in this lemma. First assume that |vq| = 0, i.e., q = v. Lemma 2.2 implies that
|pq| ≤ 2 sin(α/2) ·max {|pu|, |uv|}. Since sin(α/2) is increasing on the interval α ∈
[60◦, 105◦], its largest value is achieved atα = 105◦. Thus 2 sin(α/2) ≤ 2 sin 52.5◦ <√
3, and our claim follows.
Now assume that |vq| = max {|pu|, |uv|}. After a suitable rescaling assume that

|uv| = 1. We consider two cases: |pu| > 1 and |pu| ≤ 1.

Case |pu| > 1. In this case |vq| = max {|pu|, 1} = |pu|. Consider the circle
of radius |pu| that is centered at v, as in Fig. 10a; this circle contains q. Let q ′
be the point obtained by moving q on this circle counterclockwise for 30 degrees.
Then |vq ′| = |pu| and vq ′ is parallel to pu (because α + ∠uvq ′ = 180◦). Thus
p, u, v, q ′ are vertices of a parallelogram and hence |pq ′| = 1. The length of pq
is at most |pq ′| plus the length of the arc ̂q ′q , which is |pu| · π/6. In other words,
|pq| ≤ 1 + |pu| · π/6 < |pu| + |pu| · π/6 <

√
3 · |pu|. Thus our claim follows.

Case |pu| ≤ 1. Then |vq| = max {|pu|, 1} = 1. We consider two subcases:
α ≥ 90◦ or α < 90◦.

• α ≥ 90◦: Since |pq| > |pu| ≥ 0, by Lemma 6.2 we can assume that |pu| = 0 or
|pu| = max {|uv|, |vq|} = 1 (to apply the lemma notice that u, 0,max {|uv|, |vq|}
play the roles of v, c1, c2, respectively, and the roles of p and q are swapped).
First assume that |pu| = 0, i.e., p = u. Since �uvq is isosceles with vertex angle
210◦ − α, we get |pq| = 2 sin(105◦ − α/2). This function is decreasing on the
interval α ∈ [90◦, 105◦], and its largest value √

3 is attained at α = 90◦. Thus our
claim follows. Now assume that |pu| = 1, as in Fig. 10b. Then |pv| = 2 sin(α/2)
because �puv is isosceles. By the law of cosines (on �pvq) we have

|pq| =
√

1 + 4 sin2
α

2
− 4 sin

α

2
cos

(

120◦ − α

2

)

, (
)

which is increasing on the interval α ∈ [90◦, 105◦] and its largest value 1 +
√

2 − √
3 ≈ 1.518 is attained at α = 105◦.

• α < 90◦: Notice that the points p, u, and v have not been moved by above
transformations, and thus they are still vertices of the MST. By minimality of the
MST, p does not lie in the interior of the circle with radius 1 that is centered
at v; see Fig. 10c. This and our assumption α < 90◦ imply that pu intersects this
circle at a point other than u; let p′ denote this intersection point. Thus, we have
|pu| ≥ |p′u| = 2 sin(90◦ − α); the equality holds because �p′uv is isosceles
with vertex angle 180◦ − 2α. Since |pq| > |pu| ≥ 2 sin(90◦ −α), by Lemma 6.2
we can assume that |pu| = 2 sin(90◦ −α) or |pu| = max {|uv|, |vq|} = 1 (notice
that 2 sin(90◦ − α) and max {|uv|, |vq|} play the roles of c1 and c2, respectively).
If |pu| = 2 sin(90◦ − α), i.e., p = p′, then �pvq is isosceles with vertex angle
30◦+α; see Fig. 10c. In this case we get |pq| = 2 sin(15◦+α/2), which is at most√
3 on the interval α ∈ [60◦, 90◦). Assume that |pu| = 1. Then |pv| = 2 sin(α/2)

because �puv is isosceles. By the law of cosines (on �pvq) we have (
), which

is increasing on α ∈ [60◦, 90◦) with largest value at most
√

4 − √
3 ≈ 1.506.
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7 Conclusions

Anatural open problem is to improve the upper bounds onβ2, β3, β4 further by design-
ing better algorithms. Specifically, it is natural to investigate whether the geometry of
the Euclidean plane (besides the triangle inequality) can be exploited to develop an
approximation algorithm for the bottleneck degree-2 spanning tree problem (i.e., the
bottleneck Hamiltonian path problem) with factor less than 3. We note the existence
of a 2-approximation algorithm [24] for the bottleneck Hamiltonian cycle problem in
general metric spaces; this algorithm is based on the Hamiltonicity of the square of
every biconnected graph [14].

The study of worst-case ratios in higher dimensions is more vital as the maximum
degree of an MST and a BST can be much larger. Zbarsky [26] showed that 1.447 ≤
τ3 ≤ 1.559 in the d-dimensional Euclidean space for any d ≥ 2. Andersen and Ras
[4] studied the bottleneck version of the problem in dimension 3.

Acknowledgements I thank Jean-Lou De Carufel for helpful suggestions on simplifying the proof of
Lemma 6.2. Funding was provided by the Natural Sciences and Engineering Research Council of Canada.
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