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Abstract
We show how to construct a (1 + ε)-spanner over a set P of n points in R

d that
is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters
ϑ, ε ∈ (0, 1), the computed spanner G has

O(
ε−O(d)ϑ−6n(log log n)6 log n

)

edges. Furthermore, for any k, and any deleted set B ⊆ P of k points, the residual
graph G \ B is a (1 + ε)-spanner for all the points of P except for (1 + ϑ)k of them.
No previous constructions, beyond the trivial clique with O(n2) edges, were known
with this resilience property (i.e., only a tiny additional fraction of vertices, ϑ |B|, lose
their distance preserving connectivity). Our construction works by first solving the
exact problem in one dimension, and then showing a surprisingly simple and elegant
construction in higher dimensions, that uses the one-dimensional construction in a
black-box fashion.
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1 Introduction

Spanners The vertices of a Euclidean graph are points in R
d , and the edges are

weighted by the (Euclidean) distance between their endpoints. Let G = (P, E) be a
Euclidean graph and p, q ∈ P be two vertices of G. For a parameter t ≥ 1, a path
between p and q in G is a t-path if the length of the path is at most t‖p − q‖, where
‖p−q‖ is the Euclidean distance between p and q. The graph G is a t-spanner of P if
there is a t-path between any pair of points p, q ∈ P . Throughout the paper, n denotes
the cardinality of the point set P , unless stated otherwise. We denote the length of the
shortest path between p, q ∈ P in the graph G by d (p, q).

Spanners have been studied extensively. The main goal in spanner constructions is
to have small size, that is, to use as few edges as possible. Other desirable properties
are low degrees [4,13,24], low weight [8,16], low diameter [5,6], or to be resistant to
failures. The book by Narasimhan and Smid [22] gives a comprehensive overview of
geometric spanners.

Robustness Here, our goal is to construct spanners that are robust according to the
notion introduced by Bose et al. [9]. Intuitively, a spanner is robust if the deletion
of k vertices only harms a few other vertices. Formally, a graph G is an f (k)-robust
t-spanner, for some positive monotone function f , if for any set B of k vertices deleted
in the graph, the remaining graph G \ B is still a t-spanner for at least n − f (k) of
the vertices. Note that the graph G \ B has n − k vertices—namely, there are at most
L (k) = f (k) − k additional vertices that no longer have good connectivity to the
remaining graph. The quantity L (k) is the loss. We are interested in minimizing the
loss.

The natural question is how many edges are needed to achieve a certain robustness
(since the clique has the desired property). That is, for a given parameter t and function
f , what is the minimal size that is needed to obtain an f (k)-robust t-spanner on any
set of n points.

A priori it is not clear that such a sparse graph should exist (for t a constant) for a
point set in R

d , since the robustness property looks quite strong. Surprisingly, Bose
et al. [9] showed that one can construct aO(k2)-robustO(1)-spanner withO(n log n)

edges. Bose et al. [9] proved various other bounds in the same vein on the size of
one-dimensional and higher-dimensional point sets. Their most closely related result
is that for the one-dimensional point set, P = {1, 2, . . . , n}, and for any t ≥ 1, at least
Ω(n log n) edges are needed to construct an O(k)-robust t-spanner.

Anopenproblem left byBose et al. [9] is the constructionofO(k)-robust spanners—
they only provide the easy upper bound ofO(n2) for this case. In this paper, we present
several constructions for this casewith optimal or near-optimal size. These results even
hold for a stronger requirement on the spanners, defined next.

ϑ-Reliable spanners We are interested in building spanners where the loss is only
fractional. Specifically, given aparameterϑ ,we consider the function f (k) = (1+ϑ)k.
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The loss in this case is L (k) = f (k) − k = ϑk. A (1 + ϑ)k-robust t-spanner is a
ϑ-reliable t-spanner.

Exact reliable spanners If the input point set is in one dimension, then one can easily
construct a 1-spanner for the points, which means that the exact distances between
points on the line are preserved by the spanner—indeed, simply connect the points
from left to right. It becomes significantly more challenging to construct such an
exact spanner that is reliable. In case of robust spanners, for a function f under some
general conditions, Bose et al. [9] gave a construction of exact f (k)-robust spanners.
In particular, their result implies that one can constructO(k log k)-robust 1-spanners of
sizeO(n log n) and, for any ε > 0,O(k1+ε)-robust 1-spanners of sizeO(n log log n),
for one-dimensional point sets.

Fault tolerant spanners Robustness is not the only definition that captures the resis-
tance of a spanner network against vertex failures. A closely related notion is fault
tolerance [18–20]. A graph G = (P, E) is an r -fault tolerant t-spanner if for any set
B of failed vertices with |B| ≤ r , the graph G \ B is still a t-spanner. The disadvantage
of r -fault tolerance is that each vertex must have degree at least r + 1, otherwise the
vertex can be isolated by deleting its neighbors. Therefore, the graph has size at least
Ω(rn). There are constructions that show O(rn) edges are enough to build r -fault
tolerant spanners. However, depending on the chosen value r the size can be too large.

In particular, fault tolerant spanners cannot have a near-linear number of edges, and
still withstand a widespread failure of nodes. Specifically, if a fault tolerant spanner
has m edges, then it can withstand a failure of at most 2m/n vertices. In sharp contrast,
ϑ-reliable spanners can withstand a widespread failure. Indeed, a ϑ-reliable spanner
can withstand a failure of close to n/(1+ϑ) of its vertices, and still have some vertices
that are connected by short paths in the remaining graph.

Region fault tolerant spanners In a surprising result, Abam et al. [1] showed that
one can build a geometric spanner with near linear number of edges, so that if the
deleted set are all the points belonging to a convex region (they also delete the edges
intersecting this region), then the residual graph is still a spanner for the remaining
points.

1.1 Our Results

We investigate how to construct reliable spanners with very small loss, that is, ϑ-
reliable spanners. To the best of our knowledge nothing was known on this case
before this work.

ExactO(1)-reliable spanner in one dimension Inspired by the reliability of constant
degree expanders, we show how to construct an O(1)-reliable exact spanner on any
one-dimensional set of n points with at most O(n log n) edges.1 The idea of the
construction is to build a binary tree over the points, and to build bipartite expanders
between certain subsets of nodes in the same layer. One can think of this construction

1 This also improves an earlier preliminary construction by (some of) the authors [11].
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as building different layers of expanders for different resolutions. The construction is
described in Sect. 3.2. See Theorem 3.6 for the result.

Exact ϑ-reliable spanner in one dimension One can get added redundancy by
systematically shifting the layers. Done carefully, this results in a ϑ-reliable exact
spanner with O(ϑ−6n log n) edges. The construction is described in Sect. 3.3. See
Theorem 3.11 for the result.

ϑ-Reliable (1 + ε)-spanners in higher dimensions We next show a simple con-
struction of ϑ-reliable spanners in R

d , for d being constant, using a recent result
of Chan et al. [14], which shows that one needs to maintain only a “few” linear
orders. This immediately reduces the d-dimensional problem to maintaining a reli-
able spanner for each of these orderings, which is the problem we already solved. By
applying a recursive scheme, using the same idea, we obtain the desired spanner of
size O (

ε−O(d)ϑ−6n log n(log log n)6
)
. See Sect. 4 for details.

ϑ-Reliable (1+ε)-spanner with bounded spread Since the general construction in
R

d has some additional factors that seem unnecessary, we present an optimal construc-
tion for the case when the point set has bounded spread, that is, the ratio of the largest
and the smallest distance of point pairs is bounded by a polynomial of n. Specifically,
for points with spread Φ in R

d , for d being constant, and for any ε > 0, we con-
struct a ϑ-reliable (1 + ε)-spanner with O(

ε−dϑ−2n logΦ
)
edges. The basic idea is

to construct a well-separated pair decomposition (WSPD) directly on the quadtree of
the point set, and convert every pair in theWSPD into a reliable graph using a bipartite
expander. The union of these graphs is the required reliable spanner. See Sect. 5 and
Lemma 5.10 for details.

Shadow Underlying our construction is the notion of identifying the points that lose
connectivity when the failure set is removed. Intuitively, a point is in the shadow
if it is surrounded by failed points. We believe that this concept is of independent
interest—see Sect. 3.1 for details and relevant results in one dimension.

The competition Independently of this work, Bose et al. [7] also obtained an
upper bound on the size of reliable spanners in R

d . Their construction has
O(n log2 n log log n) edges, which is close, butworse, than our bound ofO(n log n(log
log n)6) edges. For both constructions, the fundamental building blocks are expander
graphs. However, the construction in [7] does not use the one-dimensional construc-
tion directly, but uses well-separated pair decomposition, centroid decomposition,
and ideas for maintaining orders. In particular, inspired by the preliminary work of
Buchin et al. [11], in October 2018, Bose et al.2 achieved independently essentially the
sameone-dimensional results by using expanders.Our own improved one-dimensional
results were announced earlier in a public talk on June 12, 2018 (this was a YRF talk
in SoCG 2018). To keep things in perspective, the results of Bose et al. [7] are equiv-
alent to our results (up to a log factor), while being technically quite different (in two
and higher dimensions). In particular, their one-dimensional construction has better
dependency on the reliability parameter. The main advantage of our result, beyond the

2 Available online here: http://cglab.ca/~morin/publications/drafts/robust2/robust2-2018-10-29.pdf.
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aforementioned (all-important) log factor, is that it is (conceptually) simpler—the use
of locality sensitive orderings [14] makes all the difference.

2 Preliminaries

2.1 Problem Definition and Notations

Let [n] denote the set {1, 2, . . . , n} and let [i : j] = {i, i + 1, . . . , j}.
Definition 2.1 (Robust spanner) Assume that we are given

(i) a parameter t ≥ 1,
(ii) a graph G = (P, E) that is a t-spanner,
(iii) a function f : N → R+, and
(iv) two point sets P1, P2 ⊆ P .

The graph G is an f (k)-robust t-spanner for P1 × P2 if for any set of (failed) vertices
B ⊆ P there exists a set B+ ⊇ B with |B+| ≤ f (|B|) such that the subgraph

G \ B = G P\B = (
P \ B, {uv ∈ E(G) | u, v ∈ P \ B})

induced by G on P \ B is a t-spanner for (P1 \ B+) × (P2 \ B+). That is, G \ B has
a t-path between all pairs of points p ∈ P1 \ B+ and q ∈ P2 \ B+. If P1 = P2 = P ,
then G is a f (k)-robust t-spanner. The vertices of B+ \ B are the vertices harmed by
B, and the quantity L(k) = f (k) − k ≥ |B+| − |B| is the loss.

Definition 2.2 For a parameter ϑ > 0, a graph G that is a (1 + ϑ)k-robust t-spanner
is a ϑ-reliable t-spanner.

Definition 2.3 For a number x > 0, let pow2 (x) = 2	log x
 be the smallest number
that is a power of 2 and is at least as large as x .

2.2 Expanders

For a set X of vertices in a graph G = (V , E), let

Γ(X) = {v ∈ V | uv ∈ E and u ∈ X}

be the neighbors of X in G. The following lemma, which is a standard expander
construction, provides the main building block of our one-dimensional construction.
We provide the proof only for the sake of completeness, as this is well known. The
survey by Hoory et al. [17] gives a comprehensive study of expanders.

Lemma 2.4 Let L, R be two disjoint sets, with a total of n elements, and let ξ ∈ (0, 1)
be a parameter. One can build a bipartite graph G = (L ∪ R, E) with O(n/ξ2) edges,
such that

(I) for any subset X ⊆ L, with |X | ≥ ξ |L|, we have |Γ(X)| > (1 − ξ)|R|, and
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(II) for any subset Y ⊆ R, with |Y | ≥ ξ |R|, we have |Γ(Y )| > (1 − ξ)|L|.
Proof This is a variant of an expander graph. See [21, Sect. 5.3] for a similar construc-
tion.

Let c = 	3/ξ2
. For every vertex in L , pick randomly and uniformly (with rep-
etition) � = c	n/|L|
 neighbors in R. Do the same for every vertex in R, picking
c	n/|R|
 neighbors at random from L . Let G be the resulting graph, after removing
redundant parallel edges. Clearly, the number of edges is as required.

As for the claimed properties, fix a subset X ⊆ L of size at least ξ |L|, and fix a
subset on the right, Z ⊆ R of size ≤ (1 − ξ)|R|. Notice that there are at most 2n

choices for both X and Z . The probability that all the edges we picked for the vertices
of X stay inside Z , is at most

(1 − ξ)�|X | ≤ (1 − ξ)�ξ |L| ≤ (1 − ξ)cξn

≤ exp

(
−ξ · 3

ξ2
· ξn

)
= exp (−3n) ≤ 1

8n
,

since c ≥ 3/ξ2 and 1− ξ ≤ exp(−ξ). In particular, for a given X the probability that
this happens for any subset Z is less than 2n/8n = 1/4n . Thus, with probability less
than 2n/4n = 1/2n there is an X ⊆ L withΓ(X) ≤ (1−ξ)n. Using the same argument
for Y ⊆ R we get that the random graph does not have the desired properties with
probability 2/2n < 1 (for n > 1). This implies that a graph with the desired properties
exists.

Remark Theabove construction is randomized, but simple algebraic deterministic con-
structions are known [3,15,23]. One can improve their expansion ratio by repeatedly
squaring them. These constructions are implicit, and are easily constructed quickly
on the fly. As such, in the following, we assume that the expanders of Lemma 2.4 are
readily available for use in our constructions.

Remark It is not hard to show that regular expanders (i.e., not bipartite, as constructed
above) are reliable graphs. That is, deleting a set of vertices leaves almost all the
remaining vertices in a single connected component.

3 Building Reliable Spanners in One Dimension

3.1 Bounding the Size of the Shadow

Our purpose is to build a reliable 1-spanner in one dimension. Intuitively, a point in
[n] is in trouble, if many of its close by neighbors belong to the failure set B. Such an
element is in the shadow of B, defined formally next.

Definition 3.1 Consider an arbitrary set B ⊆ [n] and a parameterα ∈ (0, 1). A number
i is in the left α-shadow of B, if and only if there exists an integer j ≥ i , such that
|[i : j] ∩ B| ≥ α|[i : j]|. Similarly, i is in the right α-shadow of B, if and only if there
exists an integer h, such that h ≤ i and |[h : i] ∩ B| ≥ α|[h : i]|. The α-shadow of
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Fig. 1 Consider a set B ⊆ [n], the points pi = (i, 1+|[1, i −1]∩ B|), for i = 1, . . . , n, and the associated
polyline σ resulting from connecting these points from left to right (the squares are the points that belong
to B). A number i ∈ [n] \ B is in the left α-shadow of B, if the ray emanating from pi to the right, with
slope α, hits σ

B, denoted by S(α, B), is the union of the left α-shadow and the right α-shadow. See
Fig. 1 for a visual interpretation of the shadow.

Lemma 3.2 For any B ⊆ [n] and α ∈ (0, 1), |S(α, B)| ≤ (1 + 2	1/α
)|B|.
Proof Fix a set B = {q1 < · · · < qb}. Let P0 = {p1 < · · · < pn−b} be all the points
of [n] \ B, where b = |B|. Let the set H be initially empty. Consider the process
where in the i th iteration, for i = 1, . . . , b, Li (resp. Ri ) is the set of 	1/α
 largest
(resp. smallest) numbers of Pi−1 that are smaller (resp. larger) than qi . We set H =
H ∪ Li ∪ Ri ∪ {qi }, and Pi = Pi−1 \ (Li ∪ Ri ).

The claim is that if k ∈ [n] is in (say) the left α-shadow of B, then k ∈ H . If
k ∈ B then the claim is immediate, so assume that k /∈ B. Next, fix a witness interval
J = [k : k′], such that |J ∩ B| ≥ α|J |. Observe that the above process handles all the
elements of J ∗ = B ∩ J in turn. When handling an element q ∈ J ∗, as long as k /∈ H ,
the process either adds k to H , or adds at least 1 + 	1/α
 new points of J (that were
not previously in H ) to H—indeed, the last 1 + 	1/α
 “free” points in the interval
[k : q] are added to H . Suppose that k /∈ H at the end of the process. Then, we have

|J | ≥ |H ∩ J | ≥ (1 + 	1/α
)α|J | > |J |,

which is a contradiction.
Applying the above argument symmetrically implies that, at the end of the process,

H contains all the points in the right and left shadows of B.

One can get a better bound if α is close to one, as testified by the following. This is
crucial to achieve ϑ-reliability, since Lemma 3.2 is not sharp when α is close to one.

Lemma 3.3 Fix a set B ⊆ [n], let α ∈ (2/3, 1) be a parameter, and let S(α, B) be the
set of elements in the α-shadow of B. We have that |S(α, B)| ≤ |B|/(2α − 1).

Proof Let c = 1 − 1/α < 0. For i = 1, . . . , n, let xi = c if i ∈ B, and xi = 1 other-
wise. For any interval I of lengthΔ, with τΔ elements in B, such that x(I ) = ∑

i∈I xi

≤ 0, we have that
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x(I ) ≤ 0 ⇐⇒ (1 − τ)Δ + cτΔ ≤ 0 ⇐⇒ 1 − τ ≤ −τc ⇐⇒ 1/τ ≤ 1 − c

⇐⇒ 1/τ ≤ 1 − (1 − 1/α) ⇐⇒ 1/τ ≤ 1/α ⇐⇒ τ ≥ α.

An element j ∈ [n] is in the left α-shadow of B if and only if there exists an integer
j ′, such that |[ j : j ′] ∩ B| ≥ α|[ j : j ′]| and, by the above, x([ j : j ′]) ≤ 0. Namely, an
integer j in the left α-shadow of B corresponds to some prefix sum of the xi s starting
at j and adding up to some non-positive sum. From this point on, we work with the
sequence of numbers x1, . . . , xn , using the above summation criterion to detect the
elements in the left α-shadow.

For a location j ∈ [n] that is in the left α-shadow, let W j = [ j : j ′] be the witness
interval for j—this is the shortest interval that has a non-positive sum that starts at j .
Let I = Wk = [k : k′] be the shortest witness interval, for any number in S(α, B) \ B.
For any j ∈ [k + 1 : k′], we have x([k : j − 1]) + x([ j : k′]) = x([k : k′]) ≤ 0. Thus,
if x j = 1, this implies that either j or k have shorter witness intervals than I , which
is a contradiction to the choice of k. We conclude that x j < 0 for all j ∈ [k + 1 : k′],
that is, [k + 1 : k′] ⊆ B.

Letting � = |I | = k′ − k + 1, we have that

� − 1

�
≥ α ⇐⇒ � − 1 ≥ α� ⇐⇒ � ≥ 1

1 − α
⇐⇒ � ≥

⌈
1

1 − α

⌉
≥ 3,

as α ≥ 2/3. In particular, by the minimality of I , we have that � = 	1/(1 − α)
.
Let J = [k : k′ − 1] ⊂ I . We have that x(J ) > 0. For any j ∈ S(α, B) \ B such

that j �= k, consider the witness interval W j . If j > k, then j > k′, as all the elements
of I , except k, are in B. If j < k and j ′ ∈ J , then τ = x([k : j ′]) > 0, which implies
that x([ j : k −1]) = x(W j )−τ < 0, but this is a contradiction to the definition of W j .
Namely, all the witness intervals either avoid J , or contain it in their interior. Given
a witness interval W j such that J ⊂ W j , we have x(W j \ J ) = x(W j ) − x(J ) <

x(W j ) ≤ 0, since x(J ) > 0.
So consider the new sequence of numbers x[n]\J = x1, . . . , xk−1, xk′ , . . . xn result-

ing from removing the elements that correspond to J from the sequence. Reclassify
which elements are in the left shadow in the new sequence. By the above, any element
that was in the shadow before, is going to be in the new shadow. As such, one can
charge the element k, that is in the left shadow (but not in B), to all the other elements
of J (that are all in B). Applying this charging scheme inductively, charges all the
elements in the left shadow (that are not in B) to elements in B. We conclude that the
number of elements in the left shadow of B that are not in B is bounded by

|B|
|J | − 1

= |B|
� − 2

= |B|
	1/(1 − α)
 − 2

≤ 1 − α

1 − 2(1 − α)
|B| = 1 − α

2α − 1
|B|.

The above argument can be applied symmetrically to the right shadow. We conclude
that

|S(α, B)| ≤ |B| + 2
1 − α

2α − 1
|B| = 2α − 1 + 2 − 2α

2α − 1
|B| = |B|

2α − 1
.
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3.2 Construction ofO(1)-reliable Exact Spanners in One Dimension

3.2.1 Constructing the Graph H

Assume n is a power of two, and consider building the natural full binary tree T with
the numbers of [n] as the leaves. Every node v of T corresponds to an interval of
numbers of the form [i : j], which we refer to as the block of v, see Fig. 2. Let I be
the resulting set of all blocks. On each level one can sort the blocks of the tree from
left to right. Two adjacent blocks of the same level are neighbors. For a block I ∈ I,
let next (I ) and prev (I ) be the blocks (on the same level) directly to the right and left
of I , respectively.

We build the graph of Lemma 2.4 with ξ = 1/16 for any two neighboring blocks
in I. Let H be the resulting graph when taking the union over all the sets of edges
generated by the above.

3.2.2 Analysis

Here, we show that the resulting graph H is anO(k)-robust 1-spanner withO(n log n)

edges.

Lemma 3.4 The graph H has O(n log n) edges.

Proof Let h = log n be the depth of the tree T . For i = 1, 2, . . . , h, on the i th level
of T there are 2h−i nodes, and the blocks of these nodes have size 2i . The number of
pairs of adjacent blocks on level i is 2h−i − 1 and each pair contributes O(2i ) edges.
Therefore, each level of T contributes O(n) edges. Summing this up for all levels
implies the bound.

There is a natural path between two leaves in the tree T going through their lowest
common ancestor. However, we need something somewhat different here, as the path
has to move forward (from left to right) in the 1-path.

Given two numbers i and j , where i < j , consider the two blocks I , J ∈ I that
correspond to the two numbers at the bottom level. Set I0 = I and J0 = J . We now
describe a canonical walk from I to J , where initially � = 0. During the walk we
have two active blocks I� and J�, that are both on the same level. For any block I ∈ I
we denote its parent by p(I ). At every iteration we bring the two active blocks closer
to each other by moving up in the tree.

1 ni j

v

Fig. 2 The binary tree built over [n]. The block of node v is the interval [i : j]
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Specifically, repeatedly do the following:

(A) If I� and J� are neighbors then the walk is done.
(B) If I� is the right child of p(I�), then set I�+1 = next (I�) and J�+1 = J�, and

continue to the next iteration.
(C) If J� is the left child of p(J�), then set I�+1 = I� and J�+1 = prev (J�), and

continue to the next iteration.
(D) Otherwise, algorithm ascends. It sets I�+1 = p(I�) and I�+1 = p(J�), and it

continues to the next iteration.

It is easy to verify that this walk is well defined, and let

π(i, j) ≡ I0 → I1 → · · · → I�︸ ︷︷ ︸
ascent

→ J� → · · · → J0︸ ︷︷ ︸
descent

be the resulting walk on the blocks where we removed repeated blocks. Figure 3
illustrates the path of blocks between two vertices i and j .

In the following, consider a fixed set B ⊆ [n] of faulty nodes. A block I ∈ I is
α-contaminated, for some α ∈ (0, 1), if |I ∩ B| ≥ α|I |.
Lemma 3.5 Consider two nodes i, j ∈ [n], with i < j , and let π(i, j) be the canonical
path between i and j . If any block of π = π(i, j) is α-contaminated, then i or j are
in the α/3-shadow of B.

Proof Assume the contamination happens in the left half of the path, i.e., at some block
It , during the ascent from i to the connecting block to the descent path into j , see
Fig. 4. By construction, there could be only one block before It on the path of the same
level, and all previous blocks are smaller, and there are at most two blocks at each
level. Furthermore, for two consecutive I j , I j+1 that are blocks of different levels,

i j

(a) The canonical path in the tree.

1 ni j

(b) The canonical path on the blocks.

Fig. 3 The canonical path between the vertices i and j in two different representations. The blue nodes
and blocks correspond to the ascent part and the red nodes and blocks correspond to the descent part of the
walk
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Iti

Fig. 4 Contamination

I j ⊆ I j+1. Thus we have that either i ∈ It , or i ∈ prev (It ), or i ∈ prev(prev(It )),
since there are at most |It |+|It |/2+· · ·+2+1 = 2|It |−1 vertices that are contained
in the path before the block It . Notice that if i ∈ It , then it is the leftmost point of It .

So, let r be the maximum number in It , and observe that |[i : r ]| ≤ 3|It |. Further-
more, since It is α-contaminated, we have

|[i : r ] ∩ B| ≥ |It ∩ B| ≥ α|It | ≥ α

3
|[i : r ]|.

Thus, the number i is the α/3-shadow, as claimed. The other case, when the contam-
ination happens in the right part during the descent, is handled symmetrically.

Theorem 3.6 The graph H, constructed above, on the set [n] is anO(1)-reliable exact
spanner and has O(n log n) edges.

Proof The size is proven in Lemma 3.4. Let α = 1/32. Let B+ be the set of vertices
that are in the α/3-shadow of B, that is, B+ = S(α/3, B). By Lemma 3.2 we have
that |B+| ≤ (1 + 2	3/α
)|B| ≤ 200|B|.

Consider any two vertices i, j ∈ [n]\B+. Letπ(i, j) be the canonical path between
i and j . None of the blocks in this path are α-contaminated, by Lemma 3.5. Let S be
the set of all vertices that have a 1-path from i to them (after removing the vertices of
B). Consider the ascent part of the path π(i, j) : I0 → I1 → · · · → I�. The claim
is that for every block It in this path, we have that at least 3/4 of the vertices have
1-paths from i (i.e., |It ∩ S| ≥ 3|It |/4).

This claim is proven by induction. The claim trivially holds for I0. Now, consider
two consecutive blocks It → It+1. There are two cases:

(i) It+1 = next (It ). Then, the graph H includes the expander graph on It , It+1
described in Lemma 2.4. At least 3|It |/4 vertices of It are in S. As such, at least
15|It+1|/16 vertices of It+1 are reachable from the vertices of It . Since It+1 is not
α-contaminated, at most an α-fraction of vertices of It+1 are in B, and it follows
that |It+1 ∩ S| ≥ (15/16 − α)|It+1| ≥ 3|It+1|/4, as claimed.

(ii) It+1 is the parent of It . In this case, It is the left child of It+1. Let I ′
t be the right

child of It+1. Since It+1 is not α-contaminated, we have that |It+1∩ B| ≤ α|It+1|.
As such,

|I ′
t ∩ B| ≤ |It+1 ∩ B| ≤ 2α|I ′

t |.

Now, by the expander construction on (It , I ′
t ), and arguing as above, we have

|I ′
t ∩ S| ≥

(
15

16
− 2α

)
|I ′

t | ≥ 3

4
|I ′

t |.
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which implies that |It+1 ∩ S| ≥ 3|It+1|/4.
The symmetric claim for the descent part of the path is handled in a similar fashion.

Therefore, at least 3/4 of the points in J� can reach j with a 1-path. Using these and
the expander construction between I� and J�, we conclude that there is a 1-path from
i to j in H \ B, as claimed.

Note that it is easy to generalize the construction for arbitrary n. Let h be the integer
such that 2h−1 < n < 2h and build the graph H on {1, 2, 3, . . . , 2h}. Since H is a
1-spanner, the 1-paths between any pair of vertices of [n] do not use any vertices from
{n + 1, . . . , 2h}. Therefore, we can simply delete the part of H that is beyond n to
obtain an O(1)-reliable 1-spanner on [n]. Since we defined B+ to be the shadow of
B, the O(1)-reliability is inherited automatically.

We also note that no effort was made to optimize the constants in the above con-
struction.

3.3 Construction of#-reliable Exact Spanners in One Dimension

Here, we show how to extend Theorem 3.6, to build a 1-spanner on [n], such that for
any fixed ϑ ∈ (0, 1) and any set B of k deleted vertices, at most (1+ ϑ)k vertices are
no longer connected (by a 1-path) after the removal of B. The basic idea is to retrace
the construction of Theorem 3.6, and extend it to this more challenging case. There are
two main new ingredients: (i) a shifting scheme, and (ii) using much larger intervals
when ascending from a level upward. Unfortunately, the details are somewhat tedious.

3.3.1 The Construction

Let [n] be the ground set, assume that n is a power of two, and let h = log n. Let

N = pow2

( c

ϑ2

)
and ξ = 1

32N
, (3.1)

where c is a sufficiently large constant (e.g., c ≥ 512). We first connect any i ∈ [n] to
all the vertices that are within distance at most 3N from it, by adding an edge between
the two vertices. Let G0 be the resulting graph.

Let i0 = log N . For i = i0, . . . , h − 1 and j = 1, . . . , N , let

Δ(i, j) = 1 + ( j − 1)2i

N
− 2i .

For a fixed i , the Δ(i, j)’s are N equally spaced numbers in the interval [1 − 2i : 1 −
2i/N ], starting at its left endpoint. Here, i is the resolution of Δ(i, j), the shift
corresponding to resolution i is 2i/N , and the number of different shifts is N . For
k = 0, . . . , n/2i , and i, j as above, the corresponding block is

I (i, j, k) = [
Δ(i, j) + k2i : Δ(i, j) + (k + 1)2i − 1

]
.
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1 n2

1
2
3
4

j =

0 1 2 87

k =

I (3 , 2, 4)

Fig. 5 The shifted intervals I (i, · , · ) for i = 3 with N = 4 and n = 64. Each interval has length 2i = 8,
there are N = 4 different shifts and there are n/2i + 1 = 9 blocks per each shift

Such a block is an interval of length 2i that starts at Δ(i, j) + k2i , see Fig. 5. The set
of all intervals/blocks of interest is

I =
⎧
⎨

⎩
I (i, j, k)

∣
∣∣∣∣∣

i = i0, . . . , log n
j = 1, . . . , N

k = 0, . . . , n/2i

⎫
⎬

⎭
. (3.2)

Constructing the graph Hϑ . Let GE (i, j, k) denote the expander graph of
Lemma 2.4, constructed over I (i, j, k) and I (i, j, k + 1), with the value of the
parameter ξ as specified in (3.1). We define Hϑ to be the union of all the graphs GE
over all choices of i, j, k, also including the graph G0 (described above). The last step
is to delete vertices from Hϑ that are outside the range of interest [n].

Remark As before, if n is not a power of two, repeat the construction on
[
pow2 (n)

]
,

and remove redundant vertices.

3.3.2 Analysis of H#

Lemma 3.7 The graph Hϑ has O(ϑ−6n log n) edges.

Proof There areO(log n) resolutions. For every such resolution the number of different
shifts is N = O(1/ϑ2). For every shift, the number of edges created is bounded by
O(nξ−2) = O(n/ϑ4), by Lemma 2.4. Thus, Hϑ has O(ϑ−6n log n) edges.

In the following, let �s, �� = [s : s +�−1] be the set of consecutive integers starting
at s and containing � numbers.

Definition 3.8 For two vertices x, y ∈ [n], y is a descendant of x (and x is an ancestor
of y) in Hϑ , if x < y and there is a 1-path between x and y in Hϑ . For a set B ⊆ [n],
and a vertex s, let D = D(Hϑ , s, B) be the set of all descendants of s in the graph
Hϑ \ B. Similarly, for a vertex t , let A = A(Hϑ , t, B) be the set of ancestors of t in
Hϑ \ B. For an interval I ⊆ [n], the set I ∩ D is the set of all nodes in I that are
descendants of s in the graph Hϑ \ B. In a symmetric fashion, the set of ancestors in
I that can reach a node t is denoted by I ∩ A.

Now, we show that if a point outside of the shadow has a reasonably large fraction
of descendants in an interval, then, one can find an extended interval, which isΘ(1/ϑ)

times longer and has the same property. The crucial part is to carefully choose two
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consecutive blocks of I, so that the expander between them can be used to extend the
set of descendants.

Lemma 3.9 Let B ⊆ [n] be the set of deleted locations, α = 1 − ϑ/4, and s be a
location in [n] that is not in the α-shadow of B. Let h ≥ N be an integer number, and
let c ≥ 512 be the constant from the construction. Let D = D(Hϑ , s, B), and assume
that |�s, h� ∩D| ≥ ϑh/32. Then, for some number �, 8h/ϑ ≤ � ≤ ch/(8ϑ), we have
|�s, �� ∩ D| ≥ ϑ�/32.

Proof The idea is to choose the right resolution in the construction of Hϑ . As a first
step, let

Δ = pow2

(
ϑh

64

)
�⇒ ϑh

64
≤ Δ ≤ ϑh

32

be the desired shift. We pick the resolution i such that the shift used, 2i/N , is equal
to Δ (i.e., Δ = 2i/N ). This implies that i = log(NΔ). There is a choice of j and k,
such that the right endpoint of L = I (i, j, k) lies in the interval �s + h,Δ�. Notice
that �s, h� ⊆ L, since

h + Δ ≤
(
1 + 64

ϑ

)
Δ =

(
1 + 64

ϑ

)
2i

N
≤

(
1 + 64

ϑ

)
ϑ2

c
2i ≤ 2i

holds. Let R = I (i, j, k + 1) and � = right (R) − s + 1, where right (R) is the right
endpoint of the interval R, see Fig. 6. Observe that ϑh/64 ≤ Δ ≤ ϑh/32 and

� ≥ 2i = NΔ ≥ c

ϑ2 · ϑh

64
= c

64
· h

ϑ
≥ 8h

ϑ
,

since c ≥ 512. Similarly,

� ≤ 2 · 2i = 2NΔ ≤ 2 · 2c

ϑ2 · ϑh

32
= c

8
· h

ϑ
.

Let U = �s, h� ∩ D. By assumption, |U | ≥ ϑh/32. Since the interval L is of length
2i , we have

|L ∩ D|
|L| ≥ |U |

2i
≥ ϑh/32

NΔ
≥ ϑh/32

Nϑh/32
= 1

N
≥ ξ.

s

h Δ
L R

�

Fig. 6 The intervals L and R and their relation to s, h, Δ, and �
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Since s is not in the α-shadow of B, it follows that the interval �s, �� contains at least
ϑ�/4 elements that are not in B. Let τ be the fraction of elements of R that are not in
B. We have that

τ = |R \ B|
|R| ≥ ϑ�/4 − h − Δ

2i
≥ ϑ(2i + h)/4 − (h + Δ)

2i

≥ ϑ(2i + 32 · 2i/(ϑ N ))/4 − (64/ϑ + 1)2i/N

2i

= ϑ

4
+ 8

N
−

(
1 + 64

ϑ

)
1

N
≥ ϑ

4
− 64

ϑ N
≥ ϑ

4
− 64ϑ

c
≥ ϑ

8
.

Let U ′ ⊆ R be the set of all nodes that are connected by an edge of Hϑ to U . Note
that all the nodes of U ′ are descendants of s. The graph GE (i, j, k) guarantees that
|U ′| ≥ (1 − ξ)|R|, where GE (i, j, k) is the expander graph built over L and R. We
have that

|�s, �� ∩ D| ≥ |(R \ B) ∩ U ′| = |R \ B| − |(R \ B) ∩ U ′|
≥ |R \ B| − |R ∩ U

′| ≥ |R \ B| − ξ2i = (τ − ξ)2i .

Since ξ ≤ ϑ/16, we have

|�s, �� ∩ D|
�

≥ (τ − ξ)2i

2 · 2i
= τ − ξ

2
≥ ϑ/8 − ϑ/16

2
= ϑ

32
.

Remark One can state a symmetric version of Lemma 3.9 about the number of ances-
tors that can reach a target node t .

Lemma 3.10 Let B ⊆ [n] be the set of faulty vertices, and let S(α, B) be its α-shadow
with α = 1−ϑ/4. Let s, t be two vertices in [n] \S(α, B) such that s < t . Then, there
is a 1-path between s and t in Hϑ \ B. Further, this path between s and t uses at most
2 log n edges.

Proof If |s − t | ≤ 3N , then the two vertices are connected by an edge in Hϑ by
construction, and the claim holds.

Let L and R be two adjacent consecutive blocks of the same size in I (see (3.2)) such
that s ∈ L and t ∈ R, and these are the smallest blocks for which this property holds. If
there are several pairs of intervals of the same size that have the desired property, we
pick the pair such that min (right (L) − s, t − left (R)) is maximized (i.e., the common
boundary between the two intervals is as close to the middle (s + t)/2 as possible).
Let 2i = |R| = |L|. It is easy to verify that 2i/2 ≤ |[s : t]| ≤ 2 · 2i . Indeed, the lower
bound holds by the minimality of L and R. Otherwise, the right half of L and the left
half of R would also be a valid choice and would have smaller size. The upper bound
follows from the fact that |L| + |R| = 2 · 2i .

Set L0 = �s, N� and R0 = [t − N +1 : t]. Since s and t are not in the α-shadow, we
have that |L0 \ B| ≥ ϑ |L0|/4 and |R0 \ B| ≥ ϑ |R0|/4. For i > 0, in the i th iteration,
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let Li be the interval starting at s of length Θ(|Li−1|/ϑ) such that a fraction of at least
ϑ/32 of its elements are descendants of s that are not in B. The existence of such an
interval is guaranteed by Lemma 3.9. Similarly, we expand the right interval Ri−1 in
a symmetric way.

Let j be the first iteration such that L j+1 � L. By the choice of L and R and by
Lemma 3.9, we have

2i

4
− 2i

N
≤ |L j+1| ≤ c

8ϑ
|L j |.

This implies that

|L ∩ D|
|L| ≥ |L j ∩ D|

|L| ≥ ϑ |L j |/32
2i

≥ ϑ

32
· 8ϑ

c

(
1

4
− 1

N

)
≥ ϑ

32
· 8ϑ

c
· 1
8

≥ 1

32N
= ξ.

Applying the same argumentation, using Lemma 3.9 for the reachable ancestors, we
have that

|R ∩ A|
|R| ≥ ξ

(i.e., there are at least ξ |R| elements in R that have a 1-path to t in Hϑ \ B). The graph
Hϑ contains an expander GE (i, j, k) built over L and R. By the pigeonhole principle
and the properties of the expander between L and R, there is an edge between a vertex
of L ∩ D and a vertex of R ∩ A. That is, there is a 1-path between s and t in Hϑ \ B,
as desired.

By Lemma 3.9 we have 8|Li | ≤ 8|Li |/ϑ ≤ |Li+1| for i = 0, . . . , j . Therefore,
the number of iterations we do to expand L0 is less than log n. The same is true for
R0. Thus, the number of edges that we used for the 1-path is bounded by 2 log n.

Theorem 3.11 For parameters n and ϑ > 0, the graph Hϑ constructed over [n], is a
ϑ-reliable exact spanner. Furthermore, Hϑ has O(ϑ−6n log n) edges.

Proof The bound on the number of edges is from Lemma 3.7. Next, fix the set B.
Define the set B+ to be the (1 − ϑ/4)-shadow of B. By Lemma 3.3 we have that
|B+| ≤ |B|/(2(1 − ϑ/4) − 1) = |B|/(1 − ϑ/2) ≤ (1 + ϑ)|B|. A 1-path in Hϑ \ B
between any two vertices in [n] \ B+ exists by Lemma 3.10.

4 Building a Reliable Spanner in R
d

4.1 First Construction

In the following, we assume that P ⊆ [0, 1)d—this can be done by an appropriate
scaling and translation of space. We use a recent result of Chan et al. [14], which
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introduced locality-sensitive orderings. These orderings (which are the same as total
orders and are extensions of theZ-order) can be thought as an alternative to quadtrees
and related structures. For an ordering σ of [0, 1)d , and two points p, q ∈ [0, 1)d such
that p ≺σ q, let

(p, q)σ = {z ∈ [0, 1)d | p ≺σ z ≺σ q}
be the open interval between p and q in the order σ . Further, let ball (p, r) =
{z ∈ [0, 1)d | ‖p − z‖ ≤ r} denote the ball centered at p with radius r .

Theorem 4.1 [14] For δ ∈ (0, 1), there is a set Π+(δ) of at most M(δ) =
O(δ−d log δ−1) orderings of [0, 1)d , such that for any two (distinct) points p, q ∈
[0, 1)d , with � = ‖p −q‖, there is an ordering σ ∈ Π+, and a point z ∈ [0, 1)d , such
that

– p ≺σ q,
– (p, z)σ ⊆ ball (p, δ�),
– (z, q)σ ⊆ ball (q, δ�), and
– z ∈ ball (p, δ�) or z ∈ ball (q, δ�).

Furthermore, given such an ordering σ , and two points p, q, one can compute their
ordering, according to σ , using O(d log δ−1) arithmetic and bitwise-logical opera-
tions.

First, we give a very simple construction and analysis, for building reliable span-
ners, using the theorem above and the one-dimensional construction. We present it
to convey the basic principle of this technique. Then, by tuning the parameters, we
repeat the construction to obtain a reliable spanner of sizeO (

n log n(log log n)6
)
. This

construction has a more elaborate analysis, with similar ideas but used in an iterative
manner.

4.1.1 Construction in Detail

Given a set P of n points in [0, 1)d , and parameters ε, ϑ ∈ (0, 1), let δ = ε/(c log n),

M = M(δ) = O(δ−d log δ−1) = O
(

ε−d logdn log
log n

ε

)
,

and c be some sufficiently large constant. Next, let ϑ ′ = ϑ/M and Π+ = Π+(δ)

be the set of orderings from Theorem 4.1. For each ordering σ ∈ Π+, compute the
ϑ ′-reliable exact spanner Gσ of P , see Theorem 3.11, according to σ . Let G be the
graph resulting from taking the union of Gσ for all σ ∈ Π+.

4.1.2 Analysis

Lemma 4.2 The graph G, constructed above, is a ϑ-reliable (1+ ε)-spanner and has
size

O
(

ε−7dϑ−6n log7dn log7
log n

ε

)
.
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Proof Given a (failure) set B ⊆ P , let B+ be the union of all the harmed sets resulting
from B in Gσ , for all σ ∈ Π+. We have |B+| ≤ (1 + M · ϑ ′)|B| = (1 + ϑ)|B|.

Consider any two points p, q ∈ P \ B+. By Theorem 4.1, for � = ‖p − q‖, there
exists an ordering σ ∈ Π+, and a point z ∈ [0, 1)d , such that (p, z)σ ⊆ ball (p, δ�)

and (z, q)σ ⊆ ball (q, δ�) (and z is in one of these balls).
By Lemma 3.10, the graph Gσ \ B ⊆ G \ B contains a monotone path π , according

to σ , with h = O(log n) hops, connecting p to q. Let p = p1, . . . , ph+1 = q be this
path. Observe that there is a unique index i such that z ∈ (pi , pi+1). We have the
following:

– For all j �= i , ‖p j − p j+1‖ ≤ 2δ�, since p j and p j+1 are contained in a ball of
radius δ�.

– ‖pi − pi+1‖ ≤ ‖pi − p‖ + ‖p − q‖ + ‖q − pi+1‖ ≤ � + 2δ�.

As such, the total length ofπ is
∑h

j=1 ‖p j − p j+1‖≤ (1+2δh)� ≤ (1+ε)�, as desired,
if c is sufficiently large. Namely,G is the desired reliable spanner. The number of edges
of G is

M · O
(
(ϑ ′)−6n log n

)
= O

(
M(M/ϑ)6n log n

)

= O
(

ε−7dϑ−6n log7dn log7
log n

ε

)
.

4.2 An Improved Construction

Given a set P of n points in [0, 1)d , and parameters ε, ϑ ∈ (0, 1), let δ = ε/c,

M = M(δ) = O(δ−d log δ−1) = O(ε−d log ε−1),

and c be some sufficiently large constant. Next, let ϑ ′ = ϑ/(3N M) where N =
	log log n
+ 1 and Π+ = Π+(δ) be the set of orderings from Theorem 4.1. For each
ordering σ ∈ Π+, compute the ϑ ′-reliable exact spanner Gσ of P , see Theorem 3.11,
according to σ . Let G be the graph resulting from taking the union of Gσ for all
σ ∈ Π+.

Theorem 4.3 The graph G, constructed above, is a ϑ-reliable (1 + ε)-spanner and
has size

O
(

ε−7d log7
1

ε
· ϑ−6n log n(log log n)6

)
.

Proof First, we show the bound on the size. There are M different orderings for which
we build the graph of Theorem3.11. Each of these graphs hasO (

(ϑ ′)−6n log n
)
edges.

Therefore, the size of G is
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M · O
(
(ϑ ′)−6n log n

)
= O

(
M

(
3N M

ϑ

)6
n log n

)

= O
(

ε−7d log7
1

ε
· ϑ−6n log n(log log n)6

)
.

Next, we identify the set of harmed vertices B+ given a set of failed vertices B ⊆ P .
First, let B1 be the union of all the (1 − ϑ ′/4)-shadows resulting from B in Gσ , for
all σ ∈ Π+. Then, for i = 2, . . . , N , we define Bi in a recursive manner to be the
union of all the (1 − ϑ ′/4)-shadows resulting from Bi−1 in Gσ , for all σ ∈ Π+. We
set B+ = BN .

By the recursion and Lemma 3.3 we have that

|Bi | ≤
( |Bi−1|
2(1 − ϑ ′/4) − 1

− |Bi−1|
)

M + |Bi−1|

= |Bi−1| − (1 − ϑ ′/2)|Bi−1|
1 − ϑ ′/2

M + |Bi−1| = ϑ ′|Bi−1|
2 − ϑ ′ M + |Bi−1|

≤ (1 + ϑ ′M)|Bi−1| =
(
1 + ϑ

3N

)
|Bi−1|.

Therefore, we obtain

|B+| = |BN | ≤
(
1 + ϑ

3N

)N

|B| ≤ exp

(
N

ϑ

3N

)
· |B| ≤ (1 + ϑ)|B|,

using 1 + x ≤ ex ≤ 1 + 3x , for x ∈ [0, 1].
The claim is that there is a (1 + ε)-path π̂ between any pair of vertices p, q ∈

P\B+ ≡ P\BN such that the path π̂ does not use any vertices of B. By Theorem3.11,
for the right choice of σ , the graph Gσ \ BN−1 ⊆ G \ BN−1 contains a monotone path
connecting p to q, according to σ . Observe that there is a unique edge (p′, q ′) on this
path that “jumps” from the locality of p to the locality of q. Formally, we have the
following:

– ‖p′ − q ′‖ ≤ ‖p − q‖ + 2δ‖p − q‖ = (1 + 2ε/c)‖p − q‖.
– ‖p − p′‖ ≤ 2δ‖p − q‖ = 2ε‖p − q‖/c, and similarly ‖q − q ′‖ ≤ 2ε‖p − q‖/c.
– p′, q ′ ∈ P \ BN−1.

We fix the edge (p′, q ′) to be used in the computed path π̂ connecting p to q. We still
need to build the two parts of the path π̂ between p, p′ and q, q ′.

This procedure reduced the problem of computing a reliable path between two
points p, q ∈ P \ BN , to computing two such paths between two points of P \ BN−1
(i.e., p, p′ and q, q ′). The benefit here is that both ‖p − p′‖ and ‖q − q ′‖ are much
smaller than ‖p − q‖. We now repeat this refinement process N − 1 times.

To this end, let Qi be the set of active pairs that needs to be connected on the i th
level of the recursion. Thus, we have that Q0 = {(p, q)}, Q1 = {(p, p′), (q, q ′)}, and
so on. We repeat this N −1 times. On the i th level there are |Qi | = 2i active pairs. Let
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(x, y) ∈ Qi be such a pair. Then, there is an edge (x ′, y′) in the graph G \ BN−(i+1),
such that

– ‖x ′ − y′‖ ≤ ‖x − y‖(1 + 2ε/c) ≤ (2ε/c)i (1 + 2ε/c)‖p − q‖;
– ‖x − x ′‖ ≤ 2ε‖x − y‖/c ≤ (2ε/c)i+1‖p −q‖ and ‖y − y′‖ ≤ (2ε/c)i+1‖p −q‖;
– x ′, y′ ∈ P \ BN−(i+1).

The edge (x ′, y′) is added to the path π̂ . After N − 1 iterations the set of active pairs
is QN−1 and for each pair (x, y) ∈ QN−1 we have that x, y ∈ P \ B1. For each of
these pairs (x, y) ∈ QN−1 we apply Theorems 4.1 and 3.11 to obtain a path of length
at most 2‖x − y‖ log n between x and y (and this subpath of course does not contain
any vertex in B). We add all these subpaths to connect the active pairs in the path π̂ ,
which completes π̂ into a path.

Now, we bound the length of path π̂ . Since, for all (x, y) ∈ QN−1, we have
‖x − y‖ ≤ ‖p − q‖ · (2ε/c)N−1 and |QN−1| = 2N−1, the total length of the subpaths
calculated, in the last step, is

∑

(x,y)∈QN−1

length (π̂[x, y]) ≤ 2N−1‖p − q‖ ·
(
2ε

c

)N−1

2 log n

≤ ‖p − q‖ ·
(
4ε

c

)log log n

2 log n ≤ ‖p − q‖ · εlog log n
(
4

c

)log log n

2 log n

≤ ‖p − q‖ · ε

4
· 1

log n
· 2 log n = ε

2
‖p − q‖,

for large enough n and c ≥ 8. The total length of the long edges added to π̂ in the
recursion is bounded by

N−2∑

i=0

2i‖p − q‖
(
2ε

c

)i(
1 + 2ε

c

)
≤ ‖p − q‖

(
1 + 2ε

c

) ∞∑

i=0

(
4ε

c

)i

= ‖p − q‖
(
1 + 2ε

c

)
1

1 − 4ε/c
= ‖p − q‖

(
1 + 6ε

c − 4ε

)
≤

(
1 + ε

2

)
‖p − q‖,

which holds for c ≥ 16. Therefore, the computed path π̂ between p and q is a (1+ε)-
path in G \ B, which concludes the proof of the theorem.

5 Construction for Points with Bounded Spread in R
d

The input is again a set P ⊂ R
d of n points, and parameters ϑ ∈ (0, 1/2) and

ε ∈ (0, 1). The goal is to build a ϑ-reliable (1+ ε)-spanner on P that has optimal size
under the condition that the spread Φ(P) is bounded by a polynomial of n.
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5.1 Preliminaries

Definition 5.1 For a point set P ⊆ R
d , let diam(P) = maxp,q∈P ‖p − q‖ denote the

diameter of P . Let cp (P) = minp,q∈P,p �=q ‖p − q‖ denote the closest pair distance
in P . Furthermore, let Φ(P) = diam (P) /cp (P) be the spread of P .

Definition 5.2 Let s > 0 be a real number and let B and C be sets of points in R
d .

The sets B and C are s-separated if d (B, C) ≥ s ·max (diam (B) , diam (C)), where
d (B, C) = minp∈B,q∈C ‖p − q‖.
Definition 5.3 Let P be a set of n points in the plane and let s > 0 be a real number. An
s-well-separated pair decomposition (s-WSPD) of P is a collectionW = {(Bi , Ci )}m

i=1
of pairs of subsets of P , such that

– the sets Bi and Ci are s-separated, for all i = 1, 2, . . . , m; and
– for any p, q ∈ P (p �= q) there exists a unique pair (Bi , Ci ) ∈ W , such that

p ∈ Bi and q ∈ Ci (or q ∈ Bi and p ∈ Ci ).

The well-separated pair decomposition was introduced by Callahan and Kosara-
ju [12]. The size of a WSPD is the number of pairs m, and the weight of a pair
decomposition W is defined as ω(W) = ∑m

i=1(|Bi | + |Ci |). There are several ways
to compute an s-WSPD. Here, we use a quadtree-based approach, which has important
properties that we can exploit. More precisely, we use the following result of Abam
and Har-Peled [2, Lemma 2.8] for computing a WSPD.

Lemma 5.4 Let P be a set of n points in R
d , with spread Φ = Φ(P), and let ε > 0 be a

parameter. Then, one can compute an ε−1-WSPD for P of total weightO(nε−d logΦ).
Furthermore, any point of P participates in at most O(ε−d logΦ) pairs.

5.2 The Construction of G8

First, compute a quadtree T for the point set P . For any node v ∈ T , let �v denote
the cell (i.e., square or cube, depending on the dimension) represented by v. Let
Pv = �v ∩ P be the point set stored in the subtree of v. Compute a (6/ε)-WSPD W
of P , such that each pair consists of two cells of T , using Lemma 5.4. The pairs inW
can be represented by pairs of nodes {u, v} of the quadtree T . Note that the algorithm
of Lemma 5.4 uses the diameters and distances of the cells of the quadtree, that is, for
a pair {u, v} ∈ W , we have

6

ε
· max (diam (�u), diam (�v)) ≤ d (�u,�v) .

For any pair {u, v} ∈ W , we build the bipartite expander of Lemma 2.4 on the sets
Pu and Pv so that the expander property holds with ξ = ϑ/8. Furthermore, for every
two nodes u and v that have the same parent in the quadtree T we add the edges of the
bipartite expander of Lemma 2.4 between Pu and Pv . Let GΦ be the resulting graph
when taking the union over all the sets of edges generated by the above.
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5.3 Analysis

Lemma 5.5 The graph GΦ has O(ξ−2ε−dn logΦ(P)) edges.

Proof By Lemma 5.4, every point participates in O(ε−d logΦ(P)) WSPD pairs. By
Lemma 2.4 the average degree in all the expanders is at mostO(1/ξ2), resulting in the
given bound on the number of edges. There are also additional pairs between a node
in T and its parent, but since every point participates in onlyO(logΦ(P)) such pairs,
the number of edges is dominated by the expanders on theWSPD pairs. It follows that
the number of edges in the resulting graph is O(ξ−2ε−dn logΦ(P)).

We note that there are point sets, with unbounded spread, such that any WSPD on
them has weight Ω(n2). A simple example is a sequence of points along a line with
exponentially increasing distances. Thus, requiring the bounded spread on the point
set is unavoidable to achieve optimal size by using the above construction.

Definition 5.6 For a number γ ∈ (0, 1), and failed set of vertices B ⊆ P , a node v

of the quadtree T is in the γ -shadow if |B ∩ Pv| ≥ γ |Pv|. Naturally, if v is in the
γ -shadow, then the points of Pv are also in the shadow. As such, the γ -shadow of B is
the set of all the points in the shadow—formally, S (γ, B) = ⋃

v∈T , |B∩Pv |≥γ |Pv | Pv .

Let γ = 1 − ϑ/2. Note that B ⊆ S (γ, B), since every point of B is stored as a
singleton in a leaf of T .

Definition 5.7 For a node x in T , let n(x) = |Px |, and b(x) = |Px ∩ B|.
Lemma 5.8 Let γ = 1 − ϑ/2 and B ⊆ P be fixed. Then, the size of the γ -shadow of
B is at most (1 + ϑ)|B|.
Proof Let H be the set of nodes of T that are in the γ -shadow of B. A node u ∈ H
is maximal if none of its ancestors is in H . Let H ′ = {u1, . . . , um} be the set of all
maximal nodes in H , and observe that

⋃
u∈H ′ Pu = ⋃

v∈H Pv = S(γ, B). For any
two nodes x, y ∈ H ′, we have Px ∩ Py = ∅. Therefore,

|B| =
∑

u∈H ′
b(u) ≥

∑

u∈H ′
γ n(u) = γ |S(γ, B)|.

Dividing both sides by γ implies the claim, since 1/γ = 1/(1 − ϑ/2) ≤ 1 + ϑ .

Lemma 5.9 Let γ = 1 − ϑ/2. Fix a node u ∈ T of the quadtree, the failure set
B ⊆ P, its shadow B+ = S (γ, B), and the residual graph H = GΦ \ B. For a point
p ∈ Pu \ B+, we define the set

Ru(p) = {q ∈ Pu\B |dH (p, q) ≤ 2 · diam(�u)}.

Then, |Ru(p)| ≥ 3ξ |Pu |.
Proof Let u1, u2, . . . , u j = u be the sequence of nodes in the quadtree, from the leaf
u1 that contains (only) p to the node u. A level of a point q ∈ Pu , denoted by � (q),
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is the first index i , such that q ∈ Pui . A skipping path in GΦ is a sequence of edges
pq1, q1q2, . . . qm−1qm such that � (qi ) < � (qi+1), for all i .

Let Qi be the set of all points in Pui \ B that are reachable by a skipping path in H
from p. We claim, for i = 1, . . . , j , that

|Qi | ≥ (1 − ξ)n(ui ) − b(ui ) ≥ (1 − ξ − γ )n(ui ) =
(

ϑ

2
− ξ

)
n(ui ) = 3ξn(ui ),

since ξ = ϑ/8 and p is not in the γ -shadow. The claim clearly holds for u1. So, assume
inductively that the claim holds for u1, . . . , u j−1. Let v1, . . . , vm be the children of
u j that have points stored in them (excluding u j−1). There is an expander between
Pu j−1 and Pvi , for all i , as a subgraph of GΦ . It follows, by induction, that

|Q j | ≥ (1 − ξ)n(u j−1) − b(u j−1) +
∑

i

(
(1 − ξ)n(vi ) − b(vi )

)

= (1 − ξ)n(u j−1) +
∑

i

(1 − ξ)n(vi ) − b(u j−1) −
∑

i

b(vi )

= (1 − ξ)n(u j ) − b(u j ).

Observe that a skipping path from p to q ∈ Pu j has length at most

j∑

i=1

diam(�ui ) ≤ diam(�u j )

j∑

i=1

21− j ≤ 2 · diam(�u j ).

Thus, Q j ⊆ Ru(p), and the claim follows.

Now we are ready to prove that GΦ is a reliable spanner.

Lemma 5.10 For a set P ⊆ R
d of n points, parameters ε ∈ (0, 1) and ϑ ∈ (0, 1/2),

the graph GΦ is a ϑ-reliable (1 + ε)-spanner with O(ε−dϑ−2n logΦ(P)) edges,
where Φ(P) is the spread of P.

Proof Let ξ = ϑ/8 and γ = 1 − ϑ/2. The bound on the number of edges follows by
Lemma 5.5.

Let B be a set of faulty vertices of GΦ , and let H = GΦ \ B be the residual graph.
We define B+ to contain the vertices that are in the γ -shadow of B. Then, we have
B ⊆ B+ and |B+| ≤ (1 + ϑ)|B| by Lemma 5.8. Finally, we need to show that there
exists a (1 + ε)-path between any p, q ∈ P \ B+.

Let {u, v} ∈ W be the pair that separates p andq with p ∈ Pu andq ∈ Pv , see Fig. 7.
Let Ru(p) (resp. Rv(q)) be the set of points in Pu (resp. Pv) that are reachable in H
from p (resp. q) with paths that have lengths at most 2·diam (�u) (resp. 2·diam (�v)).
By Lemma 5.9, |Ru(p)| ≥ 3ξn(u) ≥ ξn(u) and |Rv(q)| ≥ 3ξn(v).

Since there is a bipartite expander between Pu and Pv with parameter ξ , by
Lemma 2.4, the neighborhood Y of Ru(p) in Pv has size at least (1− ξ)n(v). Observe
that |Y ∩ Rv (q) | = |Rv (q) \ (Pv \ Y )| ≥ |Rv (q) | − |Pv \ Y | ≥ 3ξn(v)− ξn(v) > 0.
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p

q

p
q

�u
�v

Fig. 7 The pair {u, v} ∈ W that separates p and q. The blue path is a (1 + ε)-path between p and q in the
graph GΦ \ B

Therefore, there is a point q ′ ∈ Y ∩ Rv (q), and a point p′ ∈ Ru(p), such that
p′q ′ ∈ E (GΦ). We have

dH (p, q) ≤ dH (p, p′) + dH (p′, q ′) + dH (q ′, q)

≤ 2 · diam (�u) + ‖p′ − q ′‖ + 2 · diam (�v)

≤ 3 · diam (�u) + d (�u,�v) + 3 · diam (�v)

≤
(
1 + 6 · ε

6

)
· d (�u,�v) ≤ (1 + ε) · ‖p − q‖.

6 Conclusions

A natural open question is whether ϑ-reliable spanners can be constructed with
O(n log n) edges for general point sets. There are different approaches that lead to
near optimal bounds. While we use the one-dimensional construction with a care-
ful application of locality-sensitive orderings, Bose et al. [7] uses WSPD, centroid
decomposition and an idea of Willard [25] for order maintenance. Another natural
open question is how to construct reliable spanners that are required to be subgraphs
of a given graph.
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