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Abstract
The goal of this paper is to design a simplex algorithm for linear programs on lattice
polytopes that traces “short” simplex paths fromany given vertex to an optimal one.We
consider a lattice polytope P contained in [0, k]n and defined viam linear inequalities.
Our first contribution is a simplex algorithm that reaches an optimal vertex by tracing
a path along the edges of P of length in O(n4k log k). The length of this path is
independent from m and it is the best possible up to a polynomial function. In fact,
it is only polynomially far from the worst-case diameter, which roughly grows as nk.
Motivated by the fact thatmost known lattice polytopes are defined via 0,±1 constraint
matrices, our second contribution is a more sophisticated simplex algorithm which
exploits the largest absolute value α of the entries in the constraint matrix. We show
that the length of the simplex path generated by this algorithm is in O(n2k log (nkα)).
In particular, ifα is bounded by a polynomial in n, k, then the length of the simplex path
is in O(n2k log (nk)). For both algorithms, if P is “well described”, then the number
of arithmetic operations needed to compute the next vertex in the path is polynomial
in n, m, and log k. If k is polynomially bounded in n and m, the algorithm runs in
strongly polynomial time.
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1 Introduction

Linear programming (LP) is oneof themost fundamental types of optimizationmodels.
In an LP problem, we are given a polyhedron P ⊆ R

n and a cost vector c ∈ Z
n , and

we wish to solve the optimization problem

max {cTx | x ∈ P}. (1)

The polyhedron P is explicitly given via a system of linear inequalities, that is, P =
{x ∈ R

n | Ax ≤ b}, where A ∈ Z
m×n , b ∈ Z

m . If P is nonempty and bounded,
problem (1) admits an optimal solution that is a vertex of P .

In this paper, we consider the special class of LP problems (1) where P is a lattice
polytope, i.e., a polytope whose vertices have integer coordinates. These polytopes
are particularly relevant in discrete optimization and integer programming, as they
correspond to the convex hull of the feasible solutions to such optimization problems.
A [0, k]-polytope in Rn is defined as a lattice polytope contained in the box [0, k]n .

One of the main algorithms for LP is the simplex method. The simplex method
moves from the current vertex to an adjacent one along an edge of the polyhedron P ,
until an optimal vertex x∗ is reached or unboundedness is detected, and the selection
of the next vertex depends on a pivoting rule. The sequence of vertices generated by
the simplex method is called the simplex path. The main objective of this paper is to
design a simplex algorithm for [0, k]-polytopes that constructs “short” simplex paths
from any starting vertex x0.

But how short can a simplex path be? A natural lower bound on the length of a
simplex path from x0 to x∗ is given by the distance between these two vertices, which
is defined as the minimum length of a path connecting x0 and x∗ along the edges of
the polyhedron P . The diameter of P is the largest distance between any two vertices
of P , and therefore it provides a lower bound on the length of a worst-case simplex
path on P . It is known that the diameter of [0, 1]-polytopes inRn is at most n [23] and
this bound is attained by the hypercube [0, 1]n . This upper boundwas later generalized
to nk for general [0, k]-polytopes inRn [19], and refined to �n(k − 1/2)� for k ≥ 2 [8]
and to nk −	2n/3
− (k −3) for k ≥ 3 [10]. For k = 2 the bound given in [8] is tight.
In general, for fixed k, the diameter of lattice polytopes can grow linearly with n, since
there are lattice polytopes, called primitive zonotopes, that can have diameter in �(n)

[9,11]. Vice versa, when n is fixed, the diameter of a [0, k]-polytope in R
n can grow

almost linearly with k. In fact, it is known that for n = 2 there are [0, k]-polytopes with
diameter in�(k2/3) [1,4,29]. Moreover, for any fixed n, there are primitive zonotopes
with diameter in �(kn/(n+1)) for k that goes to infinity [11,12].

Canwe design a simplex algorithmwhose simplex path length is only polynomially
far from optimal, meaning that it is upper bounded by a polynomial function of the
worst-case diameter? In this paper, we answer this question in the affirmative. Our
first contribution is a preprocessing & scaling algorithm that generates a simplex path
of length polynomially bounded in n and k, thus polynomially far from optimal.

Theorem 1.1 The preprocessing & scaling algorithm generates a simplex path of
length in O(n4k log k).
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We remark that the upper bound O(n4k log k). is independent from m. This is espe-
cially interesting because, even for [0, 1]-polytopes, m can grow exponentially in n
(see, e.g., [26]).

The preprocessing & scaling algorithm is obtained by combining a preprocessing
step by Frank and Tardos [15] with a bit scaling technique [2]. Namely, we first replace
the cost vector c with a new cost vector c̆ such that log ‖c̆‖ is polynomially bounded
in n and log k. Next, we solve a sequence of LP problems where the cost vector is
replaced with finer and finer integral approximations of c̆, where each LP problem can
be solved with any simplex algorithm.

Our next objective is that of decreasing the gap between the length O(n4k log k).
provided by the preprocessing & scaling algorithm and the worst-case diameter, for
wide classes of [0, k]-polytopes. We focus our attention on [0, k]-polytopes with
bounded parameter α, defined as the largest absolute value of the entries in the con-
straintmatrix A. This assumption is based on the fact that the overwhelmingmajority of
[0, k]-polytopes arising in combinatorial optimization for which an external descrip-
tion is known, satisfies α = 1 [26]. Our second contribution is a different simplex
algorithm, named the face-fixing algorithm, which exploits the parameter α to signif-
icantly improve the dependence on n.

Theorem 1.2 The face-fixing algorithm generates a simplex path of length in
O(n2k log (nkα)).

It should be noted that the dependence on α is only logarithmic, thus if α is bounded
by a polynomial in n, k, then the length of our simplex path is in O(n2k log (nk)). For
[0, 1]-polytopes this bound reduces to O(n2 log n).

At each iteration of the face-fixing algorithm we consider a face F of P containing
all optimal solutions to (1). Then we compute a suitable approximation c̃ of c and we
maximize c̃Tx over F . In order to solve this LP problem, we trace a path along the
edges of P applying the same bit scaling technique introduced in our preprocessing &
scaling algorithm. We also compute an optimal solution to the dual, which is used to
identify a new constraint of Ax ≤ b that is active at each optimal solution of (1). The
face F of P is then updated for the next iteration by setting to equality such constraint,
effectively restricting the feasible region to a lower dimensional polytope. The final
simplex path is then obtained by merging together the different paths constructed at
each iteration.

In both our simplex algorithms, undermild assumptions on the polytope P , the num-
ber of operations needed to construct the next vertex in the simplex path is bounded by
a polynomial in n,m, and log k. If k is bounded by a polynomial in n,m, both our sim-
plex algorithms are strongly polynomial. This assumption is justified by the existence
of [0, k]-polytopes that, for fixed n, have a diameter that grows almost linearly in k
[12]. Consequently, in order to obtain a simplex algorithm that is strongly polynomial
also for these polytopes, we need to assume that k is bounded by a polynomial in n
and m. We remark that in this paper we use the standard notions regarding computa-
tional complexity in Discrete Optimization, and we refer the reader to Sect. 2.4 in the
book [25] for a thorough introduction.
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2 The Preprocessing & Scaling Algorithm

In the remainder of the paper, we study problem (1) where P is a [0, k]-polytope.
All our algorithms are simplex algorithms, meaning that they explicitly construct

a path along the edges of P from any given starting vertex x0 to a vertex maximizing
the linear function cTx . For this reason, we always assume that we are given a starting
vertex x0 of P . It should be noted that, if one is interested in obtaining an arbitrary
starting vertex x0, this can be accomplished via Tardos’ algorithm by performing a
number of operations that is polynomially bounded in size A. Recall that the size of the
matrix A, denoted by size A, is in O(nm logα) (see [25, Sect. 2.1] for more details).
In a simplex algorithm one also expects that the next vertex in the simplex path can be
computed in polynomial time. This is indeed the case for all our algorithms. In order
to streamline the presentation, we defer these complexity issues to Sect. 2.4.

Theultimate goal of this section is to proveTheorem1.1 bypresenting and analyzing
the preprocessing&scaling algorithm.Before doing thatwe need to introduce the basic
algorithm in Sect. 2.1 and the scaling algorithm in Sect. 2.2.

Next we introduce our oracle, which provides a general way to construct the next
vertex in the simplex path. In all our algorithms, the simplex path is constructed via a
number of oracle calls with different inputs.

Oracle
Input: A polytope P , a cost vector c ∈ Z

n , and a vertex x̄ of P .
Output: Either a statement that x̄ is optimal to (1), or a vertex adjacent to x̄ with strictly larger cost.

We note that, whenever x̄ is not optimal, our oracle has the freedom to return any adja-
cent vertex with strictly larger cost. Therefore, our algorithms can all be customized
by further requiring the oracle to obey a specific pivoting rule.

2.1 The Basic Algorithm

The simplest way to solve (1) is to recursively invoke the oracle with input P , c, and
the vertex obtained from the previous iteration, starting with the vertex x0 in input.
We formally describe this basic algorithm, which will be used as a subroutine in our
subsequent algorithms.

Basic algorithm
Input: A [0, k]-polytope P , a cost vector c ∈ Z

n , and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx .
for t = 0, 1, 2, . . . do

Invoke oracle(P, c, xt ).
If the output of the oracle is a statement that xt is optimal, return xt .
Otherwise, set xt+1 := oracle(P, c, xt ).
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The correctness of the basic algorithm is immediate. Next, we upper bound the length
of the simplex path generated by the basic algorithm.

Observation 2.1 The length of the simplex path generated by the basic algorithm is
bounded by cTx∗ − cTx0. In particular, it is bounded by nk‖c‖∞.

Proof To show the first part of the statement, we only need to observe that each oracle
call increases the objective value by at least one, since c and the vertices of P are
integral.

The cost difference between x∗ and x0 of P can be bounded by

cTx∗ − cTx0 =
n∑

i=1

ci (x
∗
i − x0i ) ≤

n∑

i=1

|ci | · |x∗
i − x0i | ≤ nk‖c‖∞,

where, for the last inequality, we use
∣∣x∗

i − x0i
∣∣ ≤ k since P is a [0, k]-polytope. This

concludes the proof of the second part of the statement. �

2.2 The Scaling Algorithm

The length of the simplex path generated by the basic algorithm is clearly not sat-
isfactory. In fact, as we discussed in Sect. 1, our goal is to obtain a simplex path of
length polynomial in n and k, and therefore independent from ‖c‖∞. In this section
we improve this gap by giving a scaling algorithm that yields a simplex path of length
in O(nk log ‖c‖∞).

Our scaling algorithm is based on a bit scaling technique. For ease of notation, we
define � := 	log ‖c‖∞
. Themain idea is to iteratively use the basic algorithmwith the
sequence of increasingly accurate integral approximations of the cost vector c given
by

ct :=
⌈

c

2�−t

⌉
for t = 0, . . . , �.

Since c is an integral vector, we have c� = c.
Bit scaling techniques have been extensively used since the 1970s to develop

polynomial-time algorithms for a wide array of discrete optimization problems.
Edmonds and Karp [14] and Dinic [13] independently introduced this technique in the
context of the minimum cost flow problem. Gabow [16] used it for shortest path, max-
imum flow, assignment, and matching problems. The book [2] popularized bit scaling
as a generic algorithmic tool in optimization. Bit scaling techniques have also been
employed by Schulz et al. [27] (see also [20,24]) to design augmenting algorithms for
0/1-integer programming. To the best of our knowledge, bit scaling techniques have
so far never been used to obtain short simplex paths in general lattice polytopes.

Next, we describe our algorithm.
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Scaling algorithm
Input: A [0, k]-polytope P , a cost vector c ∈ Z

n , and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx .
for t = 0, . . . , � do

Compute ct .
Set xt+1 := basic algorithm(P, ct , xt ).

Return x�+1.

The correctness of the scaling algorithm follows from the correctness of the basic
algorithm, since the vector x�+1 returned is the output of the basic algorithm with
input P and cost vector c� = c.

Next, we analyze the length of the simplex path generated by the scaling algorithm.
The next two lemmas provide simple properties of the approximations ct of c and are
based on the common techniques used in most bit scaling algorithms.

Lemma 2.2 For each t = 0, . . . , �, we have ‖ct‖∞ ≤ 2t .

Proof By definition of �, we have
∣∣c j

∣∣ ≤ ‖c‖∞ ≤ 2� for every j = 1, . . . , n, hence
−2� ≤ c j ≤ 2�. For any t ∈ {0, . . . , �}, we divide the latter chain of inequalities
by 2�−t and round up to obtain

−2t = 	−2t
 =
⌈−2�

2�−t

⌉
≤

⌈
c j
2�−t

⌉
≤

⌈
2�

2�−t

⌉
= 	2t
 = 2t . �

Lemma 2.3 For each t = 1, . . . , �, we have 2ct−1 − ct ∈ {0, 1}n.
Proof First, we show that for every real number r , we have 2	r
 − 	2r
 ∈ {0, 1}.
Note that r can be written as 	r
 + f with f ∈ (−1, 0]. We then have 	2r
 =
	2	r
 + 2 f 
 = 2	r
+	2 f 
. Since 	2 f 
 ∈ {−1, 0}, we obtain 	2r
−2	r
 ∈ {−1, 0},
hence 2	r
 − 	2r
 ∈ {0, 1}.

Now, let j ∈ {1, . . . , n}, and consider the j th component of the vector 2ct−1 − ct .
By definition, we have

2ct−1
j − ctj = 2

⌈
c j

2�−t+1

⌉
−

⌈
c j
2�−t

⌉
.

The statement then follows from the first part of the proof by setting r = c j/2�−t+1.
�

We are ready to provide our bound on the length of the simplex path generated by the
scaling algorithm. Even though the scaling algorithm uses the basic algorithm as a
subroutine, we show that the simplex path generated by the scaling algorithm is much
shorter than the one generated by the basic algorithm alone.

Proposition 2.4 The length of the simplex path generated by the scaling algorithm is
bounded by nk

(⌈
log ‖c‖∞

⌉ + 1
) ∈ O

(
nk log ‖c‖∞

)
.

123



Discrete & Computational Geometry (2022) 67:503–524 509

Proof Note that the scaling algorithmperforms a total number of �+1 = ⌈
log ‖c‖∞

⌉+
1 iterations, and in each iteration it calls once the basic algorithm. Thus, we only need
to show that, at each iteration, the simplex path generated by the basic algorithm is
bounded by nk.

First we consider the iteration t = 0 of the scaling algorithm. In this iteration, the
basic algorithm is called with input P , c0, and x0. Lemma 2.2 implies that ‖c0‖∞ ≤ 1,
and from Observation 2.1 we have that the basic algorithm calls the oracle at most nk
times.

Next, consider the iteration t of the scaling algorithm for t ∈ {1, . . . , �}. In this iter-
ation, the basic algorithm is calledwith input P , ct , and xt , and outputs the vertex xt+1.
From Observation 2.1, we only need to show that ct Txt+1 − ct Txt ≤ nk.

First, we derive an upper bound on ct Txt+1. From Lemma 2.3, the vector 2ct−1−ct

is nonnegative. Since also xt+1 is nonnegative, we obtain ct Txt+1 ≤ 2ct−1Txt+1.

Furthermore, by definition of xt we obtain ct−1Txt+1 ≤ ct−1Txt . We thereby obtain

the upper bound ct Txt+1 ≤ 2ct−1Txt+1 ≤ 2ct−1Txt .
We can now show ct Txt+1 − ct Txt ≤ nk. We have

ct Txt+1 − ct Txt ≤ 2ct−1Txt − ct Txt = (2ct−1 − ct )Txt ≤ nk.

The last inequality holds because, from Lemma 2.3, we know that each component of
2ct−1 − ct is at most one, while the vector xt is in [0, k]n . �
In the next section we use the scaling algorithm as a subroutine in the preprocessing
& scaling algorithm. We remark that, the scaling algorithm will also be a subroutine
in the face-fixing algorithm, which is described in Sect. 3.

2.3 The Preprocessing & Scaling Algorithm

The length of the simplex path generated by the scaling algorithm still depends on
‖c‖∞, even though the dependence is now logarithmic instead of linear. In this section
we show that we can completely remove the dependence on ‖c‖∞ by using our scaling
algorithm in conjunction with the preprocessing algorithm by Frank and Tardos [15].
This method relies on the simultaneous approximation algorithm of Lenstra et al. [21].
Next, we state the input and output of Frank and Tardos’ algorithm.

Preprocessing algorithm
Input: A vector c ∈ Q

n and a positive integer N .

Output: A vector c̆ ∈ Z
n such that ‖c̆‖∞ ≤ 24n

3
Nn(n+2) and sign(cTz) = sign(c̆Tz) for every z ∈ Z

n

with ‖z‖1 ≤ N − 1.

The number of operations performed by the preprocessing algorithm is polynomially
bounded in n and log N . For more details, we refer the reader to [15, Sect. 3].

Next,we describe the algorithmobtained by combining the preprocessing algorithm
and the scaling algorithm.
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Preprocessing & scaling algorithm
Input: A [0, k]-polytope P , a cost vector c ∈ Z

n , and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx .
Set c̆ := preprocessing algorithm(c, N :=nk + 1).
Set x∗ := scaling algorithm(P, c̆, x0).
Return x∗.

It is simple to see that the preprocessing & scaling algorithm is correct. In fact, due to
the correctness of the scaling algorithm, we have that c̆T(x∗ − x) ≥ 0 for every x ∈ P .
Note that, for every x ∈ P ∩Z

n , we have x∗ − x ∈ Z
n and ‖x∗ − x‖1 ≤ nk = N −1.

Therefore, the preprocessing algorithm guarantees that cT(x∗ − x) ≥ 0 for every
x ∈ P ∩ Z

n . The correctness of the preprocessing & scaling algorithm then follows
because all vertices of P are integral.

We are now ready to give a proof of Theorem 1.1. We show that the obtained
simplex path length is polynomially bounded in n and k, thus only polynomially far
from the worst-case diameter.

Proof of Theorem 1.1 The vector c̆ returned by the preprocessing algorithm satisfies
‖c̆‖∞ ≤ 24n

3
(nk + 1)n(n+2), hence log ‖c̆‖∞ ≤ 4n3 + n(n + 2)log (nk + 1). From

Proposition 2.4, the length of the simplex path generated by the preprocessing &
scaling algorithm is bounded by

nk
(	log ‖c̆‖∞
 + 1

) ≤ nk
(
4n3 + n(n + 2) log (nk + 1) + 2

) ∈ O(n4k log k). �

Next, we compare our bound on the length of the simplex path constructed by the
preprocessing & scaling algorithmwith other known bounds for some classic pivoting
rules that can be applied to [0, k]-polytopes.

A result by Kitahara and Mizuno [17,18] implies that, by using the dual simplex
algorithm with Dantzig’s or the best improvement pivoting rule, we can construct a
simplex path in P whose length is at most n2K log (nK ), where K = max {k, S}
and S = max {‖b − Ax‖∞ | x ∈ P}. This has been recently extended to the steepest
edge pivoting rule by Blanchard et al. [6]. We remark that K critically depends on
the values of the slack variables of the constraints Ax ≤ b. It is known that, even for
k = 1, the value S can be as large as (n − 1)(n−1)/2/22n+o(n) (see [3,30]), which is
not polynomially bounded in n, k. As a consequence, this upper bound on the simplex
path length is not polynomially bounded in n, k.

2.4 Complexity

The goal of this section is to analyze the number of operations performed by the
preprocessing & scaling algorithm in order to construct the next vertex in the simplex
path or to certify optimality of the current vertex. In particular we show that this
number of operations is polynomially bounded in size A and log k.

We start by analyzing the complexity of the basic algorithm. We recall that a d-
dimensional polytope is said to be simple if each vertex is adjacent to exactly d other
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vertices. Throughout this paperwe assume that a simple polytope is given by aminimal
system of linear equalities defining its affine hull and a system of linear inequalities
defining its facets.

Lemma 2.5 The number of operations performed by the basic algorithm to construct
the next vertex in the simplex path, or to certify optimality of the current vertex, is
polynomially bounded in size A. If P is simple, the number of operations is O(nm).

Proof To prove this proposition it suffices to show the following statement: an oracle
call can be performed with a number of operations polynomially bounded in size A.
If P is simple, it can be performed in O(nm) operations.

First, consider the case where P is simple. We can then use a pivot of the dual
simplex method, where the primal is in standard form, and the feasible region of the
dual is given by the polytope P . This requires O(nm) operations [5].

Consider now the case where P may not be simple. Denote by A=x ≤ b= the
subsystem of the inequalities of Ax ≤ b satisfied with equality by x̄ . Note that the
polyhedron T := {x ∈ R

n | A=x ≤ b=} is a cone pointed at x̄ . Denote by dT the sum
of all the rows in A= and note that the vertex x̄ is the unique maximizer of dTx over T .
Let T ′ be the truncated cone T ′ := {x ∈ T | dTx ≥ dTx̄ − 1} and note that there
is a bijection between the vertices of P adjacent to x̄ and the vertices of T ′ different
from x̄ . We solve the LP problem max {cTx | x ∈ T ′}. Using Tardos’ algorithm, this
LP problem can be solved in a number of operations that is polynomial in the size of
the constraint matrix, which is polynomial in size A.

If x̄ is an optimal solution to the LP, then the oracle returns that x̄ is optimal.
Otherwise, Tardos’ algorithm returns an optimal solution that is a vertex z of T ′
different from x̄ . In this case the oracle needs to return the corresponding adjacent
vertex z̄ of x̄ in P . Let A′x ≤ b′ be the system obtained from Ax ≤ b by setting to
equality the inequalities in the subsystem A=x ≤ b= satisfied with equality by both x̄
and z. It should be noted that the vectors that satisfy A′x ≤ b′ constitute the edge of P
between x̄ and z̄. The vector z̄ can then be found by maximizing cTx over A′x ≤ b′
with Tardos’ algorithm. �
Next we analyze the number of operations performed by the scaling algorithm.

Lemma 2.6 The number of operations performed by the scaling algorithm to construct
the next vertex in the simplex path, or to certify optimality of the current vertex, is
polynomially bounded in size A and log ‖c‖∞. If P is simple, the number of operations
is in O(nm log 2‖c‖∞).

Proof To construct the next vertex in the simplex path or to certify optimality of the
current vertex, in the worst case the scaling algorithm calls � + 1 times the basic
algorithm. This happens if the first � calls of the basic algorithm all return the current
vertex. In each iteration the scaling algorithm first computes an approximation ct

of c and then calls the basic algorithm. Computing ct can be done by binary search,
and the number of comparisons required is at most n log ‖ct‖∞, which is bounded
by nt ≤ n� from Lemma 2.2. Furthermore, from Lemma 2.5, each time the basic
algorithm is called, it performs a number of operations polynomially bounded in
size A, and by O(nm) if P is simple. Therefore the scaling algorithm performs a
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number of operations bounded by a polynomial in size A and in log ‖c‖∞. If P is
simple, the number of operations is O((�+1)(n�+O(nm))) = O(nm log 2‖c‖∞). �
We are now ready to analyze the complexity of the preprocessing & scaling algorithm.

Proposition 2.7 The number of operations performed by the preprocessing & scaling
algorithm to construct the next vertex in the simplex path, or to certify optimality of
the current vertex, is polynomially bounded in size A and log k. If P is simple, the
number of operations is polynomially bounded in n,m, and log k.

Proof The number of operations performed by the preprocessing & scaling algorithm
to construct the next vertex in the simplex path, or to certify optimality of the current
vertex, is the sum of: (i) the number of operations needed to compute c̆, and (ii) the
number of operations performed by the scaling algorithm, with cost vector c̆, to con-
struct the next vertex in the simplex path or to certify optimality of the current vertex.
The vector c̆ can be computed with a number of operations polynomially bounded
in n and log (nk) [15]. From Lemma 2.6, (ii) is polynomially bounded in size A and
log ‖c̆‖∞, and by O(nm log 2‖c̆‖∞) if P is simple. To conclude the proof, we only
need to observe that log ‖c̆‖∞ is polynomially bounded in n and log k. �

3 The Face-Fixing Algorithm

In this section, our task is to construct a simplex path shorter than the one computed
by the preprocessing & scaling algorithm, provided that the constraint matrix A has
entries with small absolute value.We define [m] := {1, 2, . . . ,m} and refer to the rows
of A as aTi , for i ∈ [m]. We recall that the parameter α denotes the largest absolute
value of the entries in A. Next, we state the algorithm that will be analyzed in this
section.

Face-fixing algorithm
Input: A [0, k]-polytope P , a cost vector c ∈ Z

n , and a vertex x0 of P .
Output: A vertex x∗ of P maximizing cTx .
0: Let E := ∅ and x∗ := x0.
1: Let c̄ be the projection of c onto the subspace {x ∈ R

n | aTi x = 0 for i ∈ E} of Rn . If c̄ = 0 return x∗,
otherwise go to 2.

2: Let ĉ := (n3kα/‖c̄‖∞)c̄ and define c̃ ∈ Z
n as c̃i := �ĉi � for i = 1, . . . , n.

3: Consider the following pair of primal and dual LP problems:

max c̃Tx
s.t. aTi x = bi for i ∈ E

aTi x ≤ bi for i ∈ [m] \ E
(P̃)

min bTy
s.t. for ATy = c̃

yi ≥ 0 for i ∈ [m] \ E .

(D̃)

Use the scaling algorithm to compute an optimal vertex x̃ of (P̃) starting from x∗.
Compute an optimal solution ỹ to the dual (D̃) such that (i) ỹ has at most n nonzero components, and
(ii) ỹ j = 0 for every j ∈ [m] \ E such that a j can be written as a linear combination of ai , i ∈ E .
Let H := {i | ỹi > nk}. Update E := E ∪ H, x∗ := x̃ and go back to step 1.
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The above algorithm is iterative in nature. Precisely, an iteration of the algorithm
corresponds to one execution of steps 1, 2, and 3 . The key idea is to identify, at each
iteration, at least one constraint of Ax ≤ b that is active at each optimal solution of (1).
Such constraint is then set to equality, effectively restricting the feasible region of (1)
to a lower dimensional face of P .

Throughout the algorithm, E contains the indices of the constraints that have been
set to equality so far. Correspondingly, at each iteration, we restrict the feasible region
to the face F of P defined as

F := {x ∈ R
n | aTi x ≤ bi for i ∈ [m] \ E and aTi x = bi for i ∈ E}. (2)

Note that, since F is a face of P , it is also a [0, k]-polytope. We also store and update
at each iteration a vertex x∗ of F . The vertex x∗ is initially set to x0 and it ends up
being an optimal solution of (1).

In step 1, we compute the projection c̄ of c onto {x ∈ R
n | aTi x = 0 for i ∈ E}.

Maximizing cTx over F is equivalent to maximizing c̄Tx over the same set. Therefore,
if c̄ = 0, then c is perpendicular to F and all the points in F are optimal. In this case
the algorithm terminates by returning x∗.

In step 2, we first compute a scaling ĉ of c̄, and then an integer approximation c̃
of ĉ such that ‖c̃‖∞ = n3kα. This will be the key to obtain a short simplex path.

In step 3, we solve problem (P̃) and its dual. Note that (P̃) differs from (1) in two
ways: first, the feasible region of (P̃) is the current face F of P . Second, the cost vector
defining the objective function of (P̃) is the approximation c̃ of ĉ computed in step 2. In
order to solve (P̃), we apply the scaling algorithm from x∗, and we trace a path along
the edges of F from x∗ to an optimal vertex x̃ of (P̃). We also compute an optimal
solution to the dual problem (D̃), which is used to identify a subset H of constraints
of Ax ≤ b that are active at each optimal solution of (1). Finally, we add the indices
of H to E and we set x∗ := x̃ .

At the end, the final simplex path from the input vertex x0 to an optimal vertex
of (1) is obtained by merging together the different paths constructed by the scaling
algorithm at each iteration.

We remark that the face-fixing algorithm is well defined, meaning that it can indeed
perform all the instructions stated in its steps. In particular, in step 3: (a) x∗ is a valid
input for the scaling algorithm and (b) a vector ỹ satisfying properties (i) and (ii) always
exists. To see (a) we need to show that the vector x∗ is in F . Consider the vectors x̃, ỹ
and an index h ∈ H from the previous iteration, and note that x̃ = x∗.We have ỹh > 0,
which, by complementary slackness, implies aThx̃ = bh . This immediately implies that
x∗ is indeed feasible for the problem (P̃) of the current iteration. The proof of (b) is
more technical and it involves some standard LP arguments. We defer the proof of (b)
to Sect. 3.3 (see Lemma 3.6).

Our face-fixing algorithm is inspired by Tardos’ strongly polynomial algorithm for
combinatorial problems [28]. Tardos’ algorithm solves an LP problem in standard
form in a number of operations bounded by a polynomial in the size of the constraint
matrix. Themain similarity between the two algorithms is that both recursively restrict
the feasible region to a lower dimensional face of the feasible region. The three main
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differences between the face-fixing algorithm and Tardos’ algorithm are: (1) Tardos’
algorithm solves LP problems in standard form, while we consider a polytope P in
general form, i.e., P = {x ∈ R

n | Ax ≤ b}; (2) Tardos’ algorithm exploits as a
parameter the largest absolute value of a subdeterminant of the constraint matrix,
while our algorithm relies on parameters k and α; and (3) Tardos’ algorithm is not a
simplex algorithm, while ours is, since it traces a simplex path along the edges of P .

3.1 Correctness

Our first goal is to prove that the face-fixing algorithm is correct. First, we will prove
that the algorithm terminates in a finite number of iterations. Next, we will prove that
the algorithm returns a vertex of P maximizing cTx . Recall that, at each iteration, we
are restricting our search to the face F of P defined by (2), which is obtained by setting
to equality the constraints indexed by E .

To prove that the algorithm terminates in a finite number of iterations, we will show
that at the end of iteration j the dimension of F is at most n− j . This will immediately
imply that face-fixing algorithm performs at most n + 1 iterations. To prove this, we
will show that at step 3 we always add at least an index to E . Equivalently, we will
prove that there is an index h ∈ [m] \ E such that ỹh > nk. The key idea of the proof
consists in relating the complexity of c̃ to the complexity of ỹ by exploiting the dual
constraints. If no dual variable is larger than the prescribed threshold of nk, then the
infinity norm of c̃ is too small, and we obtain a contradiction.

Lemma 3.1 The face-fixing algorithm performs at most n + 1 iterations.

Proof It suffices to show that in step 3 of the face-fixing algorithm we haveH \E �= ∅
at each iteration. In fact, this implies that there exists an index h ∈ H\E . In particular,
ỹh > nk and from property (ii) of the vector ỹ, we have that ah is linearly independent
from the vectors ai , i ∈ E . Hence, at each iteration, the rank of the row submatrix
of A indexed by E increases by at least one. Therefore, after at most n iterations, the
subspace {x ∈ R

n | aTi x = 0 for i ∈ E} in step 1 is the origin. Hence the projection
c̄ of c onto this subspace is the origin, and the algorithm terminates by returning the
current vector x∗. Therefore, in the remainder of the proof we show that in step 3 of
the face-fixing algorithm, we have H \ E �= ∅ at each iteration.

Let c̄, ĉ, c̃, x̃ , and ỹ be the vectors computed at a generic iteration of the face-fixing
algorithm. Recall that c̃ = �ĉ�. Moreover, we have ‖ĉ‖∞ = n3kα and, since this
number is an integer, we also have ‖c̃‖∞ = n3kα.

Let B = {i ∈ {1, . . . ,m} | ỹi �= 0}. From property (i) of the vector ỹ we know
|B| ≤ n. From the constraints of (D̃) and from the definition of B we obtain

c̃ =
∑

i∈[m]
ai ỹi =

∑

i∈B
ai ỹi . (3)
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Note that ỹ j ≥ 0 for every j ∈ B \ E since ỹ is feasible to (D̃). Hence to prove this
lemma we only need to show that

∣∣ỹ j
∣∣ > nk for some j ∈ B \ E . (4)

The proof of (4) is divided into two cases.
In the first case we assume B ∩ E = ∅. Thus, to prove (4), we only need to show

that |ỹ j | > nk for some j ∈ B. To obtain a contradiction, we suppose |ỹ j | ≤ nk for
every j ∈ B. From (3) we obtain

‖c̃‖∞ ≤
∑

j∈B
‖a j ỹ j‖∞ =

∑

j∈B
(|ỹ j | · ‖a j‖∞) ≤

∑

j∈B
(nk · α) ≤ n2kα.

However, this contradicts the fact that ‖c̃‖∞ = n3kα. Thus
∣∣ỹ j

∣∣ > nk for some j ∈ B,
and (4) holds. This concludes the proof in the first case.

In the second case we assume that B ∩ E is nonempty. In particular, we have
|B \E | ≤ n− 1. In order to derive a contradiction, suppose that (4) does not hold, i.e.,∣∣ỹ j

∣∣ ≤ nk for every j ∈ B \ E . From (3) we obtain

c̃ =
∑

i∈B
ai ỹi =

∑

i∈B∩E
ai ỹi +

∑

j∈B\E
a j ỹ j .

Then
∥∥∥∥∥ c̃ −

∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

≤
∑

j∈B\E
‖a j ỹ j‖∞ =

∑

j∈B\E
(|ỹ j | · ‖a j‖∞)

≤
∑

j∈B\E
(nk · α) ≤ (n − 1)nkα ≤ n2kα − 1.

(5)

Next, in order to derive a contradiction, we show that
∥∥∥∥∥ c̃ −

∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

> n2kα − 1. (6)

By adding and removing c̃ inside the norm in the left-hand side below, we obtain

∥∥∥∥∥ ĉ −
∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

=
∥∥∥∥∥ c̃ −

∑

i∈B∩E
ai ỹi − (c̃ − ĉ)

∥∥∥∥∥
∞

≤
∥∥∥∥∥ c̃ −

∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

+ ‖c̃ − ĉ‖∞.

(7)

Let us now focus on the left-hand side of (7). We have that ĉ is orthogonal to ai , for
every i ∈ E . This is because ĉ is a scaling of c̄ and the latter vector is, by definition,
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orthogonal to ai , for every i ∈ E . We obtain

∥∥∥∥∥ ĉ −
∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

≥ 1√
n

∥∥∥∥∥ ĉ −
∑

i∈B∩E
ai ỹi

∥∥∥∥∥
2

≥ ‖ĉ‖2√
n

≥ ‖ĉ‖∞√
n

= n3kα√
n

≥ n2kα,

(8)

where the second inequality holds by Pythagoras’ theorem. Using (7), (8), and noting
that ‖c̃ − ĉ‖∞ < 1 by definition of c̃, we obtain

∥∥∥∥∥c̃ −
∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

≥
∥∥∥∥∥ĉ −

∑

i∈B∩E
ai ỹi

∥∥∥∥∥
∞

− ‖c̃ − ĉ‖∞ > n2kα − 1.

This concludes the proof of (6). Inequalities (5) and (6) yield a contradiction, thus (4)
holds. This concludes the proof in the second case. �
Lemma 3.1 relies on proving that at step 3 we always add at least an index to E . This is
reminiscent of [28, Lem. 1.2]. The first key difference is that in our setting the primal
is in general form, while in [28] the primal is in standard form. As a consequence,
the proof of [28, Lem. 1.2] is a bit more direct, while in our setting the proof is more
technical. In particular, as explained above, a crucial step of our proof consists in using
the dual constraints to relate the infinity norm of c̃ to the infinity norm of ỹ. In this
step, we exploit the bound of α on the largest absolute value of an entry of A. The
second key difference is that the only parameter that is used in [28, Lem. 1.2] is the
largest absolute value of a subdeterminant of the constraint matrix, while Lemma 3.1
relies on the two parameters k and α.

In the next two lemmas we will prove that, at each iteration, every optimal solution
to (1) lies in F . This is trivially true at the beginning of the algorithm, when E = ∅.
Thus, we will need to prove that when we update E in step 3 the property remains valid
with respect to the new face of P defined by E . Note that, to update E in step 3, we use
an optimal solution ỹ of the dual (D̃) with right-hand-side c̃. However, our ultimate
goal is to achieve optimality with respect to c, or equivalently to ĉ. In other words, we
would like to solve the problem (P̂) obtained from (P̃) by replacing c̃ with ĉ. How can
we exploit ỹ to detect a new constraint that is satisfied with equality by all optimal
solutions to (P̂)?

The standard complementary slackness conditions forLP state that, for eachpositive
component of ỹ, the corresponding constraint of (P̃) must be satisfied with equality by
all the optimal solutions to (P̃). In Lemma 3.2, we define a variant of these conditions
that relate the problems (P̂) and (D̃). We will obtain that, for each component of ỹ that
is above a prescribed threshold, the corresponding constraint of (P̂) must be satisfied
with equality by all the optimal solutions to (P̂). The key idea of the proof is to exploit
the fact that the cost vector ĉ in (P̂) and the right-hand-side vector c̃ in (D̃) are not very
far apart, since by definition c̃ = �ĉ�. Thus, the optimal solution ỹ of (D̃) is “almost
feasible” for the dual problem associated to (P̂).

In the following, 1 denotes the vector of all ones, and for u ∈ R
n we denote by |u|

the vector whose entries are |ui |, i = 1, . . . n.
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Lemma 3.2 Let x̃ and ỹ be the vectors computed at step 3 of the face-fixing algorithm,
and denote by F the feasible set of (P̃). Then for any vector x̂ ∈ F ∩ Z

n such that
ĉTx̂ ≥ ĉTx̃ , we have

ỹi > nk ⇒ aTi x̂ = bi , i ∈ [m] \ E . (9)

Proof First, since ỹ is feasible for (D̃), we have |ATỹ − ĉ| = |c̃ − ĉ| = ĉ − c̃. Since
c̃ = �ĉ� we obtain

|ATỹ − ĉ| ≤ 1. (10)

Moreover, since x̃ and ỹ are optimal for (P̃) and (D̃), respectively, they satisfy the
complementary slackness conditions

ỹi > 0 ⇒ aTi x̃ = bi , i ∈ [m] \ E . (11)

Let u := x̂ − x̃ , and let u+, u− ∈ R
n+ be defined as follows. For j ∈ [n],

u+
j :=

{
u j if u j ≥ 0,

0 if u j < 0,
u−
j :=

{
0 if u j ≥ 0,

−u j if u j < 0.

Clearly u = u+ − u− and |u| = u+ + u−. Since ĉTx̂ ≥ ĉTx̃ , we have ĉTu ≥ 0.
We prove this lemma by contradiction. Suppose that there exists h ∈ [m] \ E

such that ỹh > nk and aThx̂ �= bh . Since x̂ ∈ F and ah, x̂, bh are integral, we have
aThx̂ ≤ bh − 1. We rewrite (10) as ATỹ − 1 ≤ ĉ ≤ ATỹ + 1. Thus

ĉTu = ĉTu+ − ĉTu− ≤ (ATỹ + 1)Tu+ − (ATỹ − 1)Tu−

= (ATỹ)T(u+ − u−) + 1T(u+ + u−) = (ATỹ)Tu + 1T|u|. (12)

We can upper bound 1T |u| in (12) by observing that |u j | ≤ k for all j ∈ [n], since F
is a lattice polytope in [0, k]n and u is the difference of two vectors in F . Thus

1T |u| ≤ nk. (13)
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We now compute an upper bound for (ATỹ)Tu = ỹTAu in (12):

ỹTAu = ỹha
T
hu +

∑

i∈E
ỹi a

T
i u +

∑

i∈[m]\E
i �=h

ỹi a
T
i u

< −nk +
∑

i∈E
ỹi a

T
i u +

∑

i∈[m]\E
i �=h

ỹi a
T
i u (14)

= −nk +
∑

i∈[m]\E
i �=h

ỹi a
T
i u (15)

≤ −nk +
∑

i∈[m]\E
i �=h, ỹi>0

ỹi a
T
i u (16)

≤ −nk. (17)

To prove the strict inequality in (14) we show ỹhaThu < −nk. We have ỹh > nk > 0,
thus condition (11) implies aThx̃ = bh . Since aThx̂ ≤ bh −1, we get aThu = aThx̂−aThx̃ ≤
−1. We multiply ỹh > nk by aThu and obtain ỹh · aThu < nk · aThu ≤ −nk. Equality
(15) follows from the fact that, for each i ∈ E , we have aTi x̂ = bi and aTi x̃ = bi
since both x̂ and x̃ are in F , thus aTi u = 0. Inequality (16) follows since ỹ ≥ 0. To
see why inequality (17) holds, first note that, from condition (11), ỹi > 0 implies
aTi x̃ = bi . Furthermore, since x̂ ∈ F , we have aTi x̂ ≤ bi . Hence we have aTi u ≤ 0 and
so ỹi aTi u ≤ 0.

By combining (12), (13) and (17) we obtain ĉTu < 0. This is a contradiction since
we have previously seen that ĉTu ≥ 0. �
Lemma 3.2 has a flavor similar to that of [28, Lem. 1.1]. However, there are three
key differences. First, Lemma 3.2 deals with a primal in general form, while [28,
Lem. 1.1] considers a primal in standard form. Second, Lemma 3.2 deals with a
polytope in [0, k]n and exploits k as a parameter in condition (9), while [28, Lem. 1.1]
exploits the maximum absolute value of a subdeterminant of the constraint matrix. It
can be checked that these two results cannot be obtained from each other by switching
from the general form representation to standard form, or vice versa. The third key
difference is that the vector x̂ in the statement of Lemma 3.2 is required to be integer,
while this is not the case in [28, Lem. 1.1]. Essentially, we are able to detect if there
is any constraint of Ax ≤ b that is satisfied with equality by an integer vector in P
that maximizes cTx . This result could be of independent interest in the field of integer
programming.

For a vector w ∈ R
n and a polyhedron Q ⊆ R

n , we say that a vector is w-maximal
in Q if it maximizes wTx over Q. We are now ready to show that, at each iteration,
every optimal solution to (1) lies in F .

Lemma 3.3 The set E updated in step 3 of the face-fixing algorithm is such that every
vector x∗ that is c-maximal in P satisfies aTi x

∗ = bi for i ∈ E .
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Proof It suffices to prove the statement for a vertex x∗ of P that is c-maximal in P .
We prove this lemma recursively. Clearly, the statement is true at the beginning of the
algorithm, when E = ∅. Suppose now that the statement is true at the beginning of a
generic iteration. At the beginning of step 3 we have that x∗ is c-maximal in F . Our
goal is to prove that when we add an index h ∈ H \ E to E at the end of step 3, we
have that aThx

∗ = bh .
First, note that x∗ is also ĉ-maximal in F , as ĉ is a scaling of c̄. Since the vector

x̃ computed in step 3 lies in F , we have ĉTx∗ ≥ ĉTx̃ . Moreover, x∗ is integral, since
it is a vertex of P . Finally, for each h ∈ H \ E , we have ỹh > nk. Thus Lemma 3.2
implies aThx

∗ = bh for all h ∈ H \ E . �
We are now ready to show that the face-fixing algorithm is correct.

Proposition 3.4 The face-fixing algorithm returns an optimal solution to the LP prob-
lem (1).

Proof Consider the face F defined when the algorithm terminates. Lemma 3.3 implies
that F contains all optimal solutions to (1). Note that the affine hull of F is contained
in {x ∈ R

n | aTi x = bi for i ∈ E}. Hence, due to the termination condition, all vectors
in F have the same objective value cTx . Since the vector x∗ returned is in F , we obtain
that x∗ is an optimal solution to (1). �

3.2 Length of Simplex Path

To bound the length of the simplex path constructed by the face-fixing algorithm from
the input vertex x0 to an optimal vertex of (1) we exploit the fact that this path is
obtained by merging together the different paths constructed by the scaling algorithm
at each iteration.

Proof of Theorem 1.2 From Lemma 3.1 the face-fixing algorithm performs at most
n+1 iterations. Each time the face-fixing algorithm performs step 3, it calls the scaling
algorithm with input F , x∗, and c̃. Since F is a [0, k]-polytope, by Proposition 2.4,
each time the scaling algorithm is called, it generates a simplex path of length at most
nk

(	log‖c̃‖∞
+1
)
, where ‖c̃‖∞ = n3kα. Since log ‖c̃‖∞ ∈ O(log (nkα)), each time

we run the scaling algorithm, we generate a simplex path of length in O(nk log (nkα)).
Therefore, the simplex path generated throughout the entire algorithm has length in
O(n2k log (nkα)). �
We immediately obtain the following corollary of Theorem 1.2.

Corollary 3.5 If α is polynomially bounded in n, k, then the length of the simplex path
generated by the face-fixing algorithm is in O(n2k log (nk)). If we also assume k = 1,
the length reduces to O(n2 log n).

Next, we compare our bound on the length of the simplex path constructed by the
face-fixing algorithm with other known bounds for some classic pivoting rules that
can be applied to [0, k]-polytopes.

As discussed in Sect. 2.3, a result by Kitahara and Mizuno [17,18] implies that, by
using classic pivoting rules, we can construct a simplex path in P whose length is at
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most n2K log (nK ), where K = max {k, S} and S = max {‖b − Ax‖∞ | x ∈ P}. In
particular, if each inequality of Ax ≤ b is active at some vertex of P , we have that S
and K are in O(nkα), thus in this case the upper bound implied by the result ofKitahara
and Mizuno is in O(n3kα log (nkα)). Note that the dependence on α is superlinear,
while in our face-fixing algorithm it is only logarithmic. Our upper bound is better
also for small values of α. In fact, for α = 1, their upper bound is in O(n3k log (nk))
and ours is in O(n2k log (nk)).

To show that the bound of O(nkα) on S and K just discussed can be tight, we now
provide an example of a [0, 1]-polytope with α = 1 and S ∈ �(n). Consider the stable
set polytope of a t-perfect graph G = (V , E), that is defined by the vectors x ∈ R

V+
satisfying:

xi + x j ≤ 1, i j ∈ E,

∑

i∈V (C)

xi ≤
⌊ |V (C)|

2

⌋
, C odd cycle in G, (18)

where V (C) denotes the nodes in the odd cycle C [26]. Note that x = 0 is the
characteristic vector of the empty stable set, thus it is a vertex of the stable set polytope.
If G is an odd cycle on |V | = n nodes, then G is t-perfect, and the inequality (18)
corresponding to the cycle containing all nodes ofG is facet-defining. Furthermore, the
slack in such constraint can be as large as �n/2�, therefore S ∈ �(n). Consequently,
the upper bound implied by [17,18] is in �(n3 log n), while the upper bound given by
our face-fixing algorithm is in O(n2 log n).

In a subsequent paper [22],Mizuno proposed an algorithm that can be used to trace a
simplex path on P whose length is at most O(n3m4�3 log (n2m3�3)), where� is the
largest absolute value of a subdeterminant of the matrix A. Note that, while the upper
bound on the length of the simplex path generated by the face-fixing algorithmdepends
on parameters n, k, α, the upper bound on the length of the simplex path generated
by this algorithm depends on parameters n,m,�. Therefore these two bounds are not
directly comparable. In particular, it is known that � can grow as αn ·nn/2. Moreover,
as remarked earlier, even in [0, 1]-polytopes m can grow exponentially in n (see,
e.g., [26]).

3.3 Complexity

In this last section, we bound the number of operations performed by the face-fixing
algorithm to construct the next vertex in the simplex path or to certify optimality of
the current vertex. First, we upper bound the number of operations needed to compute
an optimal solution ỹ to the dual (D̃) with the properties stated in step 3.

Lemma 3.6 In step 3 of the face-fixing algorithm, a vector ỹ satisfying (i) and (ii) can
be computed in a number of operations that is polynomially bounded in size A. If P
is simple, the number of operations is in O(nm + n3).

Proof First, assume that the polytope P is simple. Let problem (P̃)′ be obtained
from (P̃) by dropping the inequalities that are not active at x̃ . This can be done in

123



Discrete & Computational Geometry (2022) 67:503–524 521

O(nm) operations. Since P is simple, the number of constraints in (P̃)′ is n and the
n×n constraint matrix Ã of (P̃)′ is invertible. Note that x̃ is an optimal solution to (P̃)′
as well. Let (D̃)′ be the dual of (P̃)′. Note that (D̃)′ is obtained from (D̃) by dropping the
variables y j corresponding to the inequalities of (P̃) dropped to obtain (P̃)′. Since (P̃)′
has an optimal solution, then so does (D̃)′ from strong duality. The constraint matrix
of (D̃)′ is the invertible matrix ÃT. The only feasible solution to the system of linear
equations in (D̃)′ is the vector ỹ′ := Ã−Tc̃which can be computed in O(n3) operations.
Since (D̃)′ is feasible, then ỹ′ must satisfy all the constraints in (D̃)′, thus ỹ′ is optimal.
Let ỹ be obtained from ỹ′ by adding back the dropped components and setting them
to zero. The vector ỹ is feasible to (D̃), and, from complementary slackness with x̃ , it
is optimal to (D̃). Furthermore, ỹ clearly satisfies (i). To see that it satisfies (ii), note
that the equalities aTi x = bi , i ∈ E , are all in (P̃)′. Since the constraints in (P̃)′ are
all linearly independent, problem (P̃)′ cannot contain any constraint aTj x ≤ b j , for
j ∈ [m] \ E such that a j can be written as a linear combination of ai , i ∈ E . Hence,
the corresponding dual variable ỹ j has been set to zero.

Consider now the general case where P need not be simple. First, we show how to
compute a vector ỹ that satisfies (i). Since (P̃) has an optimal solution, then so does
(D̃) from strong duality. Let (D̃)′ be obtained from (D̃) by replacing each variable
yi , i ∈ E , with y+

i − y−
i , where y+

i and y−
i are new variables which are required to

be nonnegative. Clearly (D̃) and (D̃)′ are equivalent, so (D̃)′ has an optimal solution.
Furthermore, since (D̃)′ is in standard form, it has an optimal solution ỹ′ that is a basic
feasible solution. In particular, via Tardos’ algorithm, the vector ỹ′ can be computed
in a number of operations polynomially bounded in size A. Let ỹ be obtained from ỹ′
by replacing each pair ỹ′

i
+
, ỹ′

i
− with ỹi := ỹ′

i
+ − ỹ′

i
−. It is simple to check that ỹ is an

optimal solution to (D̃). Since ỹ′ is a basic feasible solution, it has at most n nonzero
entries. By construction, so does ỹ.

Next, we discuss how to compute a vector ỹ that satisfies (i) and (ii). Let problem
(P̃)′ be obtained from (P̃) by dropping the inequalities aTj x ≤ b j , for j ∈ [m] \ E ,
such that a j can be written as a linear combination of ai , i ∈ E . Since problem (P̃) is
feasible, then (P̃) and (P̃)′ have the same feasible region and are therefore equivalent.
Let (D̃)′ be the dual of (P̃)′. Note that (D̃)′ is obtained from (D̃) by dropping the
variables y j corresponding to the inequalities of (P̃) dropped to obtain (P̃)′. Note that
(P̃)′ has the same form as that of (P̃), thus, from the the first part of the proof, we can
compute a vector ỹ′ optimal to (D̃)′ with at most n nonzero components. Furthermore,
ỹ′ can be computed in a number of operations polynomially bounded in size A. Let
ỹ be obtained from ỹ′ by adding back the dropped components and setting them to
zero. The vector ỹ is feasible to (D̃), and, from complementary slackness with x̃ , it is
optimal to (D̃). Furthermore, ỹ satisfies (i) and (ii). �
Proposition 3.7 The number of operations performed by the face-fixing algorithm to
construct the next vertex in the simplex path, or to certify optimality of the current
vertex, is polynomially bounded in size A and log k. If P is simple, the number of
operations is in O(n4 + n2m log 2(nkα)).

Proof First, we discuss the number of operations performed in a single iteration of the
face-fixing algorithm:
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(a) In step 1, computing the projection c̄ of c onto the subspace {x ∈ R
n | aTi x =

0 for i ∈ E} can be done in O(n3) operations via Gaussian elimination.
(b) In step 2, computing the approximation c̃ of c̄ can be done by binary search, and

the number of comparisons required is at most n log ‖c̃‖∞.
(c) In step 3 we call the scaling algorithm to compute the vector x̃ . From Lemma 2.6,

the number of operations performed to construct the next vertex in the simplex
path, or to certify optimality of the current vertex, is polynomially bounded in
size A and log ‖c̃‖∞. If P is simple, the number of operations is O(nm log 2‖c̃‖∞).

(d) At the end of step 3 we compute the vector ỹ. From Lemma 3.6, the number of
operations performed to compute this vector is polynomially bounded in size A,
and by O(nm + n3) if P is simple.

Recall fromLemma3.1 that the face-fixing algorithmperforms atmost n+1 iterations.
Moreover, each vector c̃ computed at step 2 is such that log ‖c̃‖∞ ∈ O(log (nkα)).

To construct the next vertex in the simplex path or to certify optimality of the current
vertex, in the worst case the face-fixing algorithm calls n times the scaling algorithm.
Therefore, the number of operations is bounded by the product of n with the sum of the
operations bounds in (a)–(d) above. In the general case, this number is polynomially
bounded in size A and log ‖c̃‖∞. If P is simple, this number is bounded by

O
(
n · (n3 + n log ‖c̃‖∞ + nm log 2‖c̃‖∞ + nm + n3)

) ∈ O(n4 + n2m log 2‖c̃‖∞).

The statement follows since size A is polynomial in n,m, logα, and log ‖c̃‖∞ ∈
O(log (nkα)). �
The following proposition shows that if the polytope P is “well described”, then the
number of operations performed by both the preprocessing& scaling algorithm and the
face-fixing algorithm to construct the next vertex in the simplex path is polynomially
bounded in n,m, log k. In particular, it is independent from α. Formally, we say that
a full-dimensional polytope P = {x ∈ R

n | Ax ≤ b} is well described by the system
Ax ≤ b if each inequality in Ax ≤ b is facet-defining, and the greatest common
divisor of the entries in each row of A is one. It is well known that given a system
A′x ≤ b′ describing a full-dimensional polytope P , we can obtain in polynomial time
a system Ax ≤ b such that P is well described by Ax ≤ b.

Proposition 3.8 Assume that P is well described. Then, the number of operations
performed by the preprocessing & scaling algorithm and by the face-fixing algorithm
to construct the next vertex in the simplex path, or to certify optimality of the current
vertex, is polynomially bounded in n,m, log k.

Proof From Propositions 2.7 and 3.7, the number of operations performed by either
algorithm to construct the next vertex in the simplex path, or to certify optimality of
the current vertex, is polynomially bounded in size A and log k. Recall that size A is
polynomial in n,m, and logα. Therefore, it suffices to show that logα is polynomially
bounded in n and log k.

Denote by ϕ the facet complexity of P and by ν the vertex complexity of P . From
[25, Thm. 10.2], we know that ϕ and ν are polynomially related, and in particular
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ϕ ≤ 4n2ν. Since P is a [0, k]-polytope, we have ν ≤ n log k. Due to the assumptions
in the statement of the proposition, and [7, Rem. 1.1], we obtain that logα ≤ nϕ.
Hence, logα ≤ nϕ ≤ 4n3ν ≤ 4n4 log k. �

We highlight that all the obtained bounds on the number of operations performed by
our algorithms to construct the next vertex in the simplex path also depend on the
number m of inequalities in the system Ax ≤ b. This is in contrast with the lengths of
the simplex paths, which only depend on n and k. This is because, in order to determine
the next vertex, the algorithm needs to read all the inequalities defining the polytope,
thus the number of operations must depend also on m.

The total number of operations performed by our algorithms can be simply obtained
bymultiplying the length of the simplex path with the number of operations performed
to construct the next vertex in the simplex path. If we assume that P is well described
and that k is polynomially bounded in n andm, Proposition 3.8, Theorems 1.1 and 1.2
imply that the preprocessing & scaling algorithm and the face-fixing algorithm run in
strongly polynomial time.

To conclude, we remark that our algorithms can be used to solve an LP problem
whose feasible set is a lattice polytope, provided that a starting vertex is given in
input. It should be noted that in the face-fixing algorithm we use Tardos’ algorithm to
compute an optimal dual solution in step 3, if the lattice polytope is not simple. Thus,
the number of operations performed by our algorithm is clearly larger than that of
Tardos’ algorithm. This is to be expected, since our overall goal is not only of solving
the given LP problem, but also of tracing a simplex path from the starting vertex to an
optimal vertex.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.
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